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Self-Similar Spatiotemporal Structure of Intermaterial Boundaries in Chaotic Flows
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The evolution of macroscopic material closed filaments in a time-periodic chaotic 2D flow is
simulated for cases with large, small, and very small islands of regular motion using an algorithm that
preserves spatial continuity. The length of the stretched filament increases much faster than predicted
by the Liapunov exponent. In chaotic regions, the filament asymptotically evolves into a self-similar
structure withpermanentspatial nonuniformities in density. Filament densities and local length scales
corresponding to different times are described by families of frequency distributions with invariant shape
that can be collapsed onto a single curve by means of a simple scaling. [S0031-9007(98)07190-7]

PACS numbers: 47.52.+ j, 47.11.+ j, 47.53.+n
t

This paper focuses on the time evolution of spati
structures generated by mixing in chaotic flows. Exper
ments [1–4] and computations (Fig. 1) have revealed th
such structures are composed of thousands of thin str
tions with an overall pattern that remains invariant ove
time. The length scale distribution of such structure
is of considerable importance. For example, in polym
blends, it determines mechanical and optical propertie
In transport-controlled reactive systems, microstructure d
termines both the overall rate of reaction [5] and the rel
tive amounts of different products generated by the proce
[5]. In magnetic dynamos, microstructure determines th
spatial distribution of magnetic intensities [6–9].

The rate of decay of length scales, the spatial density
material lines, and the length scale distribution of partial
mixed structures generated by chaotic flows have nev
been characterized in detail, either in real or in mod
flows. Chaotic flows create structures with a wide dis
tribution of length scales, most of which are beyond e
perimental resolution. Most previous mixing studies hav
focused on advection of point tracers [10,11] or stretchin
of infinitesimal vectors [12,13]. Such simulations canno
be used to examine the length scale distribution of a pa
tially mixed structure. Evolution of material filaments
in chaotic flows was originally considered by Franjion
et al. [14], who concluded that the large computationa
resources required to simulate the exponentially growin
filament made such quantifications impractical at the tim
Fung and Vassilicos [15] attempted an analysis of co
vected filaments, but their algorithm failed to preserv
continuity along the lines. Beigieet al. [12], Ziemniak
et al. [16], and Neufeld and Tél [17] preserved the cont
nuity of the filament, but did not examine the topology o
the structures generated by the flow.

The evolution of material lines has also been consider
in studies dealing with kinematic dynamos in infinitely
conducting fluids [6–9], which is closely related to th
problem studied here: Both systems evolve as predict
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by the convection-stretching equation,

D≠xyDt ­ ≠x ? =u, DByDt ­ B ? =u , (1)

whereu is the velocity field,≠x is an infinitesimal element
of a material line, andB is the magnetic field. However,
the two problems are different in several importan

FIG. 1. Evolution of a material filament in the sine flow:
(a) T ­ 0.8, n ­ 8; (b) T ­ 0.8, n ­ 10; (c) T ­ 1.2, n ­ 5;
(d) T ­ 1.2, n ­ 6; (e) T ­ 1.6, n ­ 4; (f ) T ­ 1.6, n ­ 5.
© 1998 The American Physical Society 3395
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respects. While fast dynamos cannot exist in 2D contin
ous flows, mixing of chemical species can occur
the time-periodic 2D flows studied here. In 3D, whil
magnetic fields evolve via line stretching, reactive mixin
is directly dependent on surface stretching. Finally, whi
the uncoupling betweenB and y in magnetic fields is a
(somewhat restricting) simplification, in scalar mixing th
material lines rarely affect the velocity field.

In this paper, the evolution of fluid material lines
is analyzed by following the deformation of continuou
closed filaments as they are stretched, advected,
folded by the time-periodic chaotic sine flow [18], which
is defined in the infinite domain by the two motions:

sVx , Vyd ­ ssin2py, 0d, nT # t , sn 1
1
2 dT , (2a)

sVx , Vyd ­ s0, sin2pxd, sn 1
1
2 dT # t , sn 1 1dT ,

(2b)

whereT is the flow period,n is the number of periods,
and t is time. This model flow is continuous and
differentiable to any order, including at the boundarie
(when defined only in a unitary box). The sine flow
is useful and relevant for two main reasons: (1) I
simplicity makes it possible to gather large amounts
information at a moderate computational cost, and (2)
generates stretching and curvature distributions that
essentially identical to those observed in industrial flo
systems [19].

