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Semiclassical Dynamical Localization and the Multiplicative Semiclassical Propagator
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We describe an iterative approach to computing long-time semiclassical dynamics in the presence of
chaos, which eliminates the need for summing over an exponentially large number of classical paths, and
has good convergence properties even beyond the Heisenberg time. Long-time semiclassical properties
can be compared with those of the full quantum system. The method is used to demonstrate semi-
classical dynamical localization in one-dimensional classically diffusive systems, showing that interfer-
ence between classical paths is a sufficient mechanism for limiting long-time phase space exploration.
[S0031-9007(98)07352-9]
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Dynamical localization, the suppression of quantumever, that iteration of a one-step semiclassical propagator
phase space exploration in a system whose classical andees not bear much resemblance to long-time semiclassi-
logue is diffusive, is a remarkable example of nonergodiccal dynamics, except insofar as both are (at least at short
behavior in quantizations of classically ergodic motion.times) related to the quantum dynamics [9].

Since its discovery almost two decades ago, the phenome- In this work we adopt a different approach, based on the
non has been discussed and observed in various numeridgdea, recently developed more fully in Ref. [9], that even
studies [1,2], and also in experimental settings [3]. Forthough semiclassical propagation is not strictly multiplica-
mal connections with Anderson localization in disorderedtive, long-time semiclassical dynamics can in fact be well
systems have been made [4]. approximated by iteration of intermediate-time propaga-

As expected from classical-quantum correspondenceors, with controllable errors and well-defined convergence
diffusive quantum behavior is observed for times beyoncproperties. In Ref. [9] this approach was used to com-
the Ehrenfest time in systems with a diffusive classicapute semiclassical dynamics past the Heisenberg Time
limit. Localization then sets in (for dimensiong <  (where individual eigenstates and eigenvalues can be re-
2) at a time scale whose dependence on the diffusiosolved), for a system witlfy; = 256, without exponential
constantD and Planck’s constarit can be understood by expenditure of computational effort. Good convergence
analyzing when interference between classically distincproperties with decreasirigallowed for direct comparison
paths begins to be statistically important. It is thus naturabetween quantum and semiclassical stationary properties,
to ask whether phase interference between long classicalich as long-time transport, spectra, and eigenstates. In
paths alone is sufficient to produce localization, in thethe present work we do not directly use any of the results
absence of “hard quantum” effects like diffraction andof Ref. [9], but the interested reader is directed there for a
tunneling. Addressing this question has historically beemore complete discussion of the underlying ideas.
made difficult by the exponential proliferation of paths We begin by defining4,(i, j) to be the semiclassical
with time in a chaotic system. Fai = 1, for example, propagator matrix taking quantum stajeto quantum
the localization time scales &//i%, so exact semiclassical statei in time ¢ (computed using the Gutzwiller—van
calculations all the way to the localization time scale arevleck semiclassical expression). Unlike the corresponding
in practice impossible to carry out for small values/of quantum propagatot,(i, j), A; is not unitary, nor is it
where the semiclassical approximation itself is likely tomultiplicative, e.g.A, # (A,2)>. We can, however, easily
be valid. estimate the deviation from exact multiplicativity of the

An attempt along these lines in Ref. [5] proved some-semiclassical propagator, at least in the caustic-free case.
what inconclusive, although some preliminary evidence ofiVe define the natural basis-independennorm,

anomalous long-time behavior was found2at-27 time | X
steps. This in itself was an impressive calculational feat, A — B|I> = — Z |A;; — B,»jlz, Q)
made possible by a symbolic dynamics and the piecewise- N =

quadratic nature of the potential. In Refs. [6,7], statisti-where the normalization ensures that the norm of a unitary
cal properties of long periodic orbits were used to givegperator is one. We can then write

plausibility arguments for semiclassical localization with- o

out performing explicit periodic orbit sums. In Ref. [8], 4, = (Af/2)2”2 = 0(n%), (2)

the relationship was examined between the exact quantumhere for smooth dynamics, we have the exponent
propagator in a classically diffusive system, and the semien.on = 2. This can be seen by noting thétis exactly
classicabne-stegpropagator. Itis important to note, how- given by combining twoA,,, propagators, as long as
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the intermediate integration at time/2 is per- approximation at the Heisenberg time using fixgggets

formed by stationary phase. The relative error bebetter and better a8 — 0, in the present situation we
tween performing the intermediate integral exactlyhavea = 1/2 andTy ~ /2, so ash gets small we need
[(A2)*(x,y) = [dzA,2(x,2)A,2(z,y)] and by station- largerT, to preserve the accuracy of the approximation.

ary phase 4;(x,y) = fsp dzA;p2(x,2)A2(z,y)] scales We are now ready to apply the above outlined formalism
as /i (this being the order of the subleading term in theto the case at hand: dynamical localization in one-
stationary phase expansion); thisg.om = 2 [9]. dimensional systems. We consider a kicked map [1,11]

