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Stable Steady Flows in Rayleigh-Taylor Instability
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Steady flows generated by the Rayleigh-Taylor instability (RTI) are considered for incompressible
inviscid fluid. There is a family of steady solutions, and for the first time the problem of the solutions’
stability is studied theoretically for 2D and 3D flows. The region of stable solutions is found to be
very narrow and bounded by Hopf' bifurcations. The influence of flow symmetry and discontinuity of
dimensional crossover in RTI are shown; agreement with existing experimental and numerical data is
good. Bubbles dynamics is discussed. [S0031-9007(98)06179-1]

PACS numbers: 47.20.—k, 52.35.Py

The Rayleigh-Taylor instability (RTI) is the instabil- ity analysis of steady “bubbles-jets” structures generated
ity of “a water layer on a ceiling.” Internal fusion, as- by the Rayleigh-Taylor instability. Having appeared
trophysics, plasma, and lasers are only a few of the ineriginally in 1957, this problem never has been seriously
stability applications [1]. We consider the instability for studied.
deep, inviscid, tensionless, and incompressible media dif- Under some general requirements [12], the spatially
fering greatly in densities, for example, water-air [1—3]. periodic Rayleigh-Taylor instability can be considered
In accordance with linear theory [4], small perturbationson the basis of symmetry theory [13]. These require-
of the media interface grow exponentially. Subsequentlyments account for the weak modes coupling and the
the interface develops into a spatially periodic shape witllow stability with respect to spatial noise at least at
rising bubbles of air and falling jets of water. The fluid finite time. In a given experimental region, these con-
motion at this stage is steady [1-3]. At later times,ditions are met for a small amplitude initial perturba-
subharmonic modulations and the Kelvin-Helmholtz in-tion with that symmorphic symmetry group posing a
stability result in the flow inverse cascade and turbulententral point such as group6mm (pdmm, p2mm,
mixing [5]. etc.) of 3D flow or grouppml11 in the degenerate case

Taylor was the first to observe the steady motionof 2D plane flow. One can state that for initial pertur-
experimentally for a flow in a cylindrical tube [2]; in bation invariant with respect to one of these groups the
later experiments periodic steady flows were also foundteady motion is observed, and the flow spatial symme-
[3]. Although theories [6—8] and numerical simulationstry and translations are conserved up to the steady motion
[9] gave reasonably agreeing results, full understandingtage [12].
of the phenomenon is not yet reached. One of the In moving with velocityv(r) framework, the inviscid,
most interesting theoretical problems generated by the&ensionless, incompressible fluid motion with potential
Rayleigh-Taylor instability is a uniqueness of steady so-®(x,y, z, t) is described by the Laplace equation with the
lution. In 1957, Garabedian [7] predicted the existence oboundary conditions at the infinity and at the free fluid
a one-parameter family of steady solutions for 2D flow,surfacez — z*(x,y,t) = O:
but only a few years ago the hypothesis was performed
quantitatively [10]. The recent research dramatized

the problem of RT steady motion for three-dimensional AD = Vq)lz +o = —v(1),
flow. It turned out that the dimension of steady solutions ~ o® 1 »

multitude (valuen of n-parameters family of solutions) ot Ty (V(D) > - =0, 1)
cannot be a “universal” instability property and is

determined by the flow spatial symmetry [11]. The
Froud number of steady flow depends on parameter or, as
required by symmetry, on parameters. The curvature ra-
dius (radii) at the bubble top is that physical parameter(s) Let the fluid motion be periodic in plane,y). With
describing steady solutions. “Solitary jets” and “narrowv(r) taken as a velocity at the tops of rising bubbles in
bubbles” are the critical regions of the steady solutiondaboratory framework, the tops of bubbles in the moving
family. Observed experimental and numerical data aréramework (1) are stagnation points. We consider the
located in the region of narrow bubbles. Neverthelessadvanced stage of RTI at times> 1/A/g (A is the flow

no criterion separates a unigue significant solutionvavelength), whed®/dr — 0 anddz*/ar — 0, and the
among the family. This work is devoted to linear stabil- fluid motion becomes steady.

+ VzVD|,_,- = 0.
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The periodic potential (1) of 3D flow with hexagonal . 3 -
symmetry grougp6mm has the form 2 =D 40) z(ki’/k) + cross terms  (3)
Ox,y,2,0) = D Dp0) Let us formulate the problem (1) in terms of time-
m=0 3 dependent correlation functions or momeMsr). These
% (3z + exp(—mkz) Z COS(mk,r)) functions M (r) are generated by Fourier amplitudes with
mk i3 “diagonal” momentsM, (t) = >, ®,,(¢) (km)" + cross

+ cross terms (2) terms, and the velocity (1) = —3Mo(r). Some of the

momentsM () are linear dependent because of the sym-

metry. Near the bubble top, the free-surface conditions of
: : the problem (1) can be evolved by successive approxima-

where a; are the translation vectors in thg,y) plane . M

with |a,| = |a>] = A, and dd, — 27/3. |k;| = tions into thg f;)_rmzi’j xHyX D [oM/at, M(1), {(1)] =

k = 4m/(A3). {®}is the Fourier amplitudes matrix. 0» and>.;; x*y¥ K;;[9¢/at, M(1), {(1)] = 0, wherei +

