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We study the dynamics of the classical Euler buckling instability of compressed objects su
flexible molecular chains and thin rods. We reveal that this dynamics is a coarsening proces
similar in time. We relate this process to phase ordering phenomena such as spinodal decomp
[S0031-9007(98)07392-X]
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Solids under externally applied stresses and strains
hibit a variety of instabilities. A classical example is th
well known Euler buckling instability of a compresse
rod that buckles out sideways, if the compressional str
e exceeds the critical valueec , L22; L is the length
of the rod [1,2]. Buckling of thin rods and plates is
common phenomenon in engineering practice and dive
branches of materials science [1–5]. For example, bu
ling instability of polymerized monolayers of insoluble
amphiphiles adsorbed at the air-water interface has b
observed in recent experiments [4]. Buckling can be i
duced in a variety of ways, for example, simply by ap
plying a compressional lateral strain to a membrane.
practice, strains causing buckling are frequently of a th
mal origin [5]. Rods with hinged ends immersed in a flu
may buckle, if the temperature of the fluid is raised. Th
temperature jump would expand a rod with free ends.
thus effectively induces a uniform compressive straine in
a rod with fixed ends. Ife . ec , L22, such a thermally
strained rod will buckle.

Historically, Euler buckling instability is the very first
example for bifurcation phenomena and paradigm for su
sequent theories of phase transition. Still, the dynam
associated with this phenomenon has not been address
depth. In itself, buckling involves a spontaneous symm
try breaking. Thus, a compressed membrane may buc
either up or down (breaking ofZ2, Ising-type symmetry),
whereas a compressed molecular chain may buckle
sideways in an arbitrary direction (breaking of theO2 sym-
metry for rotations around the initial direction of the chain
So, buckling is a practically interesting analog of thephase
ordering phenomenon.Here we elucidate, for the first
time in depth, the nature of thedynamics of buckling phe-
nomena. We investigatehow initially straight, compres-
sionally strained molecular chains evolve into the fin
buckled shape. We study this evolution by molecular d
namics (MD) simulations of a flexible chain of molecule
(“tethered chain”). We find that the evolving chain’s pro
file is like a wave characterized by a wavelength th
grows, via a coarsening process, as a power of time. T
amplitude (transverse width) of this wavelike chain patte
also grows as a power of time. We find that the dynam
ics of Euler instability is closely related in its nature t
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phase ordering processessuch as spinodal decomposition
[6–8]. Interestingly, the growth of the chain’s transvers
width makes this phenomenon strikingly similar to the in
terfacial coarsening processes recently found to occur
molecular beam epitaxy [9–11].

As the dynamics associated with buckling instabilitie
has not been studied in depth, it is natural to focus
the most common of all of the systems exhibiting suc
instability, that is, the original Euler case of thin rods [1,2
and closely related flexible chain molecules [12]. Th
dynamical model studied here by MD is the standard Rou
dynamics,

G
dRn

dt
­ 2

≠U
≠Rn

1 hnstd , (1)

of a molecular chain (“molecular rod”) moving in a viscou
medium. HereRnstd is the position of thenth molecule,G
is a viscous friction coefficient, andhnstd is thermal noise.
In (1), the chain potential energyU ­ Ucom 1 Ubend,
with the compressional energyUcom ­

P
n FsjRn11 2

Rnjd, and the bending energyUbend ­ 1
2

P
n kst̂n11 2

t̂nd2; heret̂n ­ sRn 2 Rn21dyjRn 2 Rn21j are the tan-
gent unit vectors. The bonding potentialFsjRn11 2 Rnjd
is minimal, when jRn11 2 Rnj is equal to the bond
length­ 1. We usedFsjRn11 2 Rnjd ­ Be2

ny2, where
en is theinternal strainen ­ jRn11 2 Rnj 2 1. To dis-
cuss the chain dynamics, let us split the position vector
thenth moleculeRn into the transverse partRT sn, td (“un-
dulations”), perpendicular to the initial straight chain d
rection, and the longitudinal partRLsn, td, along the initial
chain direction. Chain ends are fixed (hinged), and att ­
0 the chain was in a compressed, straight configuratio
That is,RLsn, t ­ 0d ­ s1 2 edn, andRT sn, t ­ 0d ­ 0.
In our simulations we used a 10% compressional exter
strain, that is,e ­ 0.10, whereasB ­ 1.0, k ­ 0.2, and
G ­ 0.5.

