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Multichannel Cold Collisions: Simple Dependences on Energy and Magnetic Field
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The scattering matrices needed to describe cold collision processes are shown to have a simpl
dependence on energy and magnetic field, controlled by single-channel dynamics in the appropriate
long-range field. A frame transformation describes the energy and field dependences entirely in
terms of a standard recoupling matrix and single-channel parameters, giving adequate accuracy fo
many systems. The formulas in this paper should permit experimentalists to reproduce the results
of hitherto complicated coupled channels calculations, through small, simple matrix manipulations.
[S0031-9007(98)07406-7]
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Ultralow energy elastic and inelastic collisions play
crucial role in the theoretical description of Bose-Einste
condensates (BECs). Atom-atom scattering lengths co
trol the rate of formation, the size, and to some exte
the shape of single- and multiple-component condensat
while inelastic rate constants can control the trap life
times. The field-free scattering lengths are now know
reasonably well for several alkali atom pairs, and man
field-dependent scattering observables have been de
mined through fruitful collaborations between experimen
and theory [1–3].

Moreover, the recent observation of Feshbach res
nances in23Na [4] and 85Rb [5] suggests the exciting
possibility of atunableeffective interaction in BECs, and
dramatizes the need for a simpler theoretical framewo
Until now the theoretical community has primarily re
sorted to brute force numerical solutions of the multicha
nel close-coupling equations [1–3] in order to derive th
relevant scattering information. The coupled equatio
are integrated out to internuclear distancesR of order
103 104 a.u., for each collision energyE and magnetic
field B of interest, which can become inordinately tim
and resource consuming.

The techniques of multichannel spectroscopy provide
powerful yet simple theoretical description of multichanne
collisions and half-collisions, in contexts such as Rydbe
electron motion [6] in the field of a structured ionic core
This approach has its origins in Seaton’s [7] multichann
quantum defect theory (MQDT), and in multichanne
effective range theory [8]. When suitably generalized
different long-range fields that arise in a two-body frag
mentation channel, these methods can provide compa
quantitatively accurate theoretical descriptions of e
tremely complex observables.

This Letter presents a fully developed theoretical d
scription of two-body ground state alkali-atom collisions
All of the system-specific scattering information at low
energies is contained in a weakly energy-dependent sho
range reaction matrixKsr , which can be easily converted
into physical quantum mechanical scattering amplitud
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by manipulation of small matrices with the formulas pr
sented below. The capability of MQDT formulations
describe multichannel observables relating to photo
sorption and collisions is well known, and it has alrea
been applied to cold collisions by other groups [9–1
Two key developments are described in this Lett
(i) A new standardization of the long-range field prope
ties leads to a particularly compact representation of wa
functions in the large-R region dominated by the usua
multipole expansion. The long-range potential typica
has the formV lr sRd ­ 2

C6

R6 2
C8

R8 2
C10

R10 , but other long-
range potentials can be similarly included, e.g., when
tardation effects are important. (ii) Arecoupling frame
transformation (FT)approximation provides an adequa
description of the physical scattering matrixSphys for
many problems. When this approximation is valid, it pe
mits a complete determination ofSphys in terms of single-
channel quantities (like singlet and triplet scattering pha
shifts) and a standard angular momentum recoupling
efficientXil.

Crucially, the frame transformation includes energe
cally closed channels as in previous MQDT studies [
which distinguishes our FT from a related class of a
proximations (notably the degenerate internal sta
method [12], or equivalently the adiabatic nuclei meth
[13] of electron-molecule scattering theory). Th
strongest variations of theS matrix with E and B are
associated with single-channel Schrödinger wave pr
erties in the long-range field, or by Feshbach or sha
resonances. These energy dependences emerge exp
in terms of the standardized long-range field parame
identified under point (i) above.

In multichannel spectroscopy, the key idea is to expr
scattering observables in terms of a real, linearly indep
dent base pairsf0, g0d, which obey the radial Schrödinge
equation in the long-range field, with boundary cond
tions chosen such that they are smooth, analytic fu
tions of energy. A convenient, exact representation
sf0, g0d utilizes the amplitudeasRd in the Milne [14]
phase-amplitude method [15]:
© 1998 The American Physical Society 3355
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f0s´, l, Rd ­

s
2m

p
asRd sin

√Z R

Rx

dR0

a2sR0d
1 bl

!
,

g0s´, l, Rd ­ 2

s
2m

p
asRd cos

√Z R

Rx

dR0

a2sR0d
1 bl

!
.

