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Self-Similar Spatiotemporal Structure of Intermaterial Boundaries in Chaotic Flows
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The evolution of macroscopic material closed filaments in a time-periodic chaotic 2D flow is
simulated for cases with large, small, and very small islands of regular motion using an algorithm that
preserves spatial continuity. The length of the stretched filament increases much faster than predicted
by the Liapunov exponent. In chaotic regions, the filament asymptotically evolves into a self-similar
structure withpermanentpatial nonuniformities in density. Filament densities and local length scales
corresponding to different times are described by families of frequency distributions with invariant shape
that can be collapsed onto a single curve by means of a simple scaling. [S0031-9007(98)07190-7]

PACS numbers: 47.52.+], 47.11.+]j, 47.53.+n

This paper focuses on the time evolution of spatialby the convection-stretching equation,
structures generated by mixing in chaotic flows. Experi- _ . —n.
ments [1—-4] and computations (Fig. 1) have revealed that Dax_/Dt ox _Vu_’ D_B/D_t _ _B _Vu’ @
such structures are Composed of thousands of thin Strid\lhereu is the VelOClty fleld,(?x is an infinitesimal element
tions with an overall pattern that remains invariant overof & material line, and is the magnetic field. However,
time. The length scale distribution of such structureghe two problems are different in several important
is of considerable importance. For example, in polymer
blends, it determines mechanical and optical properties. gz
In transport-controlled reactive systems, microstructure de- fff 4
termines both the overall rate of reaction [5] and the rela-
tive amounts of different products generated by the process
[5]. In magnetic dynamos, microstructure determines the
spatial distribution of magnetic intensities [6—9]. o /
The rate of decay of length scales, the spatial density of ,4
material lines, and the length scale distribution of partially ,/ /
mixed structures generated by chaotic flows have never ’“‘,/ ,
been characterized in detaill, either in real or in model
flows. Chaotic flows create structures with a wide dis-
tribution of length scales, most of which are beyond ex-
perimental resolution. Most previous mixing studies have
focused on advection of point tracers [10,11] or stretching
of infinitesimal vectors [12,13]. Such simulations cannot
be used to examine the length scale distribution of a par-
tially mixed structure. Evolution of material filaments
in chaotic flows was originally considered by Franjione
et al.[14], who concluded that the large computational
resources required to simulate the exponentially growing
filament made such quantifications impractical at the time.
Fung and Vassilicos [15] attempted an analysis of con-
vected filaments, but their algorithm failed to preserve
continuity along the lines. Beigiet al.[12], Ziemniak
et al. [16], and Neufeld and Tél [17] preserved the conti-
nuity of the filament, but did not examine the topology of
the structures generated by the flow. A
The evolution of material lines has also been considered ™
in studies dealing with kinematic dynamos in infinitely ;5 1