We focus here on the dynamics without thermal noi
[“zero-temperature” dynamics], i.e., we sethn ­ 0 in (1)
[13]. The only randomness used here was smallinitial
random transverse displacements around the strai
unstable equilibrium configuration (to enable chain sta
moving). Subsequently, buckling instability, due to neg
tive internal strains, amplifies transverse displaceme
© 1998 The American Physical Society 3387
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FIG. 1. Time evolution of the molecular chain. We depic
some 550 out ofN ­ 10 000 molecules composing the chain.
To depict undulationsRT clearly, we used different scales
for the transverseRT ­ sRy , Rzd and longitudinalRL ­ Rx
molecular coordinates.

and produces a chaotic dynamics depicted in Fig.
Manifestly, chains’s transverse displacementsRT sn, td
develop anevolvingwavelike pattern characterized by a
time-dependentstructural length scalel (“wavelength”).
This l grows with time via acoarseningprocess. As-
sociated with this coarsening is a growth of the chain
transverse spreadwstd (“width”); see Fig. 1. wstd we
quantified asfwstdg2 ­ kfRT sn, tdg2l. Here and in the
following, k l stands for the spatial average defined for an
quantity Asn, td as kAsn, tdl ­ s1yNd

P
n Asn, td. Chain

wavelengthlstd we extracted from the zeros of displace
ment correlation functions which have a strong oscillato
character reflecting wavelike patterns in Fig. 1. W
illustrate this in Fig. 2(a) which depicts the “slope-slope
correlation function Ksssr , td ­ kVT sn 1 r , tdVT sn, tdl
with VT sn, td ­ RT sn 1 1, td 2 RT sn, td. The wave-
length lstd can be extracted from the first zeror1std of
Ksssr , td, via the relationlstd ­ 4r1std [which can be
rationalized by calculatingKss for RT sn, td in the form of
a simple harmonic wave with wavelengthlstd].

We thus find that, atlong times,

lstd , tnc , (2)
and

wstd , tb , (3)
with the exponentsnc and b both nearly equal to 0.26
3388
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FIG. 2. (a) Slope-slope correlation functionKsssr, td vs r
for various timest. Note that ast ! `, Ksssr ­ 0, td ! 2e
(­ 0.2 here). (b) Self-similarity test forKsssr , td. Collapse
into a single curvey ­ csxd of the curves in (a). Here
y ­ Ksssr , tdyKsssr 2 0, td, and x ­ ryr1std, where r1std is
the first zero ofKsssr , td.

from simulations of a 3D chain ofN ­ 10 000 molecules.
We obtain additional insight into this scaling behavior b
considering the chain’stotal potential energyU which
is the sum of the compressionalUcom and the bending
energyUbend. Figure 3(a) depicts energiesU, Ucom, and
Ubend vs time. We see that, atlong times,

Ubendstd ,
1
td

, (4)

with d ­ 0.50s4d, whereas

Ucomstd ,
1
th

, (5)

with h ­ 1.02s2d. As h . d, the net potential (elastic)
energyU is, at long times, entirely in the bending energ
U ø Ubend ¿ Ucom; see Fig. 3(a). Figure 3(b) depict
the time evolution of the spatial average of the intern
strain enstd. kenl , 0 as the chain is in a compresse
configuration for anyt. By Fig. 3(b), for long times, the
internal strain relaxes as

kenl , 2
1
tg

, (6)

with g ­ 0.51s1d. Note that, within the accuracy, one
has the scaling relationh ­ 2g, whereh is the exponent
of the compressional energy decay, Eq. (5). This can
easily rationalized asUcom , ke2

nl, if one further assumes
that ke2

nl , kenl2.
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FIG. 3. (a) Evolution of the chain total potential energ
U ­ Ubend 1 Ucom, bending energyUbend, and compressional
energyUcom vs time t. (b) Evolution of the internal strainkel
vs timet.

There is an apparentself-similaritywe see in the chain
dynamics. Indeed, from Fig. 1, we infer that chain con
figurations obtained atdifferent long times look (sta-
tistically) the same, provided transverse displacement
RT sn, td are expressed in units ofwstd [i.e., in terms of
the “dimensionless” quantityRT sn, tdywstd], andn is ex-
pressed in units oflstd [i.e., in terms of the dimensionless
quantitynylstd]. Qualitatively speaking, one can say tha
chain configurations depicted at various times in Fig. 1 a
all of the form

RT sn, td
wstd

ø sin

µ
2p

n
lstd

∂
, (7)

that is,y ­ RT sn, tdywstd is a wavelike function ofx ­
nylstd, with the periodDx ­ 1. Statistical self-similarity
can be checked by using the slope-slope correlation fu
tion Ksssr , td obtained at various timest; see Fig. 2(a).
The slope vectorVT sn, td ­ ≠RT y≠n has the character-
istic value ystd ­ wstdylstd, inferred by looking at a
typical chain configuration in Eq. (7). In the spirit o
statistical self-similarity, correlation ofVT sn, tdyystd with
VT sn 1 r , tdyystd should be a function ofrylstd only,
that is,
y

-

s

t
re

nc-

f

Ksssr , td
y2std

­ fss

µ
r

lstd

∂
, (8)

wherefsssxd is a scaling function. Thus, in particular,

Ksssr ­ 0, td ­ ksVT d2l ­

*√
≠RT

≠n

!2+
­ y2stdfsss0d .

