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Dimensionally Exact Energy Confinement Scaling in W7-AS
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Energy confinement in W7-AS has been analyzed in terms of dimensionally exact form free functions
employing Bayesian probability theory. Based upon the international stellarator database, which
contains the energy content for a wide variety of variable settings, predictions for single variable scans
are made. The scaling functions for density and power scans, respectively, are in quantitative agreement
with data collected in W7-AS. Furthermore, the optimal model for the description of the global
transport in W7-AS is identified as the collisional low-beta kinetic model. [S0031-9007(98)07405-5]

PACS numbers: 52.55.Pi

Fusion plasma behavior has been described for about 28herer is the average density, and R minor and ma-
years by energy confinement scaling functions [1]. Suchor radius of the torusB the magnetic field, an@® the
confinement relations serve presently primarily two pur-deposited heating power. The particular values ofx,,
poses: first, they constitute a convenient summary of mag; specify the plasma kinetic model as shown in Table I.
chine operation. This allows intermachine comparisonssince we concentrate in this paper on data from a single
and the characterization of conditions for enhanced conmachine, parameters which are constant within the exam-
finement regimes. Second, energy confinement scalinigped data set (e.gR) are absorbed ir’. The number
provides the basis for the design of future experiments sucbf degrees of freedom in (1) varies—depending upon the
as ITER representing the tokamak line or W7-X and LHDmodel—between one and three, whereas the unconstrained
in the stellarator branch. Confinement scaling relationgnsatz for a single device with = const would have four
have been used to predict L-mode tokamak performancé:, B, P, a). Imposing physical constraints on the power
with some success [2]. This is notable for several realaw ansatz reduces the flexibility and leads necessarily to
sons. First, the popular power law functional form of thean increased misfit. We will demonstrate in this paper,
confinement scaling function was originally assumed fothowever, that a dimensionally exact power-law type of
reasons of convenience and simplicity and lacks a physiansatz can be formulated which leads to a significantly re-
cal foundation. This initial choice has subsequently beemluced misfit.
justified by a surprisingly good characterization of data Interestingly enough, already Connor and Taylor [4]
trends. There have also been, now and then, attempts ptoposed to express a general form free energy confine-
improved data representation by more complicated funcment scaling function as a series of terms of the form (1)
tions as for example the class of offset linear scalings [3]for properly choserx; with expansion coefficients,. In
Since they were not really superior to a single power lawmathematical terms this is nothing but the expansion in
term, the latter has accumulated considerable credit just by basis which is dimensionally exact. In this paper we
experience. shall exploit this suggestion. Consider a set of measure-

Another major shortcoming of the unconstrained powements of the plasma energy content fodifferent values
law scaling function is its dimensional incorrectness. Con-of the experimental input variablé€s, B, P, a). We repre-
nor and Taylor [4] tried to interpret experimental scal-sent the theoretical prediction for the energy content by an
ing functions, established by Hugill and Sheffield [1], in N-dimensional vectoW ¢ which may be described for
terms of constraints derived from the requirement of physiall plasma models by
cal invariance under similarity transformations of the ba- piheo — Z Fx0) @
sic equations describing plasma behavior. These attempts P A
were accompanied _by conS|der§1bIe frustratlon since the¥he ith component of the expansion vectpix,) corre-
found that_ the experimental scaling was |_ncompa_t|ble W'tr% onds to théth measurement and reads according to (1)
any of their plasma models. Based on this experience the (x¢) = g(n;. Bi. P;.a;:x,). IngeneralN such linearl
suggested that the theoretically derived dimensional con-"" ¢ 8, Bir Fi» i3 Xi). 1N G y
straints be incorporated directly in the power law ansatzTABLE |. Parameter of the Connor-Taylor (CT) kinetic
This proposal has been followed subsequently on many oglasma models.
casions [51. It consists_ of expressing the energy coritent CT model no oxw ox o p(MIWER o)
of the toroidal magnetic confinement device by [4]

xl o (1) Collisionlesslow8 x 0 0 4 X 10729
Wheo — ena®RE2 P a’B* B (2) Coliisional low3 x y O 99.7%
na*RB3 n na (3) Collisionless highg x 0 =z 0.25%
(4) Collisional highg X y Z 0.025%

= c¢'g(n,B,P,a;x), (1)
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independent vectors form a complete basis in e prehensive answer to these and other questions is provided
dimensional data space and would therefore allow a pointby Bayesian probability theory [6,7].