Filaments are initially represented using closed circul
strings of uniformly spaced points centered ats0.5, 0.5d
with radiusr ­ 0.01. Subsequently, the algorithm finds
the positions of the points after the first motion pe
riod. The distances between consecutive points are c
culated; whenever two points move apart more than
distanced, new points are interpolatedalong the arc of
the original filament,renumbered to preserve order an
continuity, and mapped to find their convected positio
The algorithm is then iterated for successive periods,
ways performing the addition of points along the origina
curve. Figures 1(a) and 1(b) show filaments for the ca
T ­ 0.8 (a partially chaotic condition characterized b
four large period-2 regular islands and many small one
for 8 and 10 periods of the flow, respectively. The valu
of d ­ 0.01 was adopted for this computation, and per
odic boundary conditions were imposed such that the flo
map operates in a unitary domain (analogous to a toroi
surface). A complex structure emerges after just a fe
periods, which, as expected from previous experimen
and numerical work [4,13,19], displays strong symptom
of self-similarity. As time increases, the process pr
serves all features generated in earlier work flow period
adding new details within and around previously exis
ing ones. Results forT ­ 1.2, n ­ 5 and 6 periods are
shown in Figs. 1(c) and 1(d), respectively. The flow
mainly chaotic at this value ofT . As before, the filament
grows very fast, generating a structure that is eviden
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self-similar in time. Finally, Figs. 1(e) and 1(f) show
the filament obtained forT ­ 1.6, n ­ 4 and 5 periods.
For this “globally chaotic” case, the self-similar structur
quickly invades almost all of the flow domain.

For this flow condition, a Poincaré section would b
nearly featureless, and would look like a random clou
of points, suggesting that a globally chaotic flow wou
eventually generate a completely homogeneous syst
However, actual mixing behavior is more complex.
very wide distribution of local length scales and filame
densities is apparent in Fig. 1. This observation is ma
explicit by calculating the filament densityr, which is
computed by dividing the flow domain into equal-size
boxes and calculating the length of the filament contain
in each box divided by the area of the box. Such com
putation reveals that values ofr span several orders o
magnitude (Fig. 2), which means that in some regio
the flow achieves much more intimate mixing of comp
nents than in other regions. Regions of high density cor
spond to regions of fast stretching [18,19]. Figure 3 (ma
panel) shows the frequency distribution of filament de
sities,Fnsrd ­ s1yNrddNsrdydr (whereNr is the total
number of boxes anddNsrd is the number of boxes with
densities betweenr and r 1 dr). Distributions corre-
sponding to different flow periods have identical shap
and are collapsed onto a single curve by a simple scal
Gsyd ­ krlFnsrd; y ­ rykrl, wherekrl is the average
density. The collapse ofGsyd over several orders of mag
nitude inFnsrd andr suggests that such nonuniformitie
in filament density are apermanentfeature of time-periodic
chaotic flows.

FIG. 2(color). Density r for T ­ 1.6, n ­ 7. Colors are
assigned ad hoc; red: 1.5 $ logsrykrld $ 0.5; yellow:
0.5 . logsrykrld $ 20.5; green: 20.5 . logsrykrld $
21.5; light blue: 21.5 . logsrykrld $ 22.5; dark blue:
22.5 . logsrykrld $ 0.0.
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FIG. 3. Main panel:Fnsrd for T ­ 1.6, n ­ 6 8. As shown
in the inset, a simple scaling makesFnsrd collapse onto a
single curve.

Let us consider the rate of growth of the interfac
(filament length), which is inversely proportional to the
rate of decay of length scales in the partially mixe
structure. Naively, one would expect the filament leng
to grow asLn ø eLn, whereL is the Liapunov exponent
of the flow. However, numerical results [7,12,16,17] hav
shown that the filament in fact grows distinctively faste
than this prediction. This observation is confirmed i
Fig. 4, which shows that the length of the filamentLn

actually grows asLn ø eun, with u . L, whereu is also
referred to as the topological entropy exponent [16,17,2
Beigie et al. [12] attributed this accelerated growth to
the non-Gaussian nature of stretching distributions.
fact, it is due to the nonuniform nature of stretchin
fields [16] and is observed for a wide range of flow
[16,17] regardless of whether the distribution is Gaussi
or not (several flows are discussed in Table I). Whi
the exponential factoreun is the arithmetic average of

FIG. 4. Comparison of the rate of growth of the filamentsdd
with the rate of stretching in the flow as predicted by th
Liapunov exponent (solid line) forT ­ 1.6.
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the stretching experienced by a set of vectors uniform
spaced along the initial filament, i.e.,

Ln ø eun ø L0klnsssx0szddddl ­
Z L0

0
lnszddz , (3)

wherez [ f0, L0g parametrizes the initial filament length
the Liapunov exponent is proportional to thegeometric
meanof the stretching. For the sine flow discussed her
we observeu ­ 1.14 vs L ­ 0.62 for T ­ 0.8; u ­
1.84 vs L ­ 1.41 for T ­ 1.2; u ­ 2.35 vs L ­ 1.93
for T ­ 1.6. These values are independent of the initi
location of the filament.

