VOLUME 81, NUMBER 16 PHYSICAL REVIEW LETTERS 19 O©TOBER 1998

Analytical Solutions of Layzer-Type Approach to Unstable Interfacial Fluid Mixing
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We extend the Layzer-type approach to unstable interfacial fluid mixing, applied up to now only to
vacuum bubbles, to spikes and derive the analytical solutions of the model for the positions, velocities,
accelerations, and curvatures at the tips of the bubble and spike over all times. The analytical
predictions are in good agreement with the results from numerical simulations for both spikes and
bubbles. We give the first analytical prediction for the asymptotic growth rate of a spike at the
Richtmyer-Meshkov unstable interface. We predict that, in contrast to the asymptotic bubble growth
rate, the asymptotic growth rate of a spike at the Richtmyer-Meshkov unstable interface is a constant
and depends on the initial condition. [S0031-9007(98)07317-7]

PACS numbers: 47.20.Ma, 47.20.Ky

It is well known that a material interface driven by an is given by2/3k¢, wherek is the wave number. In this
external force pointing from the heavy fluid to the light Letter, we give the first theoretical prediction that the
fluid or by a shock wave is unstable. The former is knownasymptotic growth rate of the spike at the Richtmyer-
as Rayleigh-Taylor (RT) instability [1,2], and the latter Meshkov unstable interface is given byP(r — «) =
is known as Richtmyer-Meshkov (RM) instability [3,4]. »o[(6&0 + 3)/(6& + 1)]'/2. Herew, is the initial veloc-
Both these two instabilities play an important role in theity perturbation, and is related to the initial curvature at
study of supernova, inertial confinement fusion. Recenthe tip of the spike. Therefore, in contrast to the asymp-
progress on the study of RT and RM instabilities can beotic bubble growth rate, the asymptotic spike growth rate
found in and traced from [5—14]. does depend on the initial conditioms and &.

Spikes and bubbles are formed at the unstable material Following [15] and [10], we consider impressible,
interface. A bubble (spike) is a portion of light (heavy) inviscid, and irrotational fluids with infinite density ratio.
fluid penetrating into heavy (light) fluid. A Layzer-type The governing equations for this system are

approach studies the motion at the tip of the bubble in V2 (x.2.1) = 0
a system with an infinite density ratio (the motion of o ’
a vacuum bubble). It approximates the shape of the an _ 0 dn 9 _ 0. atr = m-
material interface near the tip of the bubble as a parabola at dx ax 0z ’ cTm

and derives a set of ordinary differential equations which ) 5
determines the position, velocity, and curvature at the tip —gm + ¢ _ l[(@) + (%) } = const
of the bubble. This approach was first introduced by at 2\ ox

Layzer for a bubble in Rayleigh-Taylor instability [15].
Alon et al. have extended the method to vacuum bubbles ) » ) ]
in RM instability and have shown that the model givesHerez = n(x,) is the position of the interface at time
correct asymptotic bubble growth rates for both RT and? iS the velocity potential.

RM instabilities [10,11]. Under a Layzer-type approximation, one expresses the
So far, the Layzer-type model has been applied tdotentialg ase(r,x,z) = a(r) codkx)e™**, and approxi-
bubbles only [10-12,15]. The solutions for bubbles carinates the shape of the interface near a finger (either a spike

be found in a recent paper by Mikaelian [12]. In the case®’ @ bubble) as a parabola(r, x) = zo(z) + f(f)kle-

of RT instability, only the solution for a special initial N [10-12,15], the finger is a bubble. Here the finger
condition has been found (the initial curvature of theCa@n be either a bubble or a spike. After substituting
bubble was set to its asymptotic limit) [12]. In this Letter, thése expressions into the above governing equations and
we show, for the first time, that the Layzer-type potential€XPanding the resulting equations through the order*of
flow model is applicable to spikes as well. Furthermore We have the following ordinary differential equations:

atz = 7.