wise reconstruction of the data. This is neither desirable, Bayesian probability theory rests on the strict applica-
nor with respect to physics correct, since the correspondingion of two basic rules. The product rule

vector of measured energy conte®$™® is corrupted by {)(A,B | 1) = p(A| DpB| AT = pB | DpA|B,I)
noise. What we really want is an expansion, truncated a

some appropriate upper limit and describing the physics, 3)
while the residualV — E terms in the expansion (2) fit allows one to expand the joint probabilip(A, B | 1) for

only noise. Further, we would like to identify the plasma PropositionsA and B on the basis of some background
physics model which describes the data best. An imporinformation/ into conditional probabilities for only one
tant topic are single variable scans (e.g., the variation of thgariable. Comparison of the two alternative forms in (3)
energy content as function of the density with all other vari-2/lows one to inferp(A | B,I) from the knowledge of
ables fixed) which constitute a very stringent test on any’ (B | A,1). This is called Bayes theorem. A second rule
energy confinement function. Such scans are not directlpf probability theory allows one to get rid of variables
accessible from published databases. On the other haridharginalize over) in probability densities which may be
single variable scans are experimentally cumbersome, arftecessary at intermediate stages of the calculation but do
expensive experiments have to be performed for each arftpt enter into the distribution of interest. It reads

every input variable of interest. Itis therefore highly desir- p(A]I) = fp(B | p(A | B,I)dB. (4)

able to extract single variable scans from existing databases

by employing improved data analysis techniques. A corng;]hel_sktal_rﬂngdp?im :‘_or the analysis of experimental data is
e likelihood function

N2 N E 2
pW | w,c,x,0,E,M;,I) = (%) nailexp{—w Z|:W,-6Xp - chf,-(xk)j| /20',-2]. (5)
i i 3

M; denotes the plasma kinetic model used to generaterthe

expansion vectorg(x,). o is the vector of experimental comparison of modeM;, to modelM; leads to the odds
uncertainties associated with the measuren®éft. The (4tig

uncertainty in the energy conteW®*® contains the direct

distributions from the diamagnetic measurement as welp(M; | W, o.1) _ p(M; | 0.1) p(W** | M}, 0.1)

as indirect contributions from the finite precision in the p(M; | Wer, o, 1)  p(M; | o, 1) p(We® | My, 0, 1) "
input variables#, B, P,a). Both contributions have been

estimated to the best of our knowledge. To allow for (7)
possible deviations from the true errors we introducel he first term on the right-hand side of (7) is called the
an overall correction factor. The Bayesian analysis Prior odds. It expresses the preference for one model over
yields a posteriori w %5 = 0.8 for the most probable another prior to the analysis of the data. Clearly, we shall
model and the optimum expansion order which indicate®ut this factor equal to unity. The second term is called
an overestimation ofr of 20%. ¢ are the expansion the BayeS factor and is the ratio of marginal likelihoods
coefficients andE is as before the expansion order. conditional on models/; andM, respectively. p(We® |
We illustrate the type of calculation performed for the M;, o, 1) is obtained upon application of (4)

case of model comparison, e.g., a probabilistic answer

to the question which one of the kinetic plasma models p(W®? | M;, o, 1) = Zp(E | Mj,I)f dowdc dx
discussed by Connor and Taylor is most likely on the E

basis of the data. To this end we nge@d?; | W, o, I). X p(W w,c,x | E;Mj,0,1).
By application of Bayes theorem we obtain ®)
pM; | o)

pM; | WP, o, 1) = ——————— Expansion of the integrand in (8) by application of (3)
p(We | o.1) and omission of all irrelevant logical conditionings [e.g.,
X p(W*P | M;,o,1). (6) | ple | x,E,M;,o,I) does not depend om] leads to

p(W | M o,1) = Zp(E | Mj,I)f dodcdx p(W | w,c,x,0,E,M;,)p(w | I)
E
X px | EM;,Dp(c|x,E,M;I). 9)
The first term in the integrand of (9) is the already known likelihood function (5). The other three terms are prior
probabilities forw, x, andec, respectively. For the scale variahlewe use Jeffreys’ priop(w | I) = 1/w [8]. For