The following procedure is used to compute the distr
bution of length scales of mixed structures resulting fro
the advection of a closed filament in an infinite domai
(i) The flow domain is covered with uniformly spaced
horizontal lines. (ii) At the end of each period, the in
tersections of the filament with the lines are compute
(iii) At each intersection, the local angle of the filamen
relative to the horizontal coordinate is computed. (iv) Th
local length scales are determined along a line as the d
tances between alternating intersections, corrected for t
intersection angle. As expected, local length scales sp
many orders of magnitude; forT ­ 1.6, n ­ 5 8, they
have values in the range from1024 to 10212. Figure 5
(main panel) shows the frequency distributionHnslogsd ­
s1yNsddNslogsdydslogsd, wheres is a value of the lo-
cal length scale,Ns is the total number of measurements
anddNslogsd is the number of values of length scale be
tween logs and logs 1 d logs. For n $ 4, the curves
all have the same shape. The same behavior is obser
for T ­ 0.8, n $ 6, and forT ­ 1.2, n $ 8 (not shown).
In all three cases, curves become almost identical to e
other after just a few periods asHnslogsd asymptotically
approaches a self-similar distribution.

The self-similarity ofHnslogsd is made explicit by ap-
plying a simple rescaling, i.e.,Hnslogsd ­ Hsyd, where
y ­ fslogsd 2 klogslgyslogs. The only parameters re-
quired in this scaling areklogsl andslogs. For an area-
preserving flow such as the one considered here, the m
of logs evolves asklogsl ­ 2nu. The standard devia-
tion also increases linearly in time, i.e.,slogs ø nK,
whereK is a constant particular for eachT value. There-
fore, y can be expressed in terms ofn, i.e.,y ø slogs 1

nudynK. As shown in Fig. 5 (inset), when rescaled in th
manner,Hnslogsd asymptotically collapses onto a time
invariant curve, highlighting the importance of properl
predicting the exponentu.

In conclusion, several observations can be mad
(i) Time-periodic flows create mixing structures that ar
self-similar in time; (ii) filaments grow at an exponentia
rate (dictated by the topological entropy exponent) that
significantly greater than predicted by the Liapunov e
ponent; (iii) filament density is strongly nonuniform, an
is characterized by a self-similar frequency distributio
3397
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TABLE I. The table shows values ofu andL for multiple parameter values for the sine flow (the main case study considere
this paper); for a classic map from the literature, the standard map; for a physically realizable 2D flow (the periodicity driven
flow [18]); for the industrially relevant 3D Kenics mixer [19]).

Sine flow Standard map Cavity flow Kinetic mixer
T u L T u L T u L Re u L

0.80 1.14 0.62 0.80 2.41 2.08 5.00 0.88 0.61 1.00 9.71 1.
1.00 1.48 1.12 1.20 2.74 2.44 5.60 1.22 0.80 10.00 7.77 1.
1.20 1.84 1.41 1.60 3.00 2.77 6.00 1.19 0.85 100.00 1.16 0.
1.40 2.12 1.72 2.00 3.25 2.99 7.00 1.77 0.83 1000.00 2.47 1
1.60 2.35 1.93 2.40 3.41 3.17 8.00 3.35 1.15
1.80 2.54 2.14 9.00 4.12 1.29
2.00 2.78 2.34 10.00 5.18 1.45
-

.

,

.

s

)

(iv) the length scale distribution generated by the flow
also self-similar.

These observations have important practical implic
tions: (i) Predictions of an average “striation thickness
based on the Liapunov exponent would be inaccura
(ii) Mixing in some regions of a time-periodic chaotic
flow is much more intimate than in other regions. Th
observed nonuniformities in filament density mean th
time-periodic flows wastefully concentrate most of the
mixing action in narrow subregions of the flow that ar
already well mixed. For systems in which the rate of re
action depends directly on the creation of intermateri
surface between the reacting fluids, such reactions wou
be much faster in regions that are densely populated
the filament. (iii) For systems with multiple competing
reactions, this nonuniformity means that different reac
tion rates and product distributions would be observed
various locations. Accurate knowledge of the evolutio
of the striation thickness distribution as it approaches th
self-similar state could greatly facilitate the developmen
of useful models of reactive laminar flows.

FIG. 5. Main panel:Hnslogsd, for T ­ 1.6, n ­ 5 8. As
shown in the inset, a simple scaling makesHnslogsd collapse
onto a single curve.
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