(9)

From our simulations, we see thatKsssr ­ 0, td saturates
to a finite value at long times. See Fig. 2(a) atr ­ 0.
This feature can be rationalized in terms of Eq. (9), a
ystd ­ wstdylstd, and w and l are both ,t0.25 at long
times. This is further discussed below, where we fin
Ksssr ­ 0, td ­ ks≠RT y≠nd2l ø 2e for e ø 1, at long
times. Thus, the self-similarity ofKsssr , td is simply the
statement that, at long times, all the curves in Fig. 2(
are identical up to a time-dependent rescaling along t
r axis only. This feature makes the present system
strikingly similar to the coarsening dynamics ofphase
ordering phenomena,such as spinodal decomposition
In this respect, dynamics of correlationsKsssr , td of the
slope vectorVT ­ ≠RT y≠n is similar to the dynamics
of order parameter correlations in the phase ordering [6
8], providedVT is identified as an order parameter. Thi
identification is suggested by the scaling form ofKsssr, td
in Eq. (8), which, strikingly, turns out to be equivalen
to the basic form for the order parameter correlations
the phase ordering processes [6–8]. Figure 2(b) gives t
basic test of the self-similarity ofKsssr, td as we suggested
in Eq. (8). There we ploty ­ Ksssr , tdyKsssr ­ 0, td
vs x ­ ryr1std ­ 4rylstd [as before,r1std ­ lstdy4 is
the first zero ofKsssr, td]. We see that the slope-slope
correlations obtained at various times indeed collap
into a single scaling functiony ­ csxd [cs0d ­ 1, and
cs1d ­ 0, by the construction of the rescaling procedure
Moreover, as to standard phase ordering phenomena,
csxd has a pronounced oscillatory character reflecting th
presence of the structural length scalelstd.

To qualitatively explain our numerical results, let us
address the chain motion by a scaling type analysis. B
(1), one has, for zero noise,

≠

≠t
RT sn, td ­

≠

≠n
Besn, td

≠

≠n
RT sn, td

2 k

µ
≠

≠n

∂4

RT sn, td , (10)

with esn, td ø 2e 1 ≠uy≠n 1
1
2 s≠RT y≠nd2. Here,

usn, td are longitudinal displacements, introduced by ex
pandingRLsn, td ­ s1 2 edn 1 usn, td around the initial,
compressed straight configuration. As the chain has fix
ends,u ­ 0 at chain’s ends. Thus,k≠uy≠nl ­ 0. Above
we saw that the solelong scalesat long timest arelstd
and wstd, as suggested by the simulations, in particula
by the collapse of the correlation function curves i
Fig. 2(b). This suggests that the typical scale forRT is w,
soRT , w, whereas the typical scale forn is l, son , l
3389
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and≠y≠n , 1yl. Thus, e.g.,≠RT y≠n , wstdylstd, for a
typical chain configuration in Fig. 1. Similarly, we have
≠RT y≠t , wyt for a typical value of the left-hand side
of Eq. (10), whereas the bending term on the right-han
side (RHS) of (10) behaves as,kswyl4d. Likewise, the
first, compressional term on the RHS of (10) behaves
,Bsewyl2d. Next, we assume that, at long times, th
compressional and bending terms on the RHS of Eq. (1
are of the same order. Thus,

wyt , jejwyl2 , wyl4. (11)

It follows that l , t1y4, i.e., nc ­ 1
4 , and2e , l22 ,

t21y2, in agreement with our numerical results in
Fig. 3(b). With this, for the compressional energy we fin
Ucom , e2 , t21, in agreement with our numerical result
in Fig. 3(a). Further, askel ­ 2e 1

1
2 ks≠RT y≠nd2l ­

2e 1
1
2 fwstdylstdg2 ! 0 for t ! `, one has, at long

times,ks≠RT y≠nd2l ! 2e, and, also,wstd ø s2ed1y2lstd.
Thus, as l , tnc , it follows that w , tb , with
b ­ nc ­ 1

4 , in agreement with our simulations.
Finally, the bending energykUbendl , ks≠2RT y≠n2d2l ­
w2yl4 , t2b24nc , t21y2, in agreement with the nu-
merical result in Fig. 3(b).

To summarize, here we have elucidated, for the fir
time in depth, the nature of the dynamics associate
with the classical Euler instability. It is a coarsening
process characterized by a growing structural leng
scalel , tnc . At long timess,L1ync d this length scale
becomes comparable to the rod lengthL, and then
one recovers the usual picture of a buckled rod. W
reveal that the dynamics of Euler instability is simila
in nature to phase ordering processes such as spino
decomposition [6–8]: It is a stochastic coarsening proce
statistically self-similar in time. Like in phase ordering
phenomena, stochastic dynamics here is produced
chain nonlinearities and the presence of many degrees
freedom rather than by thermal noise, which we switche
off in the simulations presented here [13,14]. Associate
with this coarsening process is thegrowing transverse
width of the rod wstd , tb , with b ­ nc. Such a
growth of wstd, with b ­ nc, is strikingly similar to the
interfacial coarsening processes recently found to occ
in molecular beam epitaxy (so-called pyramidal or moun
growth [9–11]). There, as well as in the present elast
problem, the evolving manifold (surface or line) develop
3390
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a nonzerotilt with respect to the initial straight direction.
This tilt plays a role similar to that of the order paramete
in phase ordering phenomena.
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