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Dynamics of the Euler Buckling Instability
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We study the dynamics of the classical Euler buckling instability of compressed objects such as
flexible molecular chains and thin rods. We reveal that this dynamics is a coarsening process self-
similar in time. We relate this process to phase ordering phenomena such as spinodal decomposition.
[S0031-9007(98)07392-X]

PACS numbers: 46.30.Lx

Solids under externally applied stresses and strains exhase ordering processasich as spinodal decomposition
hibit a variety of instabilities. A classical example is the [6—8]. Interestingly, the growth of the chain’s transverse
well known Euler buckling instability of a compressed width makes this phenomenon strikingly similar to the in-
rod that buckles out sideways, if the compressional straiterfacial coarsening processes recently found to occur in
€ exceeds the critical value. ~ L™2; L is the length molecular beam epitaxy [9—11].
of the rod [1,2]. Buckling of thin rods and plates is a As the dynamics associated with buckling instabilities
common phenomenon in engineering practice and diverdeas not been studied in depth, it is natural to focus on
branches of materials science [1-5]. For example, buckthe most common of all of the systems exhibiting such
ling instability of polymerized monolayers of insoluble instability, that is, the original Euler case of thin rods [1,2]
amphiphiles adsorbed at the air-water interface has beeaand closely related flexible chain molecules [12]. The
observed in recent experiments [4]. Buckling can be in-dynamical model studied here by MD is the standard Rouse
duced in a variety of ways, for example, simply by ap-dynamics,
plying a compressional lateral strain to a membrane. In JR QU
practice, strains causing buckling are frequently of a ther- r—= = - + n,(2), ()
mal origin [5]. Rods with hinged ends immersed in a fluid at IR,
may buckle, if the temperature of the fluid is raised. Theof a molecular chain (“molecular rod”) moving in a viscous
temperature jump would expand a rod with free ends. Imedium. Her&, (¢) is the position of the:th molecule I
thus effectively induces a uniform compressive sti@in  is a viscous friction coefficient, angl, (z) is thermal noise.
arod with fixed ends. 1€ > e, ~ L™, such athermally In (1), the chain potential energy/ = Ucom + Ubpend,
strained rod will buckle. with the compressional energ¥com = >, PR+ —

Historically, Euler buckling instability is the very first R,|), and the bending energ¥/yenqa = % >kt —
example for bifurcation phenomena and paradigm for subt,)?; heret, = (R, — R,-1)/|IR, — R, _;| are the tan-
sequent theories of phase transition. Still, the dynamicgent unit vectors. The bonding potenti(|R,+; — R,|)
associated with this phenomenon has not been addressedsnminimal, when|R,+; — R, | is equal to the bond
depth. In itself, buckling involves a spontaneous symmetength= 1. We used®(|R,+; — R,|) = Be2/2, where
try breaking. Thus, a compressed membrane may buckle, is theinternal straine, = |IR,,+; — R,| — 1. To dis-
either up or down (breaking d,, Ising-type symmetry), cuss the chain dynamics, let us split the position vector of
whereas a compressed molecular chain may buckle otihenth moleculeR,, into the transverse paRr(n, ¢) (“un-
sideways in an arbitrary direction (breaking of thesym-  dulations”), perpendicular to the initial straight chain di-
metry for rotations around the initial direction of the chain). rection, and the longitudinal paRy (r, r), along the initial
So, buckling is a practically interesting analog of iease  chain direction. Chain ends are fixed (hinged), and-at
ordering phenomenon.Here we elucidate, for the first 0 the chain was in a compressed, straight configuration.
time in depth, the nature of ttdynamics of buckling phe- Thatis,R;(n,t = 0) = (1 — €)n,andRy(n,r = 0) = 0.
nomena. We investigatehow initially straight, compres- In our simulations we used a 10% compressional external
sionally strained molecular chains evolve into the finalstrain, that ise = 0.10, whereasB = 1.0, k = 0.2, and
buckled shape. We study this evolution by molecular dy-I" = 0.5.
namics (MD) simulations of a flexible chain of molecules We focus here on the dynamics without thermal noise
(“tethered chain”). We find that the evolving chain’s pro- [‘zero-temperature” dynamics], i.e., we sgt = 0 in (1)
file is like a wave characterized by a wavelength thafl13]. The only randomness used here was srimtial
grows, via a coarsening process, as a power of time. Thendom transverse displacements around the straight
amplitude (transverse width) of this wavelike chain patterrunstable equilibrium configuration (to enable chain start
also grows as a power of time. We find that the dynamimoving). Subsequently, buckling instability, due to nega-
ics of Euler instability is closely related in its nature to tive internal strains, amplifies transverse displacements
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FIG. 2. (a) Slope-slope correlation functioki(r,t) vs r
for various timest. Note that ag — «©, K (r = 0,1) — 2e€
(= 0.2 here). (b) Self-similarity test foK(r,¢). Collapse