c we take an uninformative priop(c | x,E,M;,I), which is constant within an allowed region defined by
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S>3 cifi(xi)B/o? = r? of volume twice as large as e ' i ' '
given by Bessel’s inequality for the exponent of the like-
lihood function (5). This describes our minimal prior
knowledge. The prior has no influence on parameter es- -

for model comparison. Finally, fatr we choose an un- %
informative prior derived from transformation invariance ¢~
arguments. The and w integrations in (9) can be per- =10 |
formed analytically [9] while the remaining integration g
is carried out with Markov-chain Monte Carlo techniques.
The data which we have used in our calculations are 10° }
the 153 . = 1/3 W7-AS data from the international
stellarator energy confinement data base [10jdtational 1 2 3 4 5
transform). We have selected the= 1/3 data only Expansion order E
since the single variable scans WhiCh we present fu.rtheI;IG. 1. The maximum of the probability of expansion order
down, have been performed at this value of the rotationay; i, '£q. (5) is obtained forE = 3 (full circles, left scale).
transform. The limitation has the further advantageHigher order terms do not further reduce the misfit with
that we get rid of an additional, dimensionless, andopen squares, right scale). Both graphs were obtained for the
ill-defined variable which would otherwise have to be collisional low beta case.
considered in the ansatz (2). Odds ratios obtained from
(7) are converted back to probabilities ushg p(We® | p(W | WP, M;,or,v,I). The additional conditionv
M;,o,1) = 1. The resulting model probabilities are specifies the “input data vectorv” = (n,B,P,a) at
depicted in the last column of Table l. We see thatwhich the energy content measurement was performed.
the « = 1/3 W7-AS data are best described by the W®",M;, and o have still their previous meaning.
collisional low beta Connor Taylor model. The high betaThe confidence ranges were calculated framy) =
models follow in second and third place with much lower\(W2) — (W)2, with (W?) = (W2 | WP, M;, o, v,1)
probability. The collisionless low beta model is clearly and(W) = (W | W&, M;, o, v,I). In the following we
inappropriate to describe the transport physics in W7-ASwill show the result for density and power scans obtained
The termsp(W®® | M;, o, E,I) arising in (9) can be on the one hand from the present theory and on the other
inverted using Bayes theorem to obtain the probabilityhand from experiments at W7-AS. Because these data are
for the expansion ordemp(E | WP, o, M;,I) in the notincluded in the stellarator confinement data D&SE
light of the data and a particular model. This quantitythe analysis is based on, this test shows the predictive
is displayed for the most probable plasma model, theower of our approach.
collisional low beta case, in Fig. 1 as full circles. The The full circles in Fig. 2 represent experimental results
error bars indicate Monte Carlo integration uncertaintiesfor the density scan. Representative error bars signify
The open squares, with associated error bars, depitihe precision level of these data. The continuous curve
the misfit between data and model prediction (2) as aepicts the result of the present semiempirical theory
function of the expansion order. We observe quite along with the confidence range indicated by the gray
typical behavior. Up to three terms in the expansion (2shaded area. The stellarator energy confinement data
lead to a rapid decrease of the misfit. Though it doedase is represented by the open circles which are spread
decrease further monotonically with increasing expansiomll over since they were obtained for various settings of
order the probability for a giverE decreases rapidly, the variables B, P, a). The histogram at the base line
so that contributions of higher expansion orders becomedicates the number of shots at the respective density
very small. This is a demonstration of Occam’s razorand gives an impression about the range our result for
automatically included in Bayesian theory. This principlethe single variable scan is best supported by the data
dictates that a simpler model should be preferred unledsase. Last but not least the dashed curve represents the
a more complicated one leads to a substantially better fillensity dependence as inferred from an unrestricted single
to the data. Note that the present optimum three ternpower law conventional least-squares fit resting on the
expansion reduces the misfit to about 65% of its initialsame datdV®*P as our Bayesian result. It does only hit the
value. The possibility for such an effect has previouslyprogression of the data at two points, while staying out of
been pointed out by Kayet al. [2]. the data scatter (of the full circles) most of the time. Within
There is, however, a much more demanding test of théhe density range of the single variable scan the prediction
present semiempirical theory of global transport. Suclof the semiempirical theory runs straight through the
a test is provided by a comparison of measured singldata and exhibits clearly the previously supposed density
variable scans to the predictions from the present theonsaturation [10,11], which can never be obtained by a
The latter is the expectation val¢® | W, M;,o,v,I)  single power law term at all. Outside this range the
of energy content obtained from averagifyj over data setWeP is too sparse, which is reflected in the
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FIG. 2. Experimental results of a single variable densityr;s 3 ggme as Fig. 2 for a single variable power scan
ﬁith n=24x%X10"m™3 B=25T, a=0176m. The
stogram is again with respect to the input data (open circles

