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Steady flows generated by the Rayleigh-Taylor instability (RTI) are considered for incompres
inviscid fluid. There is a family of steady solutions, and for the first time the problem of the solutio
stability is studied theoretically for 2D and 3D flows. The region of stable solutions is found to
very narrow and bounded by Hopf’ bifurcations. The influence of flow symmetry and discontinuit
dimensional crossover in RTI are shown; agreement with existing experimental and numerical d
good. Bubbles dynamics is discussed. [S0031-9007(98)06179-1]

PACS numbers: 47.20.–k, 52.35.Py
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The Rayleigh-Taylor instability (RTI) is the instabil-
ity of “a water layer on a ceiling.” Internal fusion, as-
trophysics, plasma, and lasers are only a few of the i
stability applications [1]. We consider the instability fo
deep, inviscid, tensionless, and incompressible media d
fering greatly in densities, for example, water-air [1–3
In accordance with linear theory [4], small perturbation
of the media interface grow exponentially. Subsequent
the interface develops into a spatially periodic shape wi
rising bubbles of air and falling jets of water. The fluid
motion at this stage is steady [1–3]. At later times
subharmonic modulations and the Kelvin-Helmholtz in
stability result in the flow inverse cascade and turbule
mixing [5].

Taylor was the first to observe the steady motio
experimentally for a flow in a cylindrical tube [2]; in
later experiments periodic steady flows were also foun
[3]. Although theories [6–8] and numerical simulation
[9] gave reasonably agreeing results, full understandi
of the phenomenon is not yet reached. One of th
most interesting theoretical problems generated by t
Rayleigh-Taylor instability is a uniqueness of steady s
lution. In 1957, Garabedian [7] predicted the existence
a one-parameter family of steady solutions for 2D flow
but only a few years ago the hypothesis was perform
quantitatively [10]. The recent research dramatize
the problem of RT steady motion for three-dimension
flow. It turned out that the dimension of steady solution
multitude (valuen of n-parameters family of solutions)
cannot be a “universal” instability property and is
determined by the flow spatial symmetry [11]. Th
Froud number of steady flow depends on parameter or,
required by symmetry, on parameters. The curvature
dius (radii) at the bubble top is that physical parameter(
describing steady solutions. “Solitary jets” and “narrow
bubbles” are the critical regions of the steady solution
family. Observed experimental and numerical data a
located in the region of narrow bubbles. Nevertheles
no criterion separates a unique significant solutio
among the family. This work is devoted to linear stabi
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ity analysis of steady “bubbles-jets” structures generat
by the Rayleigh-Taylor instability. Having appeare
originally in 1957, this problem never has been serious
studied.

Under some general requirements [12], the spatia
periodic Rayleigh-Taylor instability can be considere
on the basis of symmetry theory [13]. These requir
ments account for the weak modes coupling and t
flow stability with respect to spatial noise at least a
finite time. In a given experimental region, these co
ditions are met for a small amplitude initial perturba
tion with that symmorphic symmetry group posing
central point such as groupp6mm (p4mm, p2mm,
etc.) of 3D flow or grouppm11 in the degenerate case
of 2D plane flow. One can state that for initial pertur
bation invariant with respect to one of these groups t
steady motion is observed, and the flow spatial symm
try and translations are conserved up to the steady mot
stage [12].

In moving with velocityystd framework, the inviscid,
tensionless, incompressible fluid motion with potenti
Fsx, y, z, td is described by the Laplace equation with th
boundary conditions at the infinity and at the free flui
surfacez 2 zpsx, y, td ­ 0:

DF ­ 0, =Fjz­1` ­ 2ystd ,

≠F

≠t
1

1
2

s=Fd2 1

µ
g 1

≠y

≠t

∂
zjz­zp ­ 0 , (1)

≠zp

≠t
1 =z=Fjz­zp ­ 0 .

Let the fluid motion be periodic in planesx, yd. With
ystd taken as a velocity at the tops of rising bubbles
laboratory framework, the tops of bubbles in the movin
framework (1) are stagnation points. We consider t
advanced stage of RTI at timest ¿

p
lyg (l is the flow

wavelength), when≠Fy≠t ! 0 and≠zpy≠t ! 0, and the
fluid motion becomes steady.
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The periodic potential (1) of 3D flow with hexagona
symmetry groupp6mm has the form

Fsx, y, z, td ­
X̀

m­0

Fmstd

3

√
3z 1

exps2mkzd
mk

3X
i­1

cossmkird

!
1 cross terms. (2)

Here ki are vectors in the inverse lattice withk3 ­
k1 2 k2, r ­ sx, yd. For i, j ­ 1, 2, kiaj ­ 2pdij,
where ai are the translation vectors in thesx, yd plane
with ja1j ­ ja2j ­ l, and da1a2 ­ 2py3; jkij ­
k ­ 4pysl

p
3 d. hFj is the Fourier amplitudes matrix.