FIG. 1. Time evolution of the molecular chain. We depict '"ti I? ?;n?)?]{c%viyoi)w(;%do; Ei/sﬁ(z\;eswﬁl%réazi(t)Hiire

some 550 out ofV = 10000 molecules composing the chain. :

To depict undulationsR; clearly, we usedID diffe?ent scales the first zero ofK (r, 1).

for the transversR; = (R,,R;) and longitudinal R, = R,

molecular coordinates. from simulations of a 3D chain @f = 10000 molecules.
We obtain additional insight into this scaling behavior by

and produces a chaotic dynamics depicted in Fig. 1considering the chain’sotal potential energyy which

Manifestly, chains’s transverse displacemeilRs(n, 1) is the sum of the compression&l,, and the bending

develop anevolvingwavelike pattern characterized by a energyUy.,q. Figure 3(a) depicts energiés, U.on, and

time-dependenstructural length scala (“wavelength”).  Upenq Vs time. We see that, &ing times,

This A grows with time via acoarseningprocess. As- 1

sociated with this coarsening is a growth of the chain’s Ubend(t) ~ =5 » 4

transverse spread(r) (“width”); see Fig. 1. w(r) we !

quantified as[w(r)]* = ((Ry(n,1)]?). Here and in the with § = 0.50(4), whereas

following, () stands for the spatial average defined for any 1

quantity A(n,t) as {A(n,t)) = (1/N)> , A(n,t). Chain Ucom(t) ~ —, (5)

wavelengthA(z) we extracted from the zeros of displace- m

ment correlation functions which have a strong oscillatorywith n = 1.02(2). As n > §, the net potential (elastic)

character reflecting wavelike patterns in Fig. 1. WeenergyU is, at long times, entirely in the bending energy,

illustrate this in Fig. 2(a) which depicts the “slope-slope” U = Upend > Ucom; S€€ Fig. 3(a). Figure 3(b) depicts

correlation function Ky (r,t) = (Vr(n + r,t)Vr(n,t))  the time evolution of the spatial average of the internal

with Vy(n,71) = Ry(n + 1,1) — Ry(n,t). The wave- straine,(t). (e,) <0 as the chain is in a compressed

length A(¢) can be extracted from the first zerg(s) of  configuration for any. By Fig. 3(b), for long times, the

K (r,t), via the relationA(r) = 4r,(t) [which can be internal strain relaxes as

rationalized by calculating, for Rr(n, r) in the form of 1
a simple harmonic wave with wavelengifi)]. (en) ~ ==, (6)
We thus find that, dbng times, _ ! o
M) ~ 1, ) with v = 0.51(1). Note that, within the accuracy, one

has the scaling relation = 2y, wherey is the exponent

of the compressional energy decay, Eq. (5). This can be
w(r) ~ 1P, (3)  easily rationalized a8/.om ~ (¢2), if one further assumes
with the exponents:. and 8 both nearly equal to 0.26 that{e2) ~ {(e,)*.

and
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wheref,(x) is a scaling function. Thus, in particular,

2
Kalr = 0.0) = (V) = <<36RHT> > — v2(0/5(0).
©

From our simulations, we see th&t,(r = 0,¢) saturates

to a finite value at long times. See Fig. 2(a)rat 0.
This feature can be rationalized in terms of Eq. (9), as
v(t) = w(t)/A(t), andw and A are both ~¢%% at long

10° " T : y " times. This is further discussed below, where we find
1o 10 1% 10° 10 t 10° Ks(r = 0,1) = {(d0R1/0n)?) = 2¢€ for € < 1, at long
times. Thus, the self-similarity ok, (r, ¢) is simply the
statement that, at long times, all the curves in Fig. 2(a)
are identical up to a time-dependent rescaling along the
r axis only. This feature makes the present system
strikingly similar to the coarsening dynamics phase
ordering phenomenasuch as spinodal decomposition.
In this respect, dynamics of correlatio&s,(r, ) of the
slope vectorVy = dR7/dn is similar to the dynamics

of order parameter correlations in the phase ordering [6—
8], providedVy is identified as an order parameter. This
identification is suggested by the scaling formiat (r, 7)