In the unit cell, we asymptotically expand the free bound” = N = 1.2...., respectively. At any finitev, these
ary in the bubble top neighborhood: equations describe a motion in a functional space of mo-

| mentsM(¢) and surface variableg(r). One finds
3M12(t)> Lot (_38M0(t)

Here k; are vectors in the inverse lattice witks =
ki —k,, r= (X,y). For i,j = 1,2, k,‘aj = 27T(Sij,

2R a0 - R a0 + Zz(t)+"'>+"'=0,

ot 20t

ﬁ _38M()(l‘) aMl(l)
4 8 at

2 4 (4)
%(%ft) — 6L(OM(1) — MZT(”> T %(%t(” N ) T—

Small deviations from steady solutions (1) have theken. AtkRmax = 4, maximum velocity/g/k reproduces

form at N = 1 renormalized Layzer's result [6], while with
D,(1) = ®Y + ®! (1) and (1) = L9 + (). arise inN this value slightly increasesimax = 1.05y/g/k

5) [12]. At R., — o (solitary jets) and aR.; = R =< Rpmax
) , . ) (narrow bubbles), the convergence of approximated steady
The flow (_1) is smooth, and in the stability region theregq | tions is a good, exponential one, while the region
are the relations of medium curvature radii4.9 < kR < 9.2, is poorly
ol < 1oL 160 <1471 g approximated [12].
; / / / / At N =1, the family of steady solutions
IR D1 (0] < (9, (0] 12101 < 16,000 ()=(3).(7) has the form¢” = —1/3R, v =

The flow properties (6) allow one to establish ‘r— B 32 . . i
some additional relationships between correlators g/k GkR — 4)/(kR)"". " In this way, the eigenval

M(1) and their time derivatives at any finiay. At ues (Lyapunov’ exponents) of Egs. (7) are easily deduced:

N =1, M@1t) = kMyit) + k®,(z), and M,(t) = (I _ Ap + By m _ An — By
k>Mo(t) + 3k>®,(r). With neglected high-order terms " Vk Ch and w; Vek c,
in time derivatives ofM (¢), one finds (8)
M(%(ﬂ + 5) =g4() Here A, = —3kR + 4, Bj, = y/(kR)? — 5(kR)*> + 16,
at 2 andC, = (kR — 2)VkR. Expressions (8) lead one to a

clear physical result: The steady solutions with either very

3 5 ()72
+ Zk [Mo(0) + 57T, large curvature radii]2 < kR < o, or very small ones,

041(1) (7) 0 < kR <2, appeared unstable. Thus, in the first rough
ge1l) _ 6k, (1) [Mo(2) + qyg‘) approximation, the region of stable physical solutions lies
at in the intervalkR., = kR = 12. At N = 2, the stability
k2 [Mo(t) + 3(193) region is narrowed to the vicinity of the poiRfax = 4/k,

+ 7 : associated with maximum velocity. Only those solutions

We will consider “hexagonal’ steady solutions with parameter values.356 = kR = 5.184 are stable,
{®) @} in detail and convergence treatmentand distinctive pointﬂgl) = 3.356/k anngz) = 5.184/k
elsewhere [12]. Briefly, the curvature radiug  are ppints (_)f Hop_f’ bifurcations or “limit circles” (F.ig. 1).
at the bubble top is the parameter of the steadylhe right bifurcationR’® takes out a poorly approximated
solutions family (1)-(3). In the physical region region of medium curvature radii from the stability
Re < R < o, the velocity dependence on the parame<egion. The left limit cycle, RV = 0.925(A/2) with
ter is nonmonotone. AkR.. = (2.716 = 0.316) with vV = 1.013\/g/k = 0.532\/g(A/2), is located in the
ver = (0.955 + 0.035)+/g/k, the conditions (6) are bro- narrow bubbles region. The dependence of velocity on
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FIG. 1. Stability of steady solution. Dependencies of eigen-
valuesw on parameteR. 3D flow with hexagonal symmetry FIG. 2. Influence of flow symmetry on steady solutions in
p6bmm. Dashed linesN = 1; solid lines:N = 2. AtN =2, RTl. Hexagonal3D,, square3D,, and plane 2D flows.
the stable steady solutions are intervening between two HopRoman numerals denote approximations. Solid lines are stable
bifurcations (black points).R() = 3.356/k, R? = 5.184/k, solutions; dashed lines are unstable solutions. Black points are
andR;, — 4/k. Hopf bifurcations atV = 2. Black squares are renormalized

