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Dimensionally Exact Energy Confinement Scaling in W7-AS
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Energy confinement in W7-AS has been analyzed in terms of dimensionally exact form free func
employing Bayesian probability theory. Based upon the international stellarator database, w
contains the energy content for a wide variety of variable settings, predictions for single variable s
are made. The scaling functions for density and power scans, respectively, are in quantitative agre
with data collected in W7-AS. Furthermore, the optimal model for the description of the glo
transport in W7-AS is identified as the collisional low-beta kinetic model. [S0031-9007(98)07405-
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Fusion plasma behavior has been described for abou
years by energy confinement scaling functions [1]. Su
confinement relations serve presently primarily two pu
poses: first, they constitute a convenient summary of m
chine operation. This allows intermachine compariso
and the characterization of conditions for enhanced co
finement regimes. Second, energy confinement sca
provides the basis for the design of future experiments su
as ITER representing the tokamak line or W7-X and LH
in the stellarator branch. Confinement scaling relatio
have been used to predict L-mode tokamak performan
with some success [2]. This is notable for several re
sons. First, the popular power law functional form of th
confinement scaling function was originally assumed f
reasons of convenience and simplicity and lacks a phy
cal foundation. This initial choice has subsequently be
justified by a surprisingly good characterization of da
trends. There have also been, now and then, attempt
improved data representation by more complicated fun
tions as for example the class of offset linear scalings [
Since they were not really superior to a single power la
term, the latter has accumulated considerable credit jus
experience.

Another major shortcoming of the unconstrained pow
law scaling function is its dimensional incorrectness. Co
nor and Taylor [4] tried to interpret experimental sca
ing functions, established by Hugill and Sheffield [1], i
terms of constraints derived from the requirement of phy
cal invariance under similarity transformations of the b
sic equations describing plasma behavior. These attem
were accompanied by considerable frustration since th
found that the experimental scaling was incompatible w
any of their plasma models. Based on this experience th
suggested that the theoretically derived dimensional c
straints be incorporated directly in the power law ansa
This proposal has been followed subsequently on many
casions [5]. It consists of expressing the energy contentW
of the toroidal magnetic confinement device by [4]
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wheren is the average density,a and R minor and ma-
jor radius of the torus,B the magnetic field, andP the
deposited heating power. The particular values ofx1, x2,
x3 specify the plasma kinetic model as shown in Table
Since we concentrate in this paper on data from a sing
machine, parameters which are constant within the exam
ined data set (e.g.,R) are absorbed inc0. The number
of degrees of freedom in (1) varies—depending upon th
model—between one and three, whereas the unconstrain
ansatz for a single device withR ­ const would have four
(n, B, P, a). Imposing physical constraints on the powe
law ansatz reduces the flexibility and leads necessarily
an increased misfit. We will demonstrate in this pape
however, that a dimensionally exact power-law type o
ansatz can be formulated which leads to a significantly re
duced misfit.

Interestingly enough, already Connor and Taylor [4
proposed to express a general form free energy confin
ment scaling function as a series of terms of the form (1
for properly chosenxk with expansion coefficientsck . In
mathematical terms this is nothing but the expansion i
a basis which is dimensionally exact. In this paper w
shall exploit this suggestion. Consider a set of measur
ments of the plasma energy content forN different values
of the experimental input variablessn, B, P, ad. We repre-
sent the theoretical prediction for the energy content by a
N-dimensional vectorW theo which may be described for
all plasma models by

W theo ­
NX

k­1

ckf sxkd . (2)

The ith component of the expansion vectorf sxkd corre-
sponds to theith measurement and reads according to (1
fisxkd ­ gsni , Bi , Pi , ai; xkd. In general,N such linearly

TABLE I. Parameter of the Connor-Taylor (CT) kinetic
plasma models.