104 . g " in Eq. (8), which, strikingly, turns out to be equivalent

10 1o 102 10° o, @ to the basic form for the order parameter correlations in

Iufi ¢ the chai | - the phase ordering processes [6—8]. Figure 2(b) gives the
';G: ?]'bengal %‘:Z)m"“g);n d(i) . gt ei e?g;}:enft:n dpgéﬂglraessﬁgﬁ;?y basic test of the self-similarity ot (r, 1) as we suggested
energyU..m Vs times. (b) Evolution of the internal straite) 1N EQ. (8). There we ploty = Kis(r,)/Kss(r = 0, .t)
vs timez. vs x = r/ri(t) = 4r/A(¢) [as before,r|(t) = A(z)/4 is
the first zero ofK(r,t)]. We see that the slope-slope
correlations obtained at various times indeed collapse
There is an appareself-similaritywe see in the chain into a single scaling functioy = ¢(x) [¢(0) = 1, and
dynamics. Indeed, from Fig. 1, we infer that chain con-¢(1) = 0, by the construction of the rescaling procedure].
figurations obtained atlifferent long times look (sta- Moreover, as to standard phase ordering phenomena, our
tistically) the same, provided transverse displacements(x) has a pronounced oscillatory character reflecting the
R7(n,t) are expressed in units of(¢) [i.e., in terms of presence of the structural length scale).
the “dimensionless” quantitRr(n, 1)/w(z)], andn is ex- To qualitatively explain our numerical results, let us
pressed in units ok(¢) [i.e., in terms of the dimensionless address the chain motion by a scaling type analysis. By
quantityn/A(z)]. Qualitatively speaking, one can say that (1), one has, for zero noise,
chain configurations depicted at various times in Fig. 1 are

PE
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all of the form — Ry(n,t) = — Be(n,t) — Rr(n,1)
at an an
Rr(n,t) . < n > o \*
= sin 27 — |, 7 — —
that is,y = Rr(n,t)/w(t) is a wavelike function ofc =  with e(n,t) = —€ + ou/dn + %(aRT/an)z. Here,

n/A(t), with the periodAx = 1. Statistical self-similarity u(n, ) are longitudinal displacements, introduced by ex-
can be checked by using the slope-slope correlation fungandingR; (n,7) = (1 — €)n + u(n, t) around the initial,
tion K, (r,t) obtained at various times see Fig. 2(a). compressed straight configuration. As the chain has fixed
The slope vectoVr(n,t) = dRr/on has the character- endsu = 0 at chain’s ends. Thugdu/dn) = 0. Above
istic value v(r) = w(z)/A(zr), inferred by looking at a we saw that the sollng scalesat long timesr are A(7)
typical chain configuration in Eq. (7). In the spirit of and w(z), as suggested by the simulations, in particular,
statistical self-similarity, correlation & (n, r)/v(z) with by the collapse of the correlation function curves in
Vr(n + r,t)/v(z) should be a function of/A(z) only, Fig. 2(b). This suggests that the typical scaleReris w,

that is, SORr ~ w, whereas the typical scale foris A, son ~ A
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andd/on ~ 1/A. Thus, e.g.9Ry/dn ~ w(r)/A(t),fora  a nonzerdilt with respect to the initial straight direction.
typical chain configuration in Fig. 1. Similarly, we have This tilt plays a role similar to that of the order parameter
dRr/dt ~ w/t for a typical value of the left-hand side in phase ordering phenomena.

of Eqg. (10), whereas the bending term on the right-hand We thank Andrew Karwowski and Arnaud Saint-Jalmes
side (RHS) of (10) behaves as«(w/A*). Likewise, the for discussions. This work was supported by Mylan
first, compressional term on the RHS of (10) behaves akaboratories, Inc. and by NSF/WV EPSCoR.
~B(ew/A?). Next, we assume that, at long times, the

compressional and bending terms on the RHS of Eq. (10)

are of the same order. Thus, [1] L.D. Landau and E.M. Lifshitz, Theory of Elasticity
w/t ~ lelw/A% ~ w/A*. (11) (Pergamon, New York, 1986); A.E. Lové Treatise on
) | the Mathematical Theory of Elasticifpover, New York,

It follows that A ~ ¢'/4, i.e.,n, = §, and —e ~ A72 ~ 1944).

t='2, in agreement with our numerical results in [2] J.P. Den Hartog,Strength of Materials(Dover, New
Fig. 3(b). With this, for the compressional energy we find York, 1977).