In the case of a discontinuity in the underlying classicalon a cylindrical phase spafe< g < 2, —0 < p < oo,
dynamics, which is to be considered in the present work, 5=p— V(g
the situation is rather different. However, the general p=r >
approach applies also to this case. In expanding around g =gq + p mod 27, (5)
eaqh of the stationary _paths that contrik_)uteu(x,y), the  \ith kick potential
region around the stationary phase point where the phase
is slowly varying scales as'/2. Thus, for a stationary Vig) = b K(g — m)* + Bcosq (0 < g < 2m)
intermediate poiny within O(4'/2) of a discontinuity in 2 5
the potential (or in its first derivative), the exact integral 6)
gets cut off within the region of Gaussian integration,turned on momentarily once every time step. Locally
and the relative error between the full integral and thehe dynamics looks everywhere like an inverted harmonic
stationary phase approximation is of order unity. Itis easypscillator with a sinusoidal perturbation (as long &s<
to see that for smalk this diffractive effect dominates the K), except for a discontinuity in the impulseqat= 0. The
effect of the subleading terms in the expansion (which aslassical motion is completely chaotic, and diffusivepin

we saw lead tQrg,oom = 2), and results in (p = po)etassical = Dt @)
Qgiscontinuous = 1/2. 3) with diffusion constant
For long timest, many classical paths must be summed 2m2K?

1
— 2\ __ 2
over to obtain the semiclassical propagator; here we are, of 2 = {((V)) = = [( 3 ) + B - 4KB] (8)
course, assuming that errors in the sum over paths add no L ) )
more coherently than the actual contributions themselves, 1h€ quantization of Eq. (5) is straightforward [1,11].
The next step is to extend Eq. (2) to the more generat100sing periodic boundary conditions ip space,
form we have a momentum basis given by, = nh, n =
. . —oo,...,%, The dynamics is given by a unitary one-step
A, — (Aym)” IF = O(MR®) = O((¢/M)""th®), (4)  propagator
which follows from assuming the successive errors in re- U= e iP/2heg=V@/1 (9)
placingM — 1 stationary phase integrals by exact ones to Because the quantum dynamics (as well as the classical)
add incoherently. The assumption of incoherent additioRs symmetric under parityd — —p, ¢ — 27 — ¢],
of errors breaks down for very largé (specifically, forM  \ye will in what follows focus only on the even sector
greater thark !, the Heisenberg time measured in units Of | pheven = (Ip) + | — pY)/¥2, p > 0. This eliminates

the shortest periodic orbit [9]). However, the higher-orderine problem of tunneling between positive and negative
corrections inM will not be relevant for our purposes. momenta.

Equation (4) allows successive controlled approxima- The semiclassical dynamics [in the absence of caus-
tions to be computed to the exact semiclassical dynamicges and Maslov phases, which are conveniently avoided
by takings/M >> 1 (this produces values much closer to by taking B < K in Eq. (6)] is given by the standard
the semiclassical than to the quantum results). Of coursgsytzwiller—van Vieck propagator
takingM — = (t/M < 1) inthe expressiofd, )", we i 5 , 12
instead recover the quantum propagator, as in the Feynman, (p'.p.1) = [ 1 } ‘ deta Si(p.p'.1)
path integral formalism. The intermediate cags/ ~ 1 A 2mih apap’

(as in the Bogomolny surface of section approach [10])

o /
produces a long-time dynamics which is, strictly speaking, X expw i (10)
neither quantum nor semiclassical, and provides an inter- h

polation between the two worlds. where S; is the action for classical patj taking p to

The scaling properties of the iterative semiclassicalp’, and the determinant is the corresponding classical
approximation with7z, time ¢, and “quantization time” probability density. We can now use Eq. (10) to evaluate
To = t/M, as expressed in Eq. (4) above, hold even fothe semiclassical propagator matricdag, for various
timest beyond the Heisenberg time of the system. Theséquantization timesTy [9], and then iterate to obtai, =~
scaling properties, based on power-counting argumentQATQ)’/TQ. AsT, — t, we obtain the exact semiclassical
have been extensively tested numerically in [9]. Onebehavior. In general, though, we only need to tdke
qualification is that while fore = 2 and7y ~ h~! the  large enough to obtain the desired level of convergence to
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the true long-time behavior. The behavior of the iterativesemiclassical propagatdr. This does not closely follow
semiclassical limit ag’, becomes large can be comparedthe full quantum result (or, as we shall soon see, the exact
with the quantum dynamics as givenby = U’ [Eq. (9)].  semiclassical result), and the behavior of this quantity in
The numerical results of this localization study are pre+ig. 2 is particularly erratic.
sented in Figs. 1, 2. In Fig. 1, we choose a piecewise lin- Now, guided by Eq. (4), we look for convergence to the
ear map, with parameters = 1.073, B = 0.0 in the kick ~ exact semiclassical answer as the quantization figne=
potential of Eq. (6). In Fig. 2, a sinusoidal term is added:/M is taken to be much greater than one. Specifically,
to the potentialK = 1.073, B = 0.52. In both cases, the in Fig. 1 we plot as solid lines the calculations with
qguantum and semiclassical calculations are performed witii, = 7,8, and 9 [i.e., we take successive approximations
I = 0.293 (note that this takes us well into the semiclassi-A, =~ (4;)"/7, etc.]. We see that the agreement between
cal regime: the relevant expansion parameter/i@=)?,  the three calculations is very good, strongly suggesting
since(27)? is the area of a unit cell in phase space). Wethat convergence has been achieved. The semiclassical
can now computé(n — ng)?), the spread in momentum calculation begins to deviate from the quantum sometime

