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Multichannel Cold Collisions: Simple Dependences on Energy and Magnetic Field
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The scattering matrices needed to describe cold collision processes are shown to have a simple
dependence on energy and magnetic field, controlled by single-channel dynamics in the appropriate
long-range field. A frame transformation describes the energy and field dependences entirely in
terms of a standard recoupling matrix and single-channel parameters, giving adequate accuracy for
many systems. The formulas in this paper should permit experimentalists to reproduce the results
of hitherto complicated coupled channels calculations, through small, simple matrix manipulations.
[S0031-9007(98)07406-7]

PACS numbers: 34.50.Pi, 32.80.Pj

Ultralow energy elastic and inelastic collisions play aby manipulation of small matrices with the formulas pre-
crucial role in the theoretical description of Bose-Einsteinsented below. The capability of MQDT formulations to
condensates (BECs). Atom-atom scattering lengths cordescribe multichannel observables relating to photoab-
trol the rate of formation, the size, and to some extensorption and collisions is well known, and it has already
the shape of single- and multiple-component condensatebeen applied to cold collisions by other groups [9—11].
while inelastic rate constants can control the trap life-Two key developments are described in this Letter:
times. The field-free scattering lengths are now knowr(i) A new standardization of the long-range field proper-
reasonably well for several alkali atom pairs, and manytiesleads to a particularly compact representation of wave
field-dependent scattering observables have been detdunctions in the largeR region dominated by the usual
mined through fruitful collaborations between experimentmultipole expansion. The long-range potential typically
and theory [1-3]. has the formV'"(R) = —% — % - %, but other long-

Moreover, the recent observation of Feshbach resaange potentials can be similarly included, e.g., when re-
nances in**Na [4] and ®*Rb [5] suggests the exciting tardation effects are important. (i) Aecoupling frame
possibility of atunableeffective interaction in BECs, and transformation (FT)approximation provides an adequate
dramatizes the need for a simpler theoretical frameworkdescription of the physical scattering matr§e"* for
Until now the theoretical community has primarily re- many problems. When this approximation is valid, it per-
sorted to brute force numerical solutions of the multichanmits a complete determination §f"Y* in terms of single-
nel close-coupling equations [1-3] in order to derive thechannel quantities (like singlet and triplet scattering phase
relevant scattering information. The coupled equationshifts) and a standard angular momentum recoupling co-
are integrated out to internuclear distand@sof order efficientX;,.
10°-10* a.u., for each collision energig and magnetic Crucially, the frame transformation includes energeti-
field B of interest, which can become inordinately time cally closed channels as in previous MQDT studies [6],
and resource consuming. which distinguishes our FT from a related class of ap-

The techniques of multichannel spectroscopy provide @roximations (notably the degenerate internal states
powerful yet simple theoretical description of multichannelmethod [12], or equivalently the adiabatic nuclei method
collisions and half-collisions, in contexts such as Rydberd13] of electron-molecule scattering theory). The
electron motion [6] in the field of a structured ionic core. strongest variations of th6 matrix with E and B are
This approach has its origins in Seaton’s [7] multichannelssociated with single-channel Schrédinger wave prop-
quantum defect theory (MQDT), and in multichannelerties in the long-range field, or by Feshbach or shape
effective range theory [8]. When suitably generalized toresonances. These energy dependences emerge explicitly
different long-range fields that arise in a two-body frag-in terms of the standardized long-range field parameters
mentation channel, these methods can provide compadtientified under point (i) above.
guantitatively accurate theoretical descriptions of ex- In multichannel spectroscopy, the key idea is to express
tremely complex observables. scattering observables in terms of a real, linearly indepen-

This Letter presents a fully developed theoretical de-dent base paiff°, g°), which obey the radial Schrédinger
scription of two-body ground state alkali-atom collisions. equation in the long-range field, with boundary condi-
All of the system-specific scattering information at low tions chosen such that they are smooth, analytic func-
energies is contained in a weakly energy-dependent shotions of energy. A convenient, exact representation of
range reaction matriX*", which can be easily converted (f°, g% utilizes the amplitudex(R) in the Milne [14]
into physical quantum mechanical scattering amplitudephase-amplitude method [15]:
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o 21 . R 4R! tion. The solution matrix still has components in energeti-
(e, l,R) = — a(R) sin f 2[R + b, cally closed channels, but this method will usually work
R (1) bestif all channels included & = R, are still “locally
2u R dr’ open,” i.e., withk2(R) > 0.
0 R el d _en ) . ,
g'(e,l,R) = = “(R)C(){f]e 22(R') +thi. The representation of cold-collision properties pre-

sented in this paper can serve two different communities.
First of all, it can be of use to theorists who want to speed
up the solution of coupled equations, and who want to
P 2 1 2P\ — ~ " convey the maximum amount of information when tabu-
a"(R) + 5(1(53“(1{) o @(R)" where k*(R) = 2pule lating results. Second, it can be useful to experimentalists
V"(R) — 7.z7]- Application of WKB-style bound- and other theorists interested primarily in the low-energy
ary conditions at some small fixed radiw (10 a.u. scattering amplitudes for a range Bfand/orB. Specifi-

The Milne amplitudea(R), which depends om and on
the energye, obeys a nonlinear differential equation,

here), namely, a(Ry) = k(R,)™'? and a'(R,) = cally, if theorists tabulate the short-range reaction matrix
R [k(R,)~'/?], is not “strictly necessary,” but gives K* at one energy, typically at a collision threshold, this
optimal smoothness [15] af(R) in £ andR. is enough information to reconstruct many different scat-