CT model x1 x2 x3 psMj jWexp, s , Id

(1) Collisionless low-b x 0 0 4 3 10212%
(2) Collisional low-b x y 0 99.7%
(3) Collisionless high-b x 0 z 0.25%
(4) Collisional high-b x y z 0.025%
© 1998 The American Physical Society 3407
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independent vectors form a complete basis in theN-
dimensional data space and would therefore allow a poi
wise reconstruction of the data. This is neither desirab
nor with respect to physics correct, since the correspond
vector of measured energy contentsWexp is corrupted by
noise. What we really want is an expansion, truncated
some appropriate upper limitE and describing the physics,
while the residualN 2 E terms in the expansion (2) fit
only noise. Further, we would like to identify the plasm
physics model which describes the data best. An imp
tant topic are single variable scans (e.g., the variation of
energy content as function of the density with all other va
ables fixed) which constitute a very stringent test on a
energy confinement function. Such scans are not direc
accessible from published databases. On the other ha
single variable scans are experimentally cumbersome,
expensive experiments have to be performed for each a
every input variable of interest. It is therefore highly desi
able to extract single variable scans from existing databa
by employing improved data analysis techniques. A com
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prehensive answer to these and other questions is prov
by Bayesian probability theory [6,7].

Bayesian probability theory rests on the strict applic
tion of two basic rules. The product rule

psA, B j Id ­ psA j IdpsB j A, Id ­ psB j IdpsA j B, Id

(3)
allows one to expand the joint probabilitypsA, B j Id for
propositionsA and B on the basis of some backgroun
information I into conditional probabilities for only one
variable. Comparison of the two alternative forms in (
allows one to inferpsA j B, Id from the knowledge of
psB j A, Id. This is called Bayes theorem. A second ru
of probability theory allows one to get rid of variable
(marginalize over) in probability densities which may b
necessary at intermediate stages of the calculation bu
not enter into the distribution of interest. It reads

psA j Id ­
Z

psB j IdpsA j B, Id dB . (4)

The starting point for the analysis of experimental data
the likelihood function
psWexp j v, c, x, s , E, Mj , Id ­
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Mj denotes the plasma kinetic model used to generate
expansion vectorsf sxkd. s is the vector of experimental
uncertainties associated with the measurementWexp. The
uncertainty in the energy contentWexp contains the direct
distributions from the diamagnetic measurement as w
as indirect contributions from the finite precision in th
input variables (n, B, P, a). Both contributions have been
estimated to the best of our knowledge. To allow fo
possible deviations from the true errors we introduc
an overall correction factorv. The Bayesian analysis
yields a posteriori v20.5 ø 0.8 for the most probable
model and the optimum expansion order which indicat
an overestimation ofs of 20%. c are the expansion
coefficients andE is as before the expansion orde
We illustrate the type of calculation performed for th
case of model comparison, e.g., a probabilistic answ
to the question which one of the kinetic plasma mode
discussed by Connor and Taylor is most likely on th
basis of the data. To this end we needpsMj j Wexp, s , Id.
By application of Bayes theorem we obtain

psMj j Wexp, s , Id ­
psMj j s , Id

psWexp j s , Id
3 psW exp j Mj , s , Id . (6)
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Comparison of modelMk to modelMj leads to the odds
ratio

psMj j Wexp, s , Id
psMk j Wexp, s , Id

­
psMj j s , Id
psMk j s , Id

psWexp j Mj , s , Id
psWexp j Mk , s , Id

.

(7)
The first term on the right-hand side of (7) is called th
prior odds. It expresses the preference for one model o
another prior to the analysis of the data. Clearly, we sh
put this factor equal to unity. The second term is calle
the Bayes factor and is the ratio of marginal likelihood
conditional on modelsMj andMk, respectively.psWexp j
Mj , s , Id is obtained upon application of (4)

psWexp j Mj , s , Id ­
X
E

psE j Mj , Id
Z

dv dc dx

3 psWexp, v, c, x j E, Mj , s , Id .