space in units ofi, as a function of timer = p/#h). aroundT..; nevertheless, it does very clearly localize at
More explicitly, given a propagatai,, whether quan- a well-defined momentum spread somewhat larger than
tum or semiclassical, we define that given by the quantum calculation. (Some difference
S GG (2 — 2)y2 in the details of the end of classi(_:al d_iffusion for _the
{(n — np)?) = < . - h 5 h > (11) quantum and semiclassical calculations is not surprising.
;KllG’ml J One should note here, for example, that the discontinuity

The average over is performed over initial momenta far in the kick potential will have a diffractive effect on the
from 0 and also far from the edge of the numerical lattice.quantum dynamics—one which will not be present in the
The classical diffusion result given by Egs. (7) and (8)semiclassical approximation.)
appears on the log-log plot in Figs. 1, 2 as a straight line In Fig. 2, theTy — o convergence to the exact long-
of slope one. The full quantum calculation is seen intime semiclassical dynamics is found to be somewhat
the dashed curve, which in each case is seen to turn ov&lower (calculations wittTy = 8,9, and 10 are plotted as
and approach a constant after the localization titge =  solid lines). Nevertheless, up until= 200 =~ 6T, the
D/K2. This theoretically expected value @f,. (which  three curves are in very good agreement, with uncertainty
is also equal to the predicted rms spread in momentum &mall not only compared to their common deviation from

infinite time in units of/;, the square root of the quantity classical diffusion (straight line), but also compared to their
plotted in Figs. 1,2) is given by, = 44.1 in Fig. 1 common distance from the quantum curve (dashed). The

and Ti,c = 32.7 in Fig. 2. All these predictions are in €vidence for localization is very clear in this case also, asis

reasonable agreement with the full quantum numerics. the failure of the one-step iterative approximation (dotted
We now proceed to the semiclassical analysis. Thé&urve) to reproduce long-time semiclassical behavior.
dotted curve in each of the two figures represents the As an additional test of semiclassical localization at very

momentum spreading given by iteration of the one-stefong times, we consider the eigenstates of the _successive
propagatorsiy, asTo — <. In the absence of interfer-

ence effects (i.e., considering ea¢h, simply as a band

A
10000 - ‘ . . .
5 classical long-time random matrix of band width/DT, /), we would ex-
z iffusion >~ semiclassics pect the momentum spredd p)? of the typical eigen-
v A e state to increase linearly withy. In fact, however, phase
-t% PT|0C A !
o guantum
2 1000 | one-step localization | . 10000
S iterated S classical
E . . 1 One‘StEp H H —
E semiclassics % iterated diffusion
é | | S‘E semiclassics quantum
10 Tloc 100 1000 =5 2  Iqcalization
: @ 1000  Tige e
t (time) g long-time T
FIG. 1. Momentum spread{(n — ny)?>) [as defined by S semiclassics
Eqg. (11)], as a function of time for a kicked system with kick £
potential parameter& = 1.073, B = 0.0 [Eq. (6)]. Classical = T :
diffusion [Eg. (7)] appears as a straight line; the quantum 10 Tioc 100
calculation, represented by a dashed curve, shows dynamical t (time)

localization at time scalel,. = 44.1. Successive approxi-

mations to the long-time semiclassical propagator (using=IG. 2. Same as Fig. 1, with sinusoidal perturbation in the
To = 7,8, and 9) are drawn as solid curves. The one-steppotential, B = 0.52. Here the expected value @, is 32.7.
iterated semiclassical propagatdiy(= 1) produces the dotted Approximations to long-time semiclassical propagation using
curve. To = 8,9, and 10 are shown as solid curves.
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i by a factor of2 causes this ratio to drop t035. Unfor-
tunately we were not able to investigate extremely srall
due to computer limitations.