In the unit cell, we asymptotically expand the free boun
ary in the bubble top neighborhood:
338
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zpsr, td ­
X
n

znstd
3X

i­1

skirykd2n 1 cross terms. (3)

Let us formulate the problem (1) in terms of time
dependent correlation functions or momentsMstd. These
functionsMstd are generated by Fourier amplitudes wit
“diagonal” momentsMnstd ­

P
m Fmstd skmdn 1 cross

terms, and the velocityystd ­ 23M0std. Some of the
momentsMstd are linear dependent because of the sy
metry. Near the bubble top, the free-surface conditions
the problem (1) can be evolved by successive approxim
tions into the form

P
i,j x2iy2jDijf≠My≠t, Mstd, z stdg ­

0, and
P

i,j x2iy2jKijf≠z y≠t, Mstd, z stdg ­ 0, wherei 1

j ­ N ­ 1, 2, . . . , respectively. At any finiteN, these
equations describe a motion in a functional space of m
mentsMstd and surface variablesz std. One finds
3r2

2

√
2

3≠M0std
≠t

z1std 2
≠M1std

2≠t
1 gz1std 1

3M2
1 std
4

!
1

9r4

8

√
2

3≠M0std
≠t

z2std 1 · · ·

!
1 · · · ­ 0 ,

3r2

2

√
≠z1std

≠t
2 6z1stdM1std 2

M2std
2

!
1

9r4

8

√
≠z2std

≠t
1 · · ·

!
1 · · · ­ 0 .

(4)
dy
n

d:

y

h
s

s

n

Small deviations from steady solutions (1) have t
form

Fmstd ­ Fssd
m 1 F0

mstd and znstd ­ z ssd
n 1 z 0

nstd .
(5)

The flow (1) is smooth, and in the stability region the
are the relations

jF
ssd
m11j ø jFssd

m j, jz
ssd
n11j ø jz ssd

n j

with jF0
m11stdj ø jF0

mstdj, jz 0
n11stdj ø jz 0

nstdj .
(6)

The flow properties (6) allow one to establis
some additional relationships between correlat
Mstd and their time derivatives at any finiteN . At
N ­ 1, M1std ­ kM0std 1 kF2std, and M2std ­
k2M0std 1 3k2F2std. With neglected high-order term
in time derivatives ofMstd, one finds

≠M0std
≠t

µ
3z1std 1

k
2

∂
­ gz1std

1
3
4

k2fM0std 1 F
ssd
2 g2,

≠z1std
≠t

­ 6kz1std fM0std 1 F
ssd
2 g

(7)

1
k2fM0std 1 3F

ssd
2 g

2
.

We will consider “hexagonal” steady solution
hFssd, z ssdj in detail and convergence treatme
elsewhere [12]. Briefly, the curvature radiusR
at the bubble top is the parameter of the stea
solutions family (1)–(3). In the physical regio
Rcr , R , `, the velocity dependence on the param
ter is nonmonotone. AtkRcr ­ s2.716 6 0.316d with
ycr ­ s0.955 6 0.035d

p
gyk, the conditions (6) are bro
he

re

h
ors

s

s
nt

dy
n
e-

-

ken. At kRmax ­ 4, maximum velocity
p

gyk reproduces
at N ­ 1 renormalized Layzer’s result [6], while with
a rise inN this value slightly increases;ymax ø 1.05

p
gyk

[12]. At Rcr ! ` (solitary jets) and atRcr # R # Rmax

(narrow bubbles), the convergence of approximated stea
solutions is a good, exponential one, while the regio
of medium curvature radii,4.9 , kR , 9.2, is poorly
approximated [12].

At N ­ 1, the family of steady solutions
(1)–(3), (7) has the form z

ssd
1 ­ 21y3R, yssd ­p

gyk s3kR 2 4dyskRd3y2. In this way, the eigenval-
ues (Lyapunov’ exponents) of Eqs. (7) are easily deduce

w
s1d
1 ­

p
gk

Ah 1 Bh

Ch
and w

s1d
2 ­

p
gk

Ah 2 Bh

Ch
.