(8)

Expansion of the integrand in (8) by application of (3
and omission of all irrelevant logical conditionings [e.g
psc j x, E, Mj , s , Id does not depend ons ] leads to
prior

y

psWexp j Mj , s , Id ­
X
E

psE j Mj , Id
Z

dv dc dx psWexp j v, c, x, s , E, Mj , Idpsv j Id

3 psx j E, Mj , Idpsc j x, E, Mj , Id . (9)

The first term in the integrand of (9) is the already known likelihood function (5). The other three terms are
probabilities forv, x, andc, respectively. For the scale variablev we use Jeffreys’ priorpsv j Id ­ 1yv [8]. For
c we take an uninformative prior,psc j x, E, Mj , Id , which is constant within an allowed region defined b
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i # r2 of volume twice as large as

given by Bessel’s inequality for the exponent of the like
lihood function (5). This describes our minimal prio
knowledge. The prior has no influence on parameter
timation. It merely introduces a constant factor releva
for model comparison. Finally, forx we choose an un-
informative prior derived from transformation invarianc
arguments. Thec and v integrations in (9) can be per-
formed analytically [9] while the remainingx integration
is carried out with Markov-chain Monte Carlo technique

The data which we have used in our calculations a
the 153 i ø 1y3 W7-AS data from the international
stellarator energy confinement data base [10] (i: rotational
transform). We have selected thei ø 1y3 data only
since the single variable scans which we present furth
down, have been performed at this value of the rotation
transform. The limitation has the further advantag
that we get rid of an additional, dimensionless, an
ill-defined variable which would otherwise have to b
considered in the ansatz (2). Odds ratios obtained fro
(7) are converted back to probabilities using

P
j psWexp j

Mj , s , Id ­ 1. The resulting model probabilities are
depicted in the last column of Table I. We see th
the i ø 1y3 W7-AS data are best described by th
collisional low beta Connor Taylor model. The high bet
models follow in second and third place with much lowe
probability. The collisionless low beta model is clearl
inappropriate to describe the transport physics in W7-A

The termspsWexp j Mj , s , E, Id arising in (9) can be
inverted using Bayes theorem to obtain the probabili
for the expansion orderpsE j Wexp, s , Mj , Id in the
light of the data and a particular model. This quanti
is displayed for the most probable plasma model, t
collisional low beta case, in Fig. 1 as full circles. Th
error bars indicate Monte Carlo integration uncertaintie
The open squares, with associated error bars, dep
the misfit between data and model prediction (2) as
function of the expansion order. We observe quite
typical behavior. Up to three terms in the expansion (
lead to a rapid decrease of the misfit. Though it do
decrease further monotonically with increasing expansi
order the probability for a givenE decreases rapidly,
so that contributions of higher expansion orders becom
very small. This is a demonstration of Occam’s raz
automatically included in Bayesian theory. This princip
dictates that a simpler model should be preferred unle
a more complicated one leads to a substantially better
to the data. Note that the present optimum three te
expansion reduces the misfit to about 65% of its initi
value. The possibility for such an effect has previous
been pointed out by Kayeet al. [2].

There is, however, a much more demanding test of t
present semiempirical theory of global transport. Su
a test is provided by a comparison of measured sing
variable scans to the predictions from the present theo
The latter is the expectation valuekW j Wexp, Mj , s , y, Il
of energy content obtained from averagingW over
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FIG. 1. The maximum of the probability of expansion orde
E in Eq. (5) is obtained forE ­ 3 (full circles, left scale).
Higher order terms do not further reduce the misfit withE
(open squares, right scale). Both graphs were obtained for
collisional low beta case.

psW j Wexp, Mj , s , y, Id. The additional conditiony
specifies the “input data vector”yT ­ sn, B, P, ad at
which the energy content measurement was performe
Wexp, Mj, and s have still their previous meaning.
The confidence ranges were calculated fromskWl ­p

kW2l 2 kWl2, with kW2l ­ kW2 j Wexp, Mj , s , y, Il
and kW l ­ kW j Wexp, Mj , s , y, Il. In the following we
will show the result for density and power scans obtaine
on the one hand from the present theory and on the oth
hand from experiments at W7-AS. Because these data
not included in the stellarator confinement data baseWexp

the analysis is based on, this test shows the predicti
power of our approach.