Thus, using an iterative approach to long-time semi-
classical calculations, we have been able to see explicitly
semiclassical localization in classically diffusive systems
at smallz. We can now say definitively that although
details of long-time quantum dynamics are affected by
diffraction and tunneling corrections, the essence of the
localization phenomenon is indeed contained in the inter-
ference among long classical paths.

This research was supported by the National Science
Foundation under Grant No. 66-701-7557-2-30. Some

FIG. 3. Average rms eigenstate width for successive approxief the work was performed during a stay at the Weiz-

mations to long-time semiclassical propagatidp,= 3,...,9.

The average eigenstate width for the one-step iterated prop
gator (o = 1) is also displayed, as is the quantum result
(To = 0). Plus symbols represent the caBe= 0.0; squares

representB = 0.52.

mann Institute in Israel. The author is very grateful to
E.J. Heller for many useful discussions on semiclassical
methods.

interference between classical paths turns out to be very *Electronic address: kaplan@physics.harvard.edu
important indeed, and the average rms width of the eigen-1] G. Casati, B.V. Chirikov, F.M. Izrailev, and J. Ford, in

states ofdr, is found not to increase significantly witfy

onceTy > 1. In Fig. 3, the mean rms width (in units of
h) of Ar, eigenstates centered well away from the edge of 2]

the numerical lattice is plotted vs the quantization tifge

Stochastic Behavior in Classical and Quantum Hamilton-
ian Systemsedited by G. Casati and J. Ford (Springer,
New York, 1979).

B.V. Chirikov, F.M. lIzrailev, and D.L. Shepelyansky,

Sov. Sci. Rev. C, Math Phys. Ref, 209 (1982); B.V.

Parameters are the same as in the previous two figures: plus  chirikov, Chaosl, 95 (1991); G. Casati and L. Molinari,

symbols are used for the = 0.0 case (corresponding to
Fig. 1) and squares f& = 0.52 (asin Fig. 2). The result

Prog. Theor. Phys. Sup8, 322 (1989); M. Zaslavsky,
Chaos6, 184 (1996); F. Benvenutu, G. Casati, and D. L.

using theTy, = 1 one-step iterated semiclassical propaga- Shepelyansky, Phys. Rev. A5, 1732 (1997); M. El
tor is also plotted, as is the quantum momentum spread at ~ Ghafar, P. Torma, V. Savichev, E. Mayr, A. Zeiler, and

To = 0. We see localization at largg, for both sets of

W. P. Schleich, Phys. Rev. Leff8, 4181 (1997).

parameters; in each case, the localization length is somel3] F-L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram,

what larger semiclassically as compared to the quantum

calculation. The result obtained usifig = 1 is interme-

diate between semiclassical and quantum in both cases.

and M. G. Raizen, Phys. Rev. Left5, 4598 (1995); F.L.
Moore, J.C. Robinson, C. Bharucha, P.E. Williams, and
M. G. Raizen, Phys. Rev. Leff3, 2974 (1994).

4] A. Altland and M. R. Zirnbauer, Phys. Rev. Le#7, 4536

We can test the scaling of the semiclassical localization™ * (1996); |. Dana, E. Eisenberg, and N. Schnerb, Phys.
length with the diffusion constant by comparing the results Rev. Lett. 74, 686 (1995); D.L. Shepelyansky, Physica

for B=0.0 and B = 0.52. The ratio of semiclassical

(Amsterdam)28D, 103 (1987).

localization lengths for these two parameters is found to[5] A. Shudo and K. lkeda, Prog. Theor. Phys. Supdls,

be 1.32 (usingT, = 6); analytically we predict.35.
The behavior of the semiclassical localization withas

283 (1994).
[6] R. Scharf and B. Sundaram, Phys. Rev. L&, 4907

also been investigated, and we find that the localization __ (1996). _
length increases roughly in accordance with the theoreti-[/] D- Cohen, J. Phys. A1, 277 (1998); D. Cohen, Phys.

cal predictions of dynamical localization theory. However,
the semiclassical localization length does grow some-
what more slowly withl/#A than the quantum localiza-

Rev. E55, 1422 (1997).

[8] R. Scharf and B. Sundaram, Phys. Rev. Létt, 263
(1996).

[9] L. Kaplan, Phys. Rev. (68, 2983 (1998).

tion length, apparently leading to a convergence betweefig] E.B. Bogomolny, Comments At. Mol. Phy<5, 67

these quantities at small. Thus, forB = 0.52 and us-

(1990).

ing Tp = 6 we find a ratio ofl.66 between the long-time [11] M.V. Berry, N.L. Balazs, M. Tabor, and A. Voros, Ann.
semiclassical and quantum localization lengths; reducing  Phys. (N.Y.)122 122 (1979).

3374