we derived the analytical solutions of the model for both dzo ke

spikes and bubbles over all times for all initial conditions. dr ake =0, 1)
The predictions of our analytical solutions are in good

agreement with the results of the numerical solutions of d¢ 4 akle—ko(3 + 1y 0 >
the Euler equations for both RT and RM instabilities and ar ke §+5)=0, (2)

for both spikes and bubbles.
In the case of Richtmyer-Meshkov instability, it has gf + ke—km<§ n 1>da Béate X0 — 0. (3)

been shown [10] that the asymptotic bubble growth rate 2)dt
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We now solve Eqgs. (1)—(3). Eliminating from (1) and @ k <@>2 2& —0 (5)
(2), we obtain a2+ 1\ar) 2+ 187
B Y- 1 Since  d?zy/dt* = (dé/dt)(dv/dé) = —(k/2) B +
£ = [(fo + E)e Mol - E] ) 1) (dv*/d &) wherev = dzo/dt, Eq. (5) can be expressed

as
Here z) = zo (t =0) and & = & (t = 0). [For a si- k2 dv? k2 ) 28

nusoidal perturbation at the interface with an initial am- — 7~ (6§ + l)ﬁ Toer1l TEritT 0.
plitude ag, & = —(1/2)apgk for the bubble andé, =

(1/2)apk for the spike.] Eliminatingz from (2) and (3), _ . . (6)
we have | After solving Eq. (6), we obtain the velocity. The result
is
=y 92&y + Dkvg — 6(6&0 + 1) (zo — z0)kg + 2(e*@~%) — 1)g 12 -
’ 3kvd(6&y + 1 + 2e3k—2) ;

wherevy = v(t = 0). From (4), (5), and (7), we determine the acceleration. The result is

dv _ 3¢k —20) _9(2& + Dkvg — 6(6&0 + 1) (zo — 20)kg + 2(e*F@=) — 1)g @®
dr 87 6g + 1+ 2eka) 360 + 1 + 2e@—2b) '

Finally, we solve the relation betweerandz, from (7), and the result is

k(Zo*ZS) 2 +1+2 3x! 1/2
t—ty = (kyo)*l] 351/0(650 e™) / i ©
0 9(250 + l)kVo — 6(650 + l)gx/ + 2(e3x _ l)g

Therefore we obtained the analytical solutions forthese solutions are applicable to both spikes and bubbles.
£, 20, v, anddv/dr over all time. They are given by (4), A bubble has initial conditions, > 0, zJ = 0, and&, <
(9), (7), and (8), respectively. To evaluate these analyticad, while a spike has initial conditions, < 0, zJ = 0,
solutions, one chooses a value fgr(zo > 0 for bubble and&, = 0.
andzy < 0 for spike), then determinesfrom (9), v from Let us examine the asymptotic solution of the Layzer-
(7), dv/dt from (8), and¢ from (4). We emphasize that type model. By taking the large time limit of (4), (7), (8),
| and (9), we have the following asymptotic limits:

For bubble in RT instabilityg > 0): v} — */3% and £ph — — %; (10)
. . . . de{PT sp
For spike in RT instabilityg > 0): 8 and &grr — (11)
. ; " bb 2 bb 1

For bubble in RM instabilitfg = 0): »8%, — v and &y — — i (12)

o _ . A 6&0 + 32
For spike in RM instabilityg = 0): vrm — 1/0(6? n 1) and &Ry — @ (13)

0

Therefore at late time the shape of the spike becorln&spike in an RM unstable system depends on the initial
a very long filament as it has been observed in fullconditionsvy and &y, while the asymptotic growth rate
numerical simulations. For RT unstable systems, thef the bubble in an RM unstable system is independent
spike reaches an asymptotic constant acceleration, arud initial conditions (as long asy # 0). The asymptotic
the bubble reaches an asymptotic growth rate. For RMicceleration of the spike and the asymptotic growth rate
unstable systems, the bubble growth rate decays to zea the bubble in an RT unstable system do not depend
asymptotically, while the spike reaches a constant growtlon the initial conditions either. At finite time scales,
rate asymptotically. To the author’'s knowledge, Eg. (13)the solutions for the bubble and spike depend on initial
is the first theoretical prediction for the asymptotic growthconditions.

rate of a spike at an RM unstable interface. It is There are two special cases in which the functiin
interesting to note that the asymptotic growth rate of thecan be expressed in terms of elementary functions. The
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first case ix = 0 (RM instability). In this case (9) can be expressed as

2
t—tg=c1 o [(cy + )2 — (¢ + £¥0)1/2 — J=cr[cos (= e Ch/2)

3k
— cos | (J=cr e BKDD)] for gy < —1/6; (14)
2 0
t—ty = §C1(6(3/2)kzo - 6(3/2)k20) for &g = —1/6; (15)

Ve + e3kzo + \/C—z
yer + ek + /ey

2 3k
t—to=cig |+ 2 — (e + )2~ Jey I + 7\/C—2(Zo - z)

for & > —1/6. (16)

Here ¢, = (e‘(03"/2)13/v0) (& +3/2)° 2 and ¢y = |
(3&p + 1/2)e3* are constants.

