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Eigenvector Statistics in Non-Hermitian Random Matrix Ensembles
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We study statistical properties of the eigenvectors of non-Hermitian random matrices, concentrating
on Ginibre’s complex Gaussian ensemble, in which the real and imaginary parts of each element of
an N X N matrix, J, are independent random variables. Calculating ensemble averages based on the
quantity(L,|Lg){RglR.), where(L,| and|Rz) are left and right eigenvectors df we show for large
N that eigenvectors associated with a pair of eigenvalues are highly correlated if the two eigenvalues
lie close in the complex plane. We examine consequences of these correlations that are likely to be
important in physical applications. [S0031-9007(98)07357-8]

PACS numbers: 05.45.+b, 02.10.Sp

An understanding of statistical properties of ensemblegvolution, which are recognized in other contexts as typical
of random matrices has proved useful in many different aref non-normal operators [15—17].
eas of physics [1]. Because the first application of random We consider, following Ginibre [11], the Gaussian en-
matrix theory, and one still of great importance, was to repsemble of general comple¥y X N matrices,J, hav-
resent the Hamiltonian of a nonintegrable quantum systening independent matrix elements;;, distributed with
the early work of Wigner, Dyson, and others focused orprobability
ensembles of real symmetric or complex Hermitian ma- N
trices. Eigenvector distributions in these ensembles are _ + T
of limited interest, being determined by the Haar measure P dJ = exp=NTilJJ7]) kl;ll W dlig, (1)
on the group that leaves the ensemble invariant. Instead, , o , "
the concern is mainly with eigenvalue correlations, aboutvhere J = Ji + iJy, with J; and Jj; real. Denot-
which a great deal is now known [1]. ing ensemble averages Hy--) and complex conjuga-
More recenﬂy’ the Spectraj properties of random non_tion_With an Overbar, the Only nonzero cumulantJofs
Hermitian operators have attracted attention in a variety/xi/x) = 1/N. o _
of contexts, including: neural network dynamics [2]; the The eigenvalues\,, of J are distributed in the complex
quantum mechanics of open systems [3]; the statistica?lane with, in the limitN' — oo, constant density inside
mechanics of flux lines in superconductors with columna@ disc of unit radius, centered on the origin. They are
disorder [4—8]; classical diffusion in random media [9]; hondegenerate with probability one, and in this case the
and biological growth problems [10]. The correspondingleft and right eigenvectorsL.| and|R.), which satisfy
ensembles of real asymmetric and general complex ma- JIRy) = AulRy)
trices were first studied by Ginibre [11], Girko [12], and “« altal )
Sommers and co-workers [2,13]. The eigenvalues in these (LolJ = Lol g
ensembles are, of course, not restricted to the real axis, )
but rather distributed over an area in the complex plangorm two complete, biorthogonal sets, and can be normal-
Their density and correlations have been investigated if€d so that
considerable detail [2,11-14]. _
By contrastgigenvectostatistics in non-Hermitian ran- {LalRp) = dap. (3)
dom matrix ensembles have not, so far as we know, prewe indicate Hermitian conjugates of vectors in the usual
viously b'een gxamlned. The existence of .dlstmct sets ofvay, so that, for exampléL. . ) satisfies/ T|L,) = Aa|La).
left and right eigenvectors means that invariance of the en- we investigate eigenvector correlations mainly by cal-
semble, unde®(N) or U(N) transformations as appropri- culating ensemble averages of combinations of scalar
ate, is a rather weak constraint on the joint eigenvectoproducts. Noting that Egs. (2) and (3) are invariant un-
distripution: it generates no information on the re.Iativg ori-der a scale transformatiolR,) — ¢.|R.) and (Lgl —
entations of the two sets of vectors. We show in this Pa77.,4]¢5", one recognizes that only those combinations in-
per that there are, in fact, remarkable correlations betweefariant under this transformation should be considered.
left and right eigenvectors. These correlations are likelyrne simplest such combination, involving two eigenvec-

to be important in physical applications of non-Hermitianyqs, s fixed by Eq. (3); the simplest nontrivial quantity is
random matrix ensembles. We illustrate their significancgnys the matrix of overlaps

by discussing two consequences, involving extreme sen-
sitivity of spectra to perturbations, and transients in time- Oup = (LolLg){Rg|Ra) ()]
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and we shall focus on this throughout the paper.

It issensitivity to perturbations. Consider for definitenéss

convenient to define local averages of diagonal and offeog#)J, + sin(6)J,, whered is real andJ/, andJ, are

diagonal elements of the overlap matrix,

O(Z) = <% ZOaa5(Z - Aa)>a (5)

0(z1,22) = <;] Z Oapd(z1 — Aa)8(z2 — A3)>- (6)

a*f

Correspondingly, the density of states is defined(@$ =
(N7'Y,8(z — A)). Inthe limit N — =, d(z) = 7!
for |z| < 1 andd(z) = 0, otherwise [11].