- " 4 " Evolution of a material filament in the sine flow:
conducting fluids [6-9], which is closely related to the @) 7 = 0.8,n = 8; (b)) T = 0.8,n = 10; (C) T = 1.2,n = 5;
problem studied here: Both systems evolve as predicte@) 7 = 1.2,n = 6; ()T = 1.6,n = 4; (f) T = 1.6,n = 5.
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respects. While fast dynamos cannot exist in 2D continuself-similar in time. Finally, Figs. 1(e) and 1(f) shows
ous flows, mixing of chemical species can occur inthe filament obtained fof = 1.6,n = 4 and 5 periods.
the time-periodic 2D flows studied here. In 3D, while For this “globally chaotic” case, the self-similar structure
magnetic fields evolve via line stretching, reactive mixingquickly invades almost all of the flow domain.
is directly dependent on surface stretching. Finally, while For this flow condition, a Poincaré section would be
the uncoupling betweeB and v in magnetic fields is a nearly featureless, and would look like a random cloud
(somewhat restricting) simplification, in scalar mixing the of points, suggesting that a globally chaotic flow would
material lines rarely affect the velocity field. eventually generate a completely homogeneous system.
In this paper, the evolution of fluid material lines However, actual mixing behavior is more complex. A
is analyzed by following the deformation of continuousvery wide distribution of local length scales and filament
closed filaments as they are stretched, advected, amknsities is apparent in Fig. 1. This observation is made
folded by the time-periodic chaotic sine flow [18], which explicit by calculating the filament density, which is
is defined in the infinite domain by the two motions: computed by dividing the flow domain into equal-sized
. 1 boxes and calculating the length of the filament contained
(Vi Vy) = (sin2my,0), T =1 <+ )T, (23) iy each box divided by the area of the box. Such com-
(Vy, Vy) = (0,sin27x), (n + %)T =t <(n + 1)T, putation reveals that values of span several orders of
(2b) magnitude (Fig. 2), which means that in some regions
the flow achieves much more intimate mixing of compo-
whereT is the flow periodn is the number of periods, nents than in other regions. Regions of high density corre-
and r is time. This model flow is continuous and spond to regions of fast stretching [18,19]. Figure 3 (main
differentiable to any order, including at the boundariespanel) shows the frequency distribution of filament den-
(when defined only in a unitary box). The sine flow sities,F,(p) = (1/N,)dN(p)/dp (whereN, is the total
is useful and relevant for two main reasons: (1) Itsnumber of boxes andN(p) is the number of boxes with
simplicity makes it possible to gather large amounts ofdensities betweep and p + dp). Distributions corre-
information at a moderate computational cost, and (2) isponding to different flow periods have identical shapes
generates stretching and curvature distributions that ar@nd are collapsed onto a single curve by a simple scaling
essentially identical to those observed in industrial flowI'(v) = (p)F,(p); v = p/{p), where(p) is the average
systems [19]. density. The collapse df(v) over several orders of mag-
Filaments are initially represented using closed circulanitude inF,(p) andp suggests that such nonuniformities
strings of uniformly spaced points centered(@t,0.5)  infilament density are permanenteature of time-periodic
with radiusr = 0.01. Subsequently, the algorithm finds chaotic flows.
the positions of the points after the first motion pe-
riod. The distances between consecutive points are cal- I
culated; whenever two points move apart more than a al' i
distanced, new points are interpolatealong the arc of :
the original filament,renumbered to preserve order and
continuity, and mapped to find their convected position.
The algorithm is then iterated for successive periods, al-
ways performing the addition of points along the original
curve. Figures 1(a) and 1(b) show filaments for the case |
T = 0.8 (a partially chaotic condition characterized by
four large period-2 regular islands and many small ones)
for 8 and 10 periods of the flow, respectively. The value
of d = 0.01 was adopted for this computation, and peri- |
odic boundary conditions were imposed such that the flow
map operates in a unitary domain (analogous to a toroidal
surface). A complex structure emerges after just a few ,'5'-'.*\'
periods, which, as expected from previous experimental |
and numerical work [4,13,19], displays strong symptoms
of self-similarity. As time increases, the process pre- j
serves all features generated in earlier work flow periods, |///|
adding new details within and around previously exist-

; _ _ ; FIG. 2(color). Densityp for T = 1.6,n = 7. Colors are
ing ones. Results fof = 1.2,n = 5 and 6 periods are assigned ad hoc: red: 1.5 = log(p/(p}) = 0.5 yellow:

sho_wn in Figs. l(c)_ and 1(d), respectively. Th_e flow isy5 < log(p/(p)) = —0.5: green: —05 > log(p/{p)) =
mainly chaotic at this value df. As before, the filament —15: light blue: —1.5 > log(p/(p)) = —2.5; dark blue:

grows very fast, generating a structure that is evidently-2.5 > log(p/{p)) = 0.0.
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10°F A the stretching experienced by a set of vectors uniformly
F spaced along the initial filament, i.e.,

Ly
Ly = " = Lo(An(xo(2))) = fo M@z, ()

wherez € [0, Ly] parametrizes the initial filament length,
the Liapunov exponent is proportional to tigeometric
meanof the stretching. For the sine flow discussed here,
we observed = 1.14 vs A =0.62 for T = 0.8; 6 =
1.84vs A =141 forT =12; 8 =235vs A = 1.93
for T = 1.6. These values are independent of the initial
Y Y Y TR T location of the filament.
10° 10° plO” 10° 10’ The following procedure is used to compute the distri-
bution of length scales of mixed structures resulting from
FIG. 3. Main panelF,(p) for T = 1.6,n = 6-8. Asshown  the advection of a closed filament in an infinite domain:
in the inset, a simple scaling makes,(p) collapse onto a iy The flow domain is covered with uniformly spaced
single curve. horizontal lines. (ii) At the end of each period, the in-
tersections of the filament with the lines are computed.
Let us consider the rate of growth of the interface(jijy At each intersection, the local angle of the filament
(filament length), which is inversely proportional to the re|ative to the horizontal coordinate is computed. (iv) The
rate of decay of length scales in the partially mixed|ocal length scales are determined along a line as the dis-
structure. Naively, one would expect the filament lengthtances between alternating intersections, corrected for the