(1)

The Milne amplitudeasRd, which depends onl and on
the energy´, obeys a nonlinear differential equation
a00sRd 1 k2sRdasRd ­

1
a3sRd , where k2sRd ; 2mf´ 2

V lr sRd 2
lsl11d
2mR2 g. Application of WKB-style bound-

ary conditions at some small fixed radiusRx (10 a.u.
here), namely, asRxd ­ ksRxd21y2 and a0sRxd ­

≠

≠Rx
fksRxd21y2g, is not “strictly necessary,” but gives

optimal smoothness [15] ofasRd in ´ andR.
The energy-independentphase shiftbl in Eq. (1) is

introduced here for the first time. It standardizes the lo
energy asymptotic structure ofsf0, g0d and simplifies the
use of parameters calculated using different long-ran
potentials. This is useful, for instance, when collisio
properties must be calculated at many different values
the van der Waals coefficientC6. Our new standardization
of long-range solutions amounts to a choice ofbl such
that f0s´ ­ 0, l, Rd ! const3 Rl11, asR ! `. In the
case ofS-wave scattering, this amounts to demandin
that the “comparison solution”f0s´, l ­ 0, Rd itself has
vanishing scattering lengthin the limit ´ ! 0. Unlike
other quantum defect analyses [7,9–11,15], we have
specified the behavior ofsf0, g0d atR ! 0. This is simply
becausesf0, g0d are never used there—they are used on
to describe the large-R solutions, typically atR * 35 a.u.

Standard multichannel scattering techniques integrat
set ofN ­ No ­ Nc coupled Schrödinger equations ou
ward from the origin to some large internuclear distan
Rhuge, where scattering boundary conditions are appli
in the No open channels and exponential growth is elim
nated in theNc closed channels. We propose a simp
modification: instead of integrating the coupled equatio
out to 104 a.u. where the long-range potentialV lr sRd is
negligible, we now integrate them outward to a distan
R0 or order 30–60 a.u., beyond which exchange vanish
TheN 3 N solution matrixMsRd at a total energyE can
then be written, in an asymptotic channel representati
as a linear combination ofsf0

i , g0
i d at all radii R $ R0.

Heref0
i andg0

i are diagonal matrices in the channel spac
evaluated at the appropriate channel energy´i ­ E 2 Ei ,
where Ei is the dissociation threshold energy, andli is
the relevant orbital momentum in theith channel. N lin-
early independent solutions (regular atR ­ 0) that obey
standing wave boundary conditions form the success
columns ofMsRd; beyondR0, MsRd is characterized by
a “smooth, short-range reaction matrix”Ksr that varies
slowly with E or B except near isolated poles. TheseN
independent solutions are standardized to have the follo
ing form: MsRd ­ f0sRd 2 g0sRdKsr , whereMijsRd is
the ith channel component of thejth independent solu-
3356
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tion. The solution matrix still has components in energe
cally closed channels, but this method will usually wor
best if all channels included atR $ R0 are still “locally
open,” i.e., withk2sRd . 0.

The representation of cold-collision properties pr
sented in this paper can serve two different communiti
First of all, it can be of use to theorists who want to spe
up the solution of coupled equations, and who want
convey the maximum amount of information when tab
lating results. Second, it can be useful to experimentali
and other theorists interested primarily in the low-ener
scattering amplitudes for a range ofE and/orB. Specifi-
cally, if theorists tabulate the short-range reaction mat
Ksr at one energy, typically at a collision threshold, th
is enough information to reconstruct many different sca
tering observables over a large range ofE and B. The
following steps are needed to extract the physical scat
ing matrix from such a tabulated matrixKsr .

Step 1: Elimination of energetically closed channels.—
Partition channels intoNo open channels (those channe
i [ P, for which ´i ­ E 2 Ei . 0) and Nc closed
channels (i [ Q, for which ´i ­ E 2 Ei , 0). In this
notation,Ksr becomes

Ksr ­

√
Ksr

PP Ksr
PQ

Ksr
QP Ksr

QQ

!
. (2)

The exponentially growing parts of the wave functions
R ! ` are next “eliminated” in the MQDT sense, throug
the following equation which shows the potentially res
nant influence of closed-channel pathways:

K̃ ­ Ksr
PP 2 Ksr

PQsKsr
QQ 1 tanbd21Ksr

QP . (3)

The resulting modified reaction matrix̃K has dimension
No 3 No. The diagonal matrix of closed-channel phas
parametersb ­

R
`

Rx
dRya2sRd 1 bl gives the coefficient

[15] of the rising exponential forf0
i sRd (proportional to

sinbi), and forg0
i sRd (proportional to2 cosbi). Should

all channels be closed, discrete bound states occur at r
of detsKsr

QQ 1 tanb d ­ 0.
Step 2: Transformation to an energy-normalize

nonanalytic long-range representationsf, gd.—We ulti-
mately desire a scattering solution normalized todsE 2