We have been able to obtain exact expression®far)
andO(zy,z2). FOrN > 1,|z1 — zo| # 0and|z;], |z2] <
1 these simplify to

N
O(z1) = ;(1 — |z, (7)
1 1 —z212
- am 8
72 |z1 — z2l* ®

For |zi],1z2] = 1, both densities vanish ag§ — ». To
display the form 0f0(z;, z2) as|z; — z2| — 0, itis neces-

O(z1,22) =

sary to expresk; — z»| in units of the separation between

adjacent eigenvalues, introducing = (z; + z2)/2 and
o = /N (z; — z2). We obtain, forlz,| < 1, ® < /N,
andN > 1

B |Z+|2

0(1.z) = —N22 (1= (1 + loP)eF).

9)

2wl

both drawn independently from the ensemble of Eq. (1),
so that/ moves through the ensemble éasaries. Then

|0Aa /001> = KLoldJ/90|R . (12)

Performing the ensemble average, and using Eq. (7) one
obtains for the mean square eigenvalue velocity
(19A/36P) = (1 = ]AP). (13)
This result should be contrasted in magnitude with the
analogous one for Hermitian matrices [18]. LHt=
cog0)H, + sin(@)H,, where H, and H, are complex
Hermitian N X N matrices, drawn independently from
the Gaussian unitary ensemble, in which the nonzero
cumulants aréH Hy) = (HyHy) = 1/N. LetE be an
eigenvalue ofH. Then forN — «, —1 = F =1 and
([0E/00T*) = 1/N. Thus the eigenvalues of th&¥ x
N random non-Hermitian matrix ar® (N) times more
sensitive to perturbations than those of the Hermitian
matrix. Such sensitivity is known to be a typical property
of non-normal operators [17]. Despite the sensitivity of
individual eigenvalues to perturbations, it is reasonable
to expect some stability in the structure of the spectrum
as a whole, since the perturbations considered merely
take a random matrix from one realization to another.
Such stability arises from the fact that, although the mean
square velocity of Eq. (13) is large for eigenvalues within
the unit disc, it vanishes as the boundary to the support
of the spectrum is approached. Conversely, anticipating

Equations (7)—(9) constitute our main results. Beforgps stability, we have a rationalization of the fact that,

outlining our derivation, we discuss their significance.

from Egs. (7), (9), and (11), the amplitudes of tHgN)

First, we stress the dramatic difference between theqntributions too,,, and0,z vanish agz,| — 1.

behavior of O, in this general complex ensemble and  The Jarge off-diagonal elements o, ; are significant
its behavior in the case of Hermitian matrices, for which;, sityations in which/ is the generator of evolution in

O.p = 64p. The fact that, by contras@,, ~ N in the

real or imaginary time. Settings of this type represent one

non-Hermitian ensemble can be understood as the behavigf the main physical applications of non-normal operators

which results if(L.| and |R,) are independent random 2 4 9 10]. To be specific, consider a model problem in
vectors, subject to the normalization of Eq. (3). Moreover,ynich

large values for the diagonal elements of the mafixs

must be accompanied by some large (or many small) off-
diagonal elements, since the two are linked by a sum rule

that follows from completeness,

> O0up = 1. (10)
Indeed, Eq. (6) implies
Oap ~ O(Zl,Zz)/<% Z 8(z1 — Ap)d(z2 — /\V)>,
nFEV
(11)

and hence, from Eq. (9.5 ~ —N if A, and Ag are

neighboring eigenvalues in the complex plane, so that

(typically)  ~ 1.
An immediate consequence of large valuesOgf, is

that the spectrum aof for a given realization has extreme
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2 lule) = (7 = D lu0) (14)

so that

|u(8)) = D" IRa)f1(Aa) (Lalu(0)), (15)
with £,(1) = exp([A — 1]¢), where we us¢J — 1) rather
than J in Eq. (14) for convenience, to suppress expo-
nential growth. Ensemble averaging with(0)|«(0)) = 1
leads to

(CuDlu(e)) = <§ Zoagffwmﬁ)>, (16)
ap

and fort > 1 andN — o we find [19]

(ulu(1))y ~ (42, (17)
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This behavior should be compared with the much fastetransformationU, to upper triangular form, so thdt =
decay that would result from the same spectrum if theUtJU has Ty, = 0 for k > I, we use asN(N + 1)
eigenvectors were orthogonal. In the same regime, theoordinates, the real and imaginary parts of the nonzero

replacemen®,z — 8,4 transforms Eq. (16) into elements off;;, and take the remaining coordinates from
U itself. The required Jacobian is given by Mehta [22].