(8)

Here Ah ­ 23kR 1 4, Bh ­
p

skRd3 2 5skRd2 1 16,
andCh ­ skR 2 2d

p
kR. Expressions (8) lead one to a

clear physical result: The steady solutions with either ver
large curvature radii,12 , kR , `, or very small ones,
0 , kR , 2, appeared unstable. Thus, in the first roug
approximation, the region of stable physical solutions lie
in the intervalkRcr # kR # 12. At N ­ 2, the stability
region is narrowed to the vicinity of the pointRmax ø 4yk,
associated with maximum velocity. Only those solution
with parameter values3.356 # kR # 5.184 are stable,
and distinctive pointsRs1d

c ­ 3.356yk andRs2d
c # 5.184yk

are points of Hopf’ bifurcations or “limit circles” (Fig. 1).
The right bifurcationRs2d

c takes out a poorly approximated
region of medium curvature radii from the stability
region. The left limit cycle,Rs1d

c ­ 0.925sly2d with
ys1d

c ­ 1.013
p

gyk ­ 0.532
p

gsly2d, is located in the
narrow bubbles region. The dependence of velocity o
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FIG. 1. Stability of steady solution. Dependencies of eige
valuesw on parameterR. 3D flow with hexagonal symmetry
p6mm. Dashed lines:N ­ 1; solid lines:N ­ 2. At N ­ 2,
the stable steady solutions are intervening between two Ho
bifurcations (black points). Rs1d

c ­ 3.356yk, Rs2d
c ­ 5.184yk,

andRl ! 4yk.

the parameter in this region is weak, and the “bifurcate
value of velocityys1d

c is close numerically to maximal one.
We apply the outlined method to study the stabilit

of 2D and 3D steady flows with various symmetries
Obtained results share a number of common properti
If symmetry poses a one-parameter family of solution
like “square” 3D sp4mmd or “plane” 2D spm11d flows,
then narrowing of the stability region with a rise in
approximations as well as “eigenmode” interactions wi
be very similar to those of the hexagonal flow. For 3D
square flowp4mm, k ­ 2pyl, at N ­ 2, limit cycles
Rs1d

c ­ 3.588yk ­ 1.142sly2d fys1d
c ­ 1.018

p
gyk ­

0.575
p

gsly2d g, and Rs2d
c ­ 5.050yk bound the inter-

val with inner point Rmax ­ 4yk related to velocity
ymax ø 1.05

p
gyk. Note that in dimensionless unitsp

gyk and 1yk, square and hexagonal results are weak
differing: Bubbles are near-axisymmetric for both
symmetries, zp , 2sx2 1 y2dy2R. Nevertheless, the
value of wave vectork depends significantly on a lattice
(tube), and curvature radiifRs1d

c gp4mm:fRs1d
c gp6mm ø 1.23

in l units. Moreover, comparison with Taylor exper
iment, yT ­ 0.49

p
gsly2d, shows the influence of 3D

flow symmetry (Fig. 2). Obtained fluid behavior is a
remarkable one. When a tubular flow is destroyed b
a lattice, bubbles remain near-axisymmetric and becom
wider, jets tend to be more singular, and steady veloc
increases. These changes in curvature radius and velo
are sufficiently large to be observable. Among all kind
of lattices, the hexagonal is the closest to tubular flow.

Brightly, a tendency to conserve a near-axisymmetr
bubble manifests for elongated lattice, symmetryp2mm,
and for 3D-2D transition [12]. In this case, the stead
solutions family is described by two independent param
ters or curvature radiiRx , Ry [11]. At finite valueslxyly,
steady solutions with eitherRx ! ` or Ry ! ` (plane in
x or y direction flows, respectively) are unstable. Whe
n-
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FIG. 2. Influence of flow symmetry on steady solutions
RTI. Hexagonal 3Dh, square 3Ds, and plane 2D flows.
Roman numerals denote approximations. Solid lines are sta
solutions; dashed lines are unstable solutions. Black points
Hopf’ bifurcations atN ­ 2. Black squares are renormalize
Layzer’s solutions,y ­

p
gyk, R ­ 4yk in 3D (3Dt —tubular

flow), and y ­
p

gy3k, R ­ 3yk in 2D. The circles are
limiting renormalized solutions:yl,3D ø 1.05

p
gyk, Rl,3D ­

4yk andyl,2D ø 1.06
p

gyk, Rl,2D ­ 3yk.

lxyly , 1, stable solutions are located in an “axisym
metric” region Ry , Rxslyylxd2, while in the limiting
case of 3D-2D dimensional crossover,slxylyd ! 0, no
stable steady solutions exist. The eigenmode associ
with 3D-2D transitions equals zero atslxylyd ; 0 (2D
flow) and is positive atslxylyd ø 1 (3D flow) [12].
Thus, stable steady bubbles are allowed by “rectangu
symmetry only at finite values of aspect ratiolxyly, and
dimensional crossover for RT bubbles is discontinuo
This result is reasonable: The topological structure of
bubbles is different than of 3D bubbles. AtN ­ 1, we
can roughly evaluate the cutoff aslxyly , 0.2 0.5 [12].
We believe that atN ! ` the cutofflxyly takes a value
of order of 1.