The second case & = —1/6. Inthis casey, zo, and 1.4F :\"Sp(conformal mlapping)—
dv/dt can be expressed in termsrof v,
2 T1 3kg |2 ) } 1.2 R -
=z0 + - In| — — t—to)) — , y
Ay [04 f1< 2 ( 0) | — falca) Lok : -
17) 0.8 - vsp (Layzer model)
= {[i N (,,3 _ é) ' Vyyp,(Layzer model)
3k 3k 0.6
1/2 —211/2 :
1 3k
X [aﬂ(‘ Tg (t — lo)) - fz(m)} } , 0.4
‘W1, (conformal mapping)
(18) 0.2F bb pping.
dv 1
2 (Bkr? — L 1 ! time
di 7 Bkvo — 8) 0.0 1 2 3 4
1 3kg |/ -2 (a)
X [_f1< 8 (t — lo)) - fz(m)} ,
Cyq 4 T T T
(29) 1.2 —ifsp(conformal mapping)
1 ”...~.
E=b=-7+ (20) 1.0 y ti==-
Here ¢ = lg/(g — 3kvo)l2.  fi(-) = cog) and 0.8 = %p(Layzer model)
f2(-) = arcco$:) when g <0, which is the stable Vi Layzer model)
case. fi(-) =sinh-) and f,(-) = arcsinl§-) when 0.6 _
3kvg = g = 0. fi() = cost(-) and f»(-) = arccosk)
when g = 3k»? = 0. Since here¢ = —1/6 < 0, the 04 _
expressions given by (17)—(20) are valid only for bubbles. v _(conformal mapping)
The solutions for these two special cases can also be 0.2 bb PP g_
found in [12]. )
To verify the validity of the analytical solutions of our 0.0 | . time
Layzer-type model, we compare our analytical predictions 0 1 2 3 4

with the results from full numerical simulations. There (b)
are four full nonlinear numerical simulations available forFig. 1. Comparison between the analytical predictions and
the case of infinite density ratio: two for RT instability and results from numerical simulations for spike acceleration
two for RM instability. These full numerical simulations and bubble velocity in Rayleigh-Taylor unstable systems.
are based on the method of conformal mapping [16] and € numerical results are taken from [16]. In (a) the
L - - hysical parameters are = k = 1. The initial conditions
the finite difference method [11]. In these studies, the _ - 0 _ _
— " . L o are vo = 1/2 (=1/2), zo =0, and & = 0 for the bubble
initial conditions of the spike and Fhe initial condltl'ons pf (spike). In (b) the physical parameters are= k = 1. The
the bubble have the_ same mag_nltude but opposite Sign@itial conditions arer, = 0, z0 = 1/2 (=1/2), and & =
Therefore only the initial conditions of the bubble will —1/4 (1/4) for the bubble (spike).
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velocity The numerical solutions shown in Figs. 1(a), 1(b), and
) 2(a) were obtained from conformal mapping [16]. The
1.0 mmmmemmnn numerical solutions shown in Fig. 2(b) were obtained
\ ot from finite difference method [10] (for the spike) and
0.8} : i [11] (for the bubble after an appropriate rescaling of time
and velocity). From Figs. 1 and 2, one can see that the
~Vsp (Layzer model) agreement between the predictions from the analytical
solutions and results from the numerical computations is
reasonably good for both bubbles and spikes. The cases
J of & = 0 shown in Figs. 2(a) and 2(b) are the only data
Vpp (Layzer model) sets available for infinite density ratio systems with zero
gravity. Since (14) is nonsingular &, = 0, Eq. (14)

—VSp (conformal mapping)

*»
*

0.6

0.4

0.2t R S S should give a good prediction at least for small values

Vpp(conformal mapping)| . of &. However, because of the lack of the numerical

0-00 3 5 5 4“““’ simulations for such systems, the validity of prediction for

(a) asymptotic spike growth rate in RM instability over the

range of nonzer@, cannot be established in this study.

2.0 T T Further numerical simulations and validation studies for
1.8 ,—Vsp(Layzer model) _| such systems are called for.
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