The full circles in Fig. 2 represent experimental result
for the density scan. Representative error bars sign
the precision level of these data. The continuous cur
depicts the result of the present semiempirical theo
along with the confidence range indicated by the gra
shaded area. The stellarator energy confinement d
base is represented by the open circles which are spre
all over since they were obtained for various settings
the variables (B, P, a). The histogram at the base line
indicates the number of shots at the respective dens
and gives an impression about the range our result f
the single variable scan is best supported by the da
base. Last but not least the dashed curve represents
density dependence as inferred from an unrestricted sin
power law conventional least-squares fit resting on th
same dataWexp as our Bayesian result. It does only hit the
progression of the data at two points, while staying out o
the data scatter (of the full circles) most of the time. Withi
the density range of the single variable scan the predicti
of the semiempirical theory runs straight through th
data and exhibits clearly the previously supposed dens
saturation [10,11], which can never be obtained by
single power law term at all. Outside this range th
data setWexp is too sparse, which is reflected in the
3409
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FIG. 2. Experimental results of a single variable densi
scan (full circles) compared to the predictions of the prese
semiempirical theory (continuous line, shaded area represe
the error) forB ­ 2.5 T, P ­ 0.45 MW, a ­ 0.176 m. The
input data (open circles) are shown regardless of additio
variations in B, P, a, and are therefore spread all over
The histogram accounts for their distribution over the dens
axis. A least-squares fit (LSF) of the input data would yie
W , n0.39 (dashed line).

rapidly widening error band. In contrast to the robust b
erroneous power law scaling the present theory indica
where the extrapolation becomes unreliable. It might
an unfortunate but honest conclusion that an extrapolat
beyond the parameter regime supported by the data b
is not possible. However, one has to consider that t
seeming predictability of the commonly used power la
scaling performs even worse, producing an ever increas
function which misses the saturation entirely. Note th
the comparison between the single variable scan and
prediction of our analysis holds on absolute scales. Neith
in Fig. 2 nor in the subsequent Fig. 3 adjustable sca
parameters are necessary. This means that experimen
W7-AS have an impressive reproducibility.

Figure 3 finally displays a similar comparison for
power scan in W7-AS. Again the semiempirical theor
shown as the continuous line predicts the measured
ergy content—on an absolute scale—within experimen
error and corroborates the experimentally observed pow
degradation. The dashed curve is from a power law
and is, as for the density scan, convex while the pres
model shows concave dependence in both cases.

In summary, form free dimensionally exact energy co
finement functions derived from data of the internation
stellarator data base and optimized according to the ru
of Bayesian probability theory have identified out of th
set of four Conner-Taylor models the collisional low bet
one to be the most probable plasma physics model for W
AS. Moreover, single variable scans were reproduced
quantitative agreement with experiments. The result o
single variable scan is therefore already hidden in the d
3410
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FIG. 3. Same as Fig. 2 for a single variable power sca
with n ­ 2.4 3 1019 m23, B ­ 2.5 T, a ­ 0.176 m. The
histogram is again with respect to the input data (open circle
and bars). Our result is represented by the solid line with th
shaded area as the error. A least-squares fit of the input d
would yield W , P0.5 (dashed line).

obtained for arbitrary variable choices and can be extract
from the latter by a proper data analysis. The present
approach has two major advantages over the tradition
best-fit approach: Besides its predictive power even o
a quantitative level it indicates where the prediction ca
be trusted. Finally, the importance of this method is fa
beyond plasma confinement. The possibility to establish
semiempirical theory with controlled prediction propertie
may well be interesting in other fields of physics.
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