scan (full circles) compared to the predictions of the presen
semiempirical theory (continuous line, shaded area represen

the error) forB =25 T, P = 045 MW, a = 0.176 m. The a4 harq)  Our result is represented by the solid line with the
input data (open circles) are shown regardless of additional,qeq area as the error. A least-squares fit of the input data
variations in B, P, a, and are therefore spread all over. . .4 yieldW ~ P°5 (dashed line).

The histogram accounts for their distribution over the density

e n’ége(%ﬁat;]‘g%aﬁﬁg)f” (LSF) of the input data would yield oi»ine for arbitrary variable choices and can be extracted
' from the latter by a proper data analysis. The presented

pproach has two major advantages over the traditional

est-fit approach: Besides its predictive power even on

guantitative level it indicates where the prediction can

rapidly widening error band. In contrast to the robust bu
erroneous power law scaling the present theory indicate
where the extrapolation becomes unreliable. It might b . . ; .
an unfortunate but honest conclusion that an extrapolatio e trusted. Finally, _the importance of .th.'$ method IS far
beyond the parameter regime supported by the data ba qund P."”.‘S"‘a conflnement. The pOSSIb.Illt.y to estabh_sh a
is not possible. However, one has to consider that théemlempmce}l theory W't.h CoerI.IEd pfed'c“of‘ properties
seeming predictability of the commonly used power lawMa&Y well be interesting in other'ﬂelds .Of physics.

scaling performs even worse, producing an ever increasin The al_Jthors acknowledge discussions of EIrors asso-
function which misses the saturation entirely. Note tha .at.e?( with thek energy_content r_neasulrements Wr:th R.
the comparison between the single variable scan and t hicke, V. Erckmann, F. P. Penrjln_gsfe d, U. Strot ! and
prediction of our analysis holds on absolute scales. Neither: W_agner._ One of us (V. Dose) is indebted to D. Pfirsch
in Fig. 2 nor in the subsequent Fig. 3 adjustable scal or discussions on the Connor-Taylor paper.

parameters are necessary. This means that experiments in

W7-AS have an impressive reproducibility.

Figure 3 finally displays a similar comparison for a 1y j il and J. Sheffield, Nucl. Fusiat8, 15 (1978).
power scan in W7-AS. Again the semiempirical theory [2] S.M. Kayeet al., Phys. Fluids B2, 2926 (1990).
shown as the continuous line predicts the measured engz] j G, Cordeyet al., Plasma Phys. Controlled Nucl. Fusion
ergy content—on an absolute scale—within experimental’ ~ Res.3, 443 (1991).
error and corroborates the experimentally observed powef4] J.W. Connor and J.B. Taylor, Nucl. Fusich7, 1047
degradation. The dashed curve is from a power law fit  (1977).
and is, as for the density scan, convex while the presen{5] J.P. Christiansen, J.G. Cordey, and K. Thomsen, Nucl.
model shows concave dependence in both cases. Fusion30, 1183 (1990).

In summary, form free dimensionally exact energy con- [6] G.L. Brgttho_rst,Baygsian Spectrum Analysis and Param-
finement functions derived from data of the international __ ©ter Estimation(Springer Press, Berlin, 1988).
stellarator data base and optimized according to the ruled’] Kendal's Advanced Theory of Statistics, Bayesian Infer-

. - - o enceedited by A. O’'Hagan (John Wiley Sons, New York,
of Bayesian probability theory have identified out of the 1994), 1st ed., p. 293ff,
set of four Conner-Taylor models the collisional low beta 8] H. Je;‘freys, T,heory of Probability, (Oxford University
one to be the most probable plasma physics model for W7-" " press, Oxford, 1961), 3rd rev. ed.
AS. Moreover, single variable scans were reproduced in[9] Details will be published elsewhere.
quantitative agreement with experiments. The result of §10] U. Strothet al., Nucl. Fusion36, 1063 (1996).
single variable scan is therefore already hidden in the datid1] U. Stroth, Plasma Phys. Controlled Fusit®) 9 (1998).
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