E0d. Three long-range field parametersA, G , h are rele-
vant to this transformation, which can be written as√

fsRd
gsRd

!
­

√
A

1
2 0

2A
1
2 G A2 1

2

! √
f0sRd
g0sRd

!
. (4)

At R ! `, sf, gd are phase shifted relative to spheric
Bessel solutions:

fsRd ! kR
p

2mypk fjlskRd cosh 2 nlskRd sinhg ,

gsRd ! kR
p

2mypk fjlskRd sinh 2 nlskRd coshg ,
(5)

with k ­
p

2m´. The standardized single-channel long
range field parametersAs´, ld, Gs, l´d, hs´, ld at ´ . 0,
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along with the phasebs´, ld at ´ , 0, are calculated
for the relevant long-range potential in each chann
following the basic procedure described previously
Ref. [15], modified only by the new standardizatio
condition above involving the constant shiftbl. In the
following expressions,hA, G , h j are diagonal matrices in
channel space. AnNo 3 No real, symmetric, “energy-
normalized” reaction matrix in thesf, gd representation is
obtained using [9]

K ­ A1y2sK̃21
1 G d21A1y2. (6)

This is still not quite the “physical” reaction matrix
Kphys of conventional scattering theory owing to th
phase shifths´, ld of sf, gd relative tosjl , nld at R ! `.
Nevertheless,K possesses other properties expected
Kphys, such as the Wigner threshold behavior which
reflected in the dependenceAs´, ld , ´l11y2 as´ ! 0.

Step 3: Form the physical scattering matrix.—The
final matrix manipulation needed is

Sphys ­ eih 1 1 iK
1 2 iK

eih . (7)

From this expression, it is possible to extract inelast
scattering cross sections or rate constants, and ela
scattering cross sections, in the usual manner. When
scattering length in channeli is desired, it is the threshold
limit ´i ! 0 of the quantity ai ­ 2sSphys

ii 2 1dy2iki ,
providedli ­ 0.

The long-range field parametersAs´, ld, Gs´, ld,
hs´, ld, and bs´, ld can be tabulated once and for all a
functions of the single parameterg ­ s2md3C6´2, in a.u.
This scaling isstrictly valid only for a pure van der Waals
long-range potential, but in practice it still holds to a goo
approximation even for the above form ofV lr sRd with
additionalC8 and C10 terms. Our standardization of the
zero-energy scattering length off0srd leads to one major
benefit: the long-range parameters are almost independ
of the C8, C10 terms. When tabulated as functions o
the parameterg they are nearly atom independent fo
the cases we have explored numerically (see the inse
Fig. 1). Additional details about these parameters will b
published separately, but for now a table for their valu
sufficient to reproduce, e.g., theS-wave scattering calcu-
lations shown in this paper, can be found in Ref. [16].

We have verified that no accuracy is lost in calculate
elastic and inelastic cross sections when the multichan
solutions are represented beyondr ­ r0 by the semiana-
lytic long-range reference functionssf0

i , g0
i d, rather than

by brute force numerical solution. More to the point, th
resulting calculated reaction matrixKsr hardly changes
over an energy range of 10–100 mK. The read
interested in seeing an implementation of the quantu
defect calculation can find in Ref. [16] aMATHEMATICA

notebook that implements steps 1–3 above for an ener
independentKsr matrix for 85Rb-85Rb, and reproduces
Fig. 1.
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FIG. 1. ElasticS-wave partial cross section for the collision
of two 85Rb atoms in theirj2, 22l atomic hyperfine states. The
feature near 29 mK is the zero-field version of the Feshbac
resonance [5]. Solid curve: an MQDT calculation using a
constantKsr , which is indistinguishable on this scale from a
highly accurate FEMR-matrix calculation. Dashed line: the FT
approximation. Inset: The four long-range QDT parameters,
functions of the parameterg defined in the text, which coincide
on this scale for identical-atom collisions of Na, K, or Rb.