2\ _ IN—1/2 In this basis, the diagonal elements &f are the

<§ /1Al > (art”) % (18) eigenvaluesT;, = A;. The first two pairs of eigenvec-

tors are|R;) = (1,0,...,00t, (L] = (1,b2,b3,...,by),
Thus, eigenvector correlations may be as significaniR,) = (—=b», 1,0,...,0)t, and (L,| = (0,1,ds, ..., dy),
as eigenvalue distributions in determining evolution atwhere the coefficient$, and d; are determined by the
intermediate times, a fact of established importance imecursion relations
hydrodynamic stability theory [15,16].

p—1
Finally, it is interesting to ask about, not only the b, = _ Z b T
. . . P qa-4qp >
average behavior of the overlap matrix, but also its AL = Ay S
fluctuations. In factQ, s is typically large if the matrix/ o1 (20)
has an eigenvalue which is almost degenerate wijtlor d, = _ Z dyTyp .,
Ag, and as a result, the probability distribution@f s has A=A 5

a power-law tail extending to larg,zl|. To illustrate
this, we considerN = 2, for which we can calculate
exactly the probability distributior? (0, ), of a diagonal

with b; = 1, d; = 0, andd, = 1. Correspondingly, the
overlaps are

element of the overlap matrix. We find N
P o ) on =Y bl (21)
Oua — 1 =1
P(Ona) = 4202 — 1
(0 ) (20aa - 1)3 ( 9) _ N _
Onp = —by Zbldl- (22)

where ®(x) = 1 for x > 0 and zero otherwise. This =

implies in particular that the second and higher momem?’erformin the integrals over and Ty with k < 7, 0(2)
of 0., diverge. We expect, from Eq. (20), below, similar 9 9 ki » L

behavior forN > 2 and (providedV > 2) for 0,5 with andO(z;,z2) can be expressed as averages with respect to
a # B. B the joint probability density of the eigenvalues

In the remainder of this paper we sketch our calcula- N
tions and show how the results summarized above caf (A1-..,Ay) = exp(—N > |)lk|2> [T = an
be generalized. Calculations for the ensemble of Eq. (1) k=1 I=i<j=N 23
can be done by extending the classical methods of Dyson (23)
and Ginibre, while more general problems are most conbefining(- - -)» as an average with (23), we find
veniently treated via ensemble-averaged resolvents, using
the techniques of Refs. [9,20,21]. 0(z) = <5(Z1 “w I (1 N 1 )>

A direct computation of averages @f,z involves a 2=j=N Nlar = A7)/
2N?-fold integration over the complex matrix elements (24)
Jiu. The integral is simplified considerably by changing
variables as described in [22]. Reducifidoy a unitary | and

0(z1,22) = =(N — 1)<5(11 - M)é(z2 — /\z)m % HN(l TN, - /\jl) 0 = Xj))>P' (25)
i=j=

Performing the integrals over eigenvalues in Egs. (24) énévaluated using our result for = 0, while the second can
(25), we obtain explicit expressions in terms 8fX N  be calculated neglecting eigenvalue correlations, because
determinants. its fluctuations vanish a& — «. Their combination is
Forz; = 0, we are able to evaluate these determinantindependent o, for M large, as it should be, and is as
in closed form by recursion, and to simplify the resultdisplayed in Egs. (7)—(9).
further for N > 1. Forz; # 0 we are forced to take a  An entirely different approach is necessary in order
less direct approach, which numerical tests show is a goo treat other random matrix ensembles with ease, or
approximation for finiteN, and which we can prove is to develop approximation schemes for spatially extended
exact in the limit8V — . We separate the contributions problems such as those of Refs. [2—4,9,10]. For these
to each of the Egs. (24) and (25) into two factors: onepurposes we take as central objects the ensemble averages
from the M eigenvalues closest tg, with M > 1, and  of products of the resolventg,, — J)~'and(z, — J1)~!.
another from the remaining eigenvalues. The first can bAs a demonstration, we examine a matrix ensemble with
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the probability distribution DGpzy) = — ——

’ w2z — 2l

w U= )2 — (1 + )52 + 7(2f + 23)
(-

— 72

P(J)dJ « exp(— . N Tt — TReJJ]>

N
x [T doj, difs, (33)

k=1

with 7 real and—1 =< 7 = 1. The nonzero cumulants for zi andz, within the support of the density of states,
are (JuJy) = 1/N, and{(JuJ ) = 7/N. This distribu- a_nd zero otherwise. Since we have talggn# 22, this is
tion, introduced in [2], interpolates between the GaussSIMPly O(z1,22), and for 7 = 0, Eq. (8) is reproduced.
ian unitary ensemble of Hermitian matrices, for= 1, FOr 1 — 7 <1, on the other hand0(zy,z5)/[d(z1) X
Ginibre’s ensemble [Eq. (1)] for = 0, and complex anti- 4(z2)] « 1 — 7, so thatO(z1, z2)/[d(z1)d(z2)] vanishes in
symmetric matrices for = —1. In the limitN — o, the  the Hermitian limitz — 1, as expected. _
eigenvalue density has the uniform valde) = [7(1 — We thank B. Eckhardt and L. N. Trefethen for stimu-

797! within the ellipse defined byRez/(1 — =)} +  lating discussions. This work was supported in part by
[Imz/(1 + 7)]* < 1 and is zero elsewhere [2]. EPSRC Grant No. GRI78327, and in part by SFB 393.
We treat the ensemble (26) using the techniques
described in [9,20,21]. These generate an expansion
for O(z1,22) in powers of(z; — z3)/N, and hence give
0(z1,22) exactly in the limitN — oo, but supply infor-

(26)

mation aboutO(z) only indirectly, via the sum rule of
Eqg. (10). We start by considering th&v X 2N Hermi-
tian matrixH = Hy + H;,
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