3D experiments and numerical simulations in RTI a
difficult to perform and rare. Existing experimental an
numerical data support the above theoretical predict
[2,3,14,15]. For example, the quantitative disagreem
between steady velocities of the square bubble and T
lor’s experiment has been shown in 3D simulations
Li [14]. The values of the square bubble radius o
tained numerically in [15],R ø s3.6 6 0.3dyk, are close
to our stable theoretical solutions. Decaying instability
elongated bubbles is another important fact observed
not appreciated in [14]. The elongation of the bubbl
initially posed in [14] results very fast in the relatio
Ry ¿ Rxslyylxd2, lyylx . 1, and, in accordance with
our analysis, these bubbles become unstable in the
vanced instability stages. It should be noted that the t
dency to conserve a near-circular contour is the phys
reason of the decreasing of the flow scalely and the split-
ting of elongated bubbles in [14].
339
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2D steady flows in RTI are studied numerically an
theoretically in more detail [1,6–10], and our stabil
ity analysis is of crucial interest for 2D flowpm11.
Similarly, 3D flows p6mm and p4mm, for 2D flow
pm11, at N ­ 2, the limit circles Rs1d

c ­ 2.576yk,
and Rs2d

c ­ 4.340yk bound the interval with an inner
point related to Layzer’s solution (ymax ­

p
gy3k with

Rmax ­ 3yk atN ­ 1 [6,10,12]) (Fig. 2). The bifurcation
Rs1d

c ­ 2.576yk ­ 0.820sly2d has velocity ys1d
c ­

0.598
p

gyk ­ 0.337
p

gsly2d and Froud Frs1d
c ­ 0.238.

These values are very close to existing data [1,6–9].
In all of the above cases at higher orders of approx

mations,N . 2, numerical solutions are required. Nev
ertheless, it can be shown that, at finiteN , the system (1)
eigenmodes are complex functions of parameter(s) beca
of variablesMstd andz std “meshing.” We expect that at
N ! ` the stability region is narrowed, bifurcation points
are brought together, and a “limit cycle” is a unique signifi
cant flow. In dimensionless variables, the curvature radi
of the “limiting” bubbles approachesRl ! 4yk for 3D and
Rl ! 3yk for 2D flows and is associated with maxima
velocity (Fig. 2). Although these values ofR are sepa-
rated by Layzer’s and Taylor’s considerations [2,6,12
our solutions, renormalized in the appropriate way, giv
a “unique” bubble velocity that slightly exceeds predictio
[6]: yl,3D ! 1.05

p
gyk andyl,2D ! 1.06

p
gy3k (Fig. 2).

It should be noted that the 2D limiting velocityyl,2D coin-
cides with Garabedian’s prediction FrG,2D ø 0.24 [7]. In
this way, the stability analysis eliminates the discrepanci
between previous theoretical approaches [6,7,9,10].

The above local stability analysis provides answe
to the problem of uniqueness of steady solutions in th
Rayleigh-Taylor instability. Spatial symmetry of 2D or
3D flow poses a family of steady solutions for tensionles
inviscid fluid. Most of these solutions are unstable. The
is the region of stable solutions with values of curvatur
radii at the bubble top running over a narrow interva
3D steady bubbles in RTI are quite sensitive to symmet
breaking; they tend to conserve a near-circular conto
and cannot be transformed into 2D bubbles continuousl

Our theoretical analysis clearly demonstrates that in re
experiments on RT instability NO bubbles are 2D. A large
scale noise immediately converts the “approximately” 2
bubbles system into a 3D one followed by 3D bubble
splitting. These results, in fact, shed new light on 3D
and 2D experiments on turbulent mixing by Read [3]. A
340
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equivalence of the directions normal to gravityg and a
near-circular contour of the bubbles are the basic properti
of the Rayleigh-Taylor instability. These properties mus
determine the instability dynamics from initial perturbation
to turbulence. They define an attractor in a functiona
space, while bubbles merging (resulting in inverse cascad
and bubbles splitting (resulting in direct cascade) are thos
processes that form dynamic trajectories of the system
A correct statistical model of turbulent mixing in the
Rayleigh-Taylor instability cannot ignore both of these
processes and competition between them.
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