Figure 1 shows a calculation of theS-wave elastic
scattering cross sectionsel for two 85Rb atoms in the same
jfamal ­ jfbmbl ­ j2, 22l atomic hyperfine states. The
solid line represents the cross section calculated with
constant short-range reaction matrixKsr via steps 1–
3 above. It is indistinguishable from the “essentially
exact” cross section derived from a finite element (FEM
[17] R-matrix [6] solution of the coupled Schrödinger
equations, as implemented in our previous work [3]. Th
MQDT results quantitatively reproduceall features of this
spectrum, with aKsr computed from the coupled equations
at the single energy E ­ 0. This excellent agreement
over an extended energy range confirms thatKsr is weakly
energy dependent. The calculation using a constantKsr

matrix also predicts the energy of the zero-field Feshba
resonance [5] (near 30 mK) to within 0.1 mK. The smal
shift in the resonance position indicates thatKsr is not
strictly constant over this energy range. Effects associat
with this slight energy dependence can be incorporate
by interpolation ofKsr after it is tabulated on a coarse
energy grid. (See Ref. [6] for a discussion of practica
considerations relevant to such interpolations.) Figure
exemplifies the usefulness of tabulating results in terms
Ksr . Whereas the zero-energy scattering lengtha provides
a useful approximation for the elastic scattering cros
sections ­ 8pa2 only for collision energies belowE ,
1 mK in 85Rb, the short-range reaction matrixKsr provides
quantitative information over tens of mK, the entire rang
relevant to cold collision physics.

The theory presented above still requires integration
coupled channel equations to obtainKsr . However, in
3357
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cold alkali collisions the dominant spin exchange couplin
interaction is localized in the rangeR , 25 a.u. To
a good approximation the atoms move atR & 20 a.u.
in a set of uncoupled channels, labeled by their to
electronic spin quantum numberS. We thus integrate the
single-channelSchrödinger equations with all hyperfin
interactionsomitted,and then match each solution to th
energy-analytic base pairsf0, g0d to obtain singletsS ­ 0d
and triplet sS ­ 1d quantum defectsmsr

S s´d. The short-
range reaction matrix is then approximated by the ener
dependent frame transformation formula

Ksr
i,i0 ­

X
l

kijll tanpmsr
l s´ld klji0l . (8)

Here Xil ­ kijll represents the (symmetrized) unitar
transformation matrix that connects the short-ran
basis jll ; jssa, sbdSsia, ibdIFMl with the asymptotic
hyperfine basis jil ; jssa, iadfassb , ibdfbFMl. In a
different implementation of the energy-dependent FT th
used previously, we choosél to be a weighted average o
the channel energieśi appropriate for eigenchanneljll,
namely, aś l ;

P
i ´ijkijllj2. Finally, steps 1–3 above

determineSphys. (A qualitative analysis having some
features in common with our FT was recently propos
[18]. In that work, however, theR matrix was trans-
formed at a specific radius, rather thanKsr , which is less
accurate becauseR is more energy dependent thanKsr .)

The FT approximation in Fig. 1 reproduces the ener
dependence of the85Rb elastic cross section over 50 mK
except for an error of,1.4 mK in the zero-field Feshbach
resonance energy. The FT differs from our “exac
FEM R-matrix results by less than 2% atE ­ 50 mK.
In tests conducted for calculations of inelastic rate
the FT seems to remain quite accurate, except wh
destructive interference reduces their values to less t
,10213 cm3ysec, as in87Rb.

The energies and widths of Feshbach resonances
arise in the presence of an applied magnetic field a
also predicted by this approximation. A straightforwar
generalization of the FT (8), which includes the addition
rotation into asymptotic dissociation channels obtained
diagonalizing the atomic Zeeman Hamiltonian, predic
the Na and Rb resonances observed [4,5], at magn
field values within 5% of their more accurate FEM
R-matrix resonance positions, and with comparab
widths. Still better results emerge if a constant couple
channel K matrix determined atB ­ 0 and at lowest
hyperfine threshold is used, without resorting to th
kfafbjSIl FT [Eq. (8)]: The field values of the23Na reso-
nances (853 G, 907 G), and of the85Rb resonances (164 G
[5]), are in error (relative to FEMR matrix) by less than
2%. We stress that essentially exact agreement with
FEM calculations are obtained ifKsr is interpolated versus
3358
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B. [It may be of interest that, for23Na, the difference
between elastic23Na scattering lengths forfa ­ 1, fb ­
1 collisions is asF ­ 2d 2 asF ­ 0d . 5.3 a.u., while
their average is.52 a.u., after the Na potentials are
revised to achieve consistency with the resonance positi
observed by Ref. [4].]

In summary, we have presented a fully develope
MQDT theory applicable to cold collisions of alkali
atoms that improves upon existing techniques by orde
of magnitude in efficiency. The theory parametrizes th
main energy and field dependences ofSphys, in terms
of four “standard” long-range MQDT parametersA, G ,
h, and b. The last quantity required,Ksr , contains the
entire multichannel nature of the physics, but depen
weakly on energy and field. In many casesKsr is
represented solely in terms of single-channel paramet
plus a recoupling matrix, while still producing quantitativ
results. The treatment yields similar efficiency gain
when implemented for photoassociation calculations.
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