Layzer's solutionsy = +/g/k, R = 4/k in 3D (3D,—tubular

o L s flow), and v = \/g/3k, R =3/k in 2D. The circles are
the parameter in this region is weak, and the “bifurcated limiting renormalized solutionsw;sp ~ 1.05g/k, Risp =

value of velocityv" is close numerically to maximal one. 4/k anduv,,p ~ 1.06yz/k, Riap = 3/k.
We apply the outlined method to study the stability ’ ’
of 2D and 3D steady flows with various symmetries.
Obtained results share a number of common properties}tx/)h ~ 1, stable solutions are located in an “axisym-
If symmetry poses a one-parameter family of solutionsmetrfcn region R, ~ R.(A,/A,)?, while in the limiting

like “square” 3D (p4mm) or “plane” 2D (pm11) flows, 5356 of 3D-2D dimensional Crossovéh, /A,) — 0, no

then narrowing of the stability region with a rise in giape steady solutions exist. The eigenmode associated
approximations as well as “eigenmode” interactions will ity 3p-2pD transitions equals zero at,/1,) =0 (2D

be very similar to those of the hexagonal flow. For 3Dflow) and is positive at(A,/A,) < 1 (3D flow) [12].
squiare flowpdmm, k =27 /A, at Ai =2, limit cycles  Tnys; stable steady bubbles are allowed by “rectangular”
RE) = 3.588/k = 1.142()/2) [Ug) = 1.018yg/k = symmetry only at finite values of aspect ra#ig/A,, and
0.575/g(A/2)], and R = 5.050/k bound the inter- dimensional crossover for RT bubbles is discontinuous.
val with inner_point Rmax = 4/k related to velocity This result is reasonable: The topological structure of 2D
vmax = 1.054/g/k. Note that in dimensionless units bubbles is different than of 3D bubbles. At= 1, we
Vg/k and 1/k, square and hexagonal results are weaklycan roughly evaluate the cutoff as/A, ~ 0.2-0.5 [12].
differing:  Bubbles are near-axisymmetric for both We believe that aV — o« the cutoffA,/A, takes a value
symmetries, z* ~ —(x2> + y?)/2R. Nevertheless, the of order of 1.
value of wave vectok depends significantly on a lattice 3D experiments and numerical simulations in RTI are
(tube), and curvature radiR'"],4mm:[R" ] 6mm =~ 1.23  difficult to perform and rare. Existing experimental and
in A units. Moreover, comparison with Taylor exper- numerical data support the above theoretical prediction
iment, vy = 0.494/g(A/2), shows the influence of 3D [2,3,14,15]. For example, the quantitative disagreement
flow symmetry (Fig. 2). Obtained fluid behavior is a between steady velocities of the square bubble and Tay-
remarkable one. When a tubular flow is destroyed byor's experiment has been shown in 3D simulations by
a lattice, bubbles remain near-axisymmetric and becomki [14]. The values of the square bubble radius ob-
wider, jets tend to be more singular, and steady velocityained numerically in [15]R = (3.6 = 0.3)/k, are close
increases. These changes in curvature radius and velocity our stable theoretical solutions. Decaying instability of
are sufficiently large to be observable. Among all kindselongated bubbles is another important fact observed but
of lattices, the hexagonal is the closest to tubular flow. not appreciated in [14]. The elongation of the bubbles
Brightly, a tendency to conserve a near-axisymmetridnitially posed in [14] results very fast in the relation
bubble manifests for elongated lattice, symmet@mm, R, > R.(A,/A,)% A,/A, > 1, and, in accordance with
and for 3D-2D transition [12]. In this case, the steadyour analysis, these bubbles become unstable in the ad-
solutions family is described by two independent paramevanced instability stages. It should be noted that the ten-
ters or curvature radR,, R, [11]. Atfinite valuesA,/A,,  dency to conserve a near-circular contour is the physical
steady solutions with eithét, — « or R, — « (plane in  reason of the decreasing of the flow scajeand the split-
x or y direction flows, respectively) are unstable. Whenting of elongated bubbles in [14].
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2D steady flows in RTI are studied numerically andequivalence of the directions normal to gravgyand a
theoretically in more detail [1,6—10], and our stabil- near-circular contour of the bubbles are the basic properties
ity analysis is of crucial interest for 2D flowml11.  of the Rayleigh-Taylor instability. These properties must
Similarly, 3D flows p6mm and p4mm, for 2D flow determine the instability dynamics from initial perturbation
pmll, at N =2, the limit circles RE“ = 2.576/k, to turbulence. They define an attractor in a functional
and Rf) = 4.340/k bound the interval with an inner space,while bubbles merging (resulting in inverse cascade)
point related to Layzer's solutionuax = /g/3k with  and bubbles splitting (resulting in direct cascade) are those
Rmax = 3/k atN = 1[6,10,12]) (Fig. 2). The bifurcation Processes that form dynamic trajectories of the system.

RV =2576/k = 0.820(A/2) has velocity v’ = A correct statistical model of turbulent mixing in the
0.598/g/k = 0.337/g(A/2) and Froud ﬁl’) — 0238. Rayleigh-Taylor instability cannot ignore both of these
These values are very close to existing data [1,6-9].  Processes and competition between them.
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