Ueom ~ €*> ~ t~!, in agreement with our numerical result [3] See special issue on Heteroepitaxy and Strain [Bull. Int.
in Fig. 3(a). Further, age) = —e + 3((0R7/dn)?) = MRS 21, No. 4 (1996)].

—e + %[w(t)//\(t)]z — 0 for t+ — =, one has, at long [4] L. Bordieuet al., Phys. Rev. Lett72, 1502 (1994).

times,{(0R7/an)?) — 2¢, and, alsow(r) = (2€)'/2A(z). [2] ﬁ' '\éf I(-jlunté, Matper. chhE;% %%l 591817(1995)'
Thus, as A ~ ", it follows that w ~ t#, with [6] K. Binder, Rep. Prog. Phys0, ( )

' o ) ! ) [7] H. Furukawa, Adv. Phys34, 703 (1985).
B =n.= 7, in agreement with our simulations. [8] A.J. Bray, Adv. Phys43, 357 (1994).

Finally, the bending energiUvena) ~ ((9°Rr/0n)?) = [9] H.-J. Emstet al., Phys. Rev. Lett72, 112 (1994); M.D.
w2 /At ~ 2B~ — =12 in agreement with the nu- Johnsonet al., Phys. Rev. Lett72, 116 (1994); W.C.
merical result in Fig. 3(b). Ellliott et al., Phys. Rev. B64, 17 938 (1996); J. Amar and

To summarize, here we have elucidated, for the first F. Family, Phys. Rev. B4, 14742 (1996); P. Smilauer
time in depth, the nature of the dynamics associated and D.D. Vvedensky, Phys. Rev. 32, 14363 (1995).
with the classical Euler instability. It is a coarsening [10] 'é-lggl(ul%%\ga“d R.P.U. Karunasiri, Phys. Rev. Lé6,
process characterized by a growing structural lengt
scaleA ~ t". At long times(wv/nf) this length scale rEll] L. Golubovig Phys. Rev. Lett78, 90 (1997).

[12] S. Edwards, Proc. Phys. Soc. Lond88, 265 (1966);
becomes comparable to the rod length and then L. Golubovicand W. Xie, Phys. Rev. 51, 2856 (1995).

one recovers the usua_ll picture of a buc_k_led_ rOd_' _W?13] As discussed elsewhere [14], in the presence of thermal
reveal that the dynamics of Euler instability is similar noise (i.e.,T # 0), there appears a characteristic length
in nature to phase ordering processes such as spinodal scale Amayx = €L,; here L, = k/ksT = free chain per-
decomposition [6—8]: It is a stochastic coarsening process  sistence length. As long as(f) < Amax the chain dy-
statistically self-similar in time. Like in phase ordering namics is qualitatively the same as the one we described
phenomena, stochastic dynamics here is produced by here atT = 0; i.e., one has a coarsening process charac-
chain nonlinearities and the presence of many degrees of terized by the same coarsening exponents in Egs. (2)—(6)
freedom rather than by thermal noise, which we switched @S in the absence of thermal noise. At low enodgh

off in the simulations presented here [13,14]. Associated Amax — €L, may easily exceed the size of the flexible
with this coarsening process is tlgowing transverse rod. This is the case in any common mechanical engi-
width of the rod w(z) ~ ¢£, with B =n. Such a neering situation involving rodlike structures. There, rod

. - . . e persistence lengtl,, is, in any practical situation, enor-
growth of w(z), with B = n., is strikingly similar to the mously larger than the rod size. Thus, for all practical

interfacial coarsening processes recently found to occur  pyrposes of theommonmechanical engineering, thermal
in molecular beam epitaxy (so-called pyramidal or mound  noise has insignificant effects on the buckling dynamics.
growth [9-11]). There, as well as in the present elastig14] L. Golubovic D. Moldovan, and A. Peredera
problem, the evolving manifold (surface or line) develops (unpublished).
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