to grow asL, ~ ¢*", whereA is the Liapunov exponent intersection angle. As expected, local length scales span
of the flow. However, numerical results [7,12,16,17] havemany orders of magnitude; faf = 1.6,n = 5-8, they

shown that the filament in fact grows distinctively fasterhave values in the range from® 4 to 1012, Figure 5

than this prediction. This observation is confirmed in(main panel) shows the frequency distributigp(log s) =

Fig. 4, which shows thg\t the length of the filameht  (1/n,)dN(logs)/d(logs), wheres is a value of the lo-

actually grows ag., =~ ¢”", with & > A, wheref is also  cal length scale; is the total number of measurements,

referred to as the topological entropy exponent [16,17,20land 4N (logs) is the number of values of length scale be-

Beigie et al.[12] attributed this accelerated growth to tween logs and logs + dlogs. Forn = 4, the curves

the non-Gaussian nature of StretChing distributions. ||'h|| have the same Shape. The same behavior is observed

fact, it is due to the nonuniform nature of stretchingfor 7 = 0.8,n = 6, and forT = 1.2,n = 8 (not shown).

fields [16] and is observed for a wide range of flows|n all three cases, curves become almost identical to each

[16,17] regardless of whether the distribution is GaUSSIa@)ther after just a few periods dﬂn“og S) asymptotica”y

or not (several flows are discussed in Table I). Whileapproaches a self-similar distribution.

the exponential factoe’” is the arithmetic average of The self-similarity ofH, (logs) is made explicit by ap-
plying a simple rescaling, i.eH,(logs) = H(v), where

K

25 v = [(logs) — (logs)]/ogs- The only parameters re-
quired in this scaling argogs) and ojq,. FoOr an area-

. preserving flow such as the one considered here, the mean
20 . of logs evolves aslogs) = —nf. The standard devia-

tion also increases linearly in time, i.egg, = nk,
wherek is a constant particular for eadhvalue. There-
fore, v can be expressed in termsofi.e.,v = (logs +
n@)/nK. As shown in Fig. 5 (inset), when rescaled in this
manner,H,(logs) asymptotically collapses onto a time-
invariant curve, highlighting the importance of properly
predicting the exponerg.
In conclusion, several observations can be made:
R T T (i) Time-periodic flows create mixing structures that are
2 4 6 8 10 self-similar in time; (ii) filaments grow at an exponential
n rate (dictated by the topological entropy exponent) that is
FIG. 4. Comparison of the rate of growth of the filame@ significantly greater than predicted by the Liapunov ex-

with the rate of stretching in the flow as predicted by theponent; (iii) filament density is strongly nonuniform, and
Liapunov exponent (solid line) fdf = 1.6. is characterized by a self-similar frequency distribution;
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TABLE I. The table shows values @&f and A for multiple parameter values for the sine flow (the main case study considered in
this paper); for a classic map from the literature, the standard map; for a physically realizable 2D flow (the periodicity driven cavity
flow [18]); for the industrially relevant 3D Kenics mixer [19]).

Sine flow Standard map Cavity flow Kinetic mixer
T 0 A T 0 A T 0 A Re 0 A
0.80 1.14 0.62 0.80 241 2.08 5.00 0.88 0.61 1.00 9.71 1.54
1.00 1.48 1.12 1.20 2.74 2.44 5.60 1.22 0.80 10.00 7.77 1.55
1.20 1.84 1.41 1.60 3.00 2.77 6.00 1.19 0.85 100.00 1.16 0.80
1.40 2.12 1.72 2.00 3.25 2.99 7.00 1.77 0.83 1000.00 2.47 1.19
1.60 2.35 1.93 2.40 3.41 3.17 8.00 3.35 1.15
1.80 2.54 2.14 9.00 4.12 1.29
2.00 2.78 2.34 10.00 5.18 1.45

(iv) the length scale distribution generated by the flow is  *Author to whom correspondence should be addressed.
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