The energy-independenphase shifth; in Eq. (1) is tering observables over a large rangeffand B. The
introduced here for the first time. It standardizes the low{ollowing steps are needed to extract the physical scatter-
energy asymptotic structure 6f°, g°) and simplifies the ing matrix from such a tabulated matrkc" .
use of parameters calculated using different long-range Step 1: Elimination of energetically closed channels.
potentials. This is useful, for instance, when collisionPartition channels int&/, open channels (those channels
properties must be calculated at many different values of € P, for which ¢; = E — E; > 0) and N. closed
the van der Waals coefficiefi. Our new standardization channels { € Q, for whiche; = E — E; < 0). In this
of long-range solutions amounts to a choicebpfsuch  notation,K* becomes
that f%(e = 0,1,R) — constX R'*!, asR — . In the . .
case ofS-wave scattering, this amounts to demanding K — K;f;P Kgg )
that the “comparison solutionf°(e, ! = 0, R) itself has - Kor Koo)'
vanishing scattering lengtin the limit & — 0. Unlike o oynonentially growing parts of the wave functions at
other quantum defect analyses [7,9-11,15], we have nQf _, o, 5re next “eliminated” in the MQDT sense, through

. ; 0 0 S
specified tge kgehaworcﬁﬁ‘ ,8")atR — 0. Thisissimply e following equation which shows the potentially reso-
becausé f°, g°) are never used there—they are used only, .« influence of closed-channel pathways:

to describe the larg®- solutions, typically aR = 35 a.u.

Standard multichannel scattering techniques integrate a K =K3p — K3o(Kyo +tanB) 'K5p.  (3)

set of N = N, = N, coupled Schrédinger equations out- . o . - . .
ward from the origin to some large internuclear distanceThe resulting mO'dIerd reaction matri has dimension
» X N,. The diagonal matrix of closed-channel phase

Rnuge, Where scattering boundary conditions are applie e 5 . -
in the N, open channels and exponential growth is elimi_parametergﬁ o fo dR/a*(R) + b, gives the coefficient

nated in theN, closed channels. We propose a simplel15] of the rising exponential fof(R) (proportional to
modification: instead of integrating the coupled equation$in8i), and forg; (R) (proportional to— cosg;). Should

out to 10* a.u. where the long-range potentidl*(R) is all channels be closed, discrete bound states occur at roots
negligible, we now integrate them outward to a distanceéf de(Kpo + tang) = 0. _

Ry or order 30—60 a.u., beyond which exchange vanishes. Step 2:  Transformation to an energy-normalized,
TheN X N solution matrixM(R) at a total energy can  nonanalytic long-range representatidif, g). —We ulti-

then be written, in an asymptotic channel representatioriately desire a scattering solution normalizedstd —

as a linear combination off’, ¢%) at all radii R = R,.  E')- Three long-range field parametetsg. n are rele-
Heref? andg? are diagonal matrices in the channel spaceYant to this transformation, which can be written as
evaluated at the appropriate channel energy E — E;, F(R) A 0 FOR)

where E; is the dissociation threshold energy, ahds ( ) = ( 1 Z )( 0 ) (4)
the relevant orbital momentum in ttith channel. N lin- §(R) —AG A g°(R)

early independent solutions (regularfit= 0) that obey At R — o, (£, g) are phase shifted relative to spherical
standing wave boundary conditions form the successivBessel solutions:

columns ofM(R); beyondRy, M(R) is characterized b

a “smooth, short-range reaction matrix™' that variesy f(R) — kR\2u/ 7k j(kR) cosn — n;(kR)sinn],

slowly with E or B except near isolated poles. These T L

independent solutions are standardized to have the foIIoWg—(R) = kRV2p/mk[ji(kR)sinn — mi(kR) cosn],
ing form: M(R) = f°(R) — g°(R)K*", whereM;;(R) is  with k = \/2ue. The standardized single-channel long-
the ith channel component of thih independent solu- range field parameterd(e,!), G(,le), n(e, 1) at € > 0,

R1—

(5)
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along with the phase3(e,l) at ¢ < 0, are calculated 1071 .
for the relevant long-range potential in each channel F _ MaDT A
following the basic procedure described previously in [ - FT 00
Ref. [15], modified only by the new standardization g

condition above involving the constant shiff. In the 1072 o
following expressions{A, G, n} are diagonal matrices in ™ p 20,5 ' 40

\

-10 - g/ ]

<Q

Lol ol

=1 . 20 18
channel space. AW, X N, real, symmetric, “energy- g
normalized” reaction matrix in thef, g) representationis _~

. . [

obtained using [9] © g+
K=A"K"+g)'a” (6)
This is still not quite the “physical” reaction matrix
KP"ys of conventional scattering theory owing to the

|
AL

20.0 30.0

-16 L I

40.0 50.0

phase shifty(e, 1) of (f, g) relative to(j;,n;) atR — oo, 0.0 10.0

NeverthelessK possesses other properties expected in Energy (mK)

kP, Su.Ch as the Wigner threshollqul/azehawor Which g1 1. Elastics-wave partial cross section for the collision

reflected in the dependendée, /) ~ & ase — 0. of two 5 Rb atoms in theif2, —2) atomic hyperfine states. The
Step 3: Form the physical scattering matrixThe  feature near 29 mK is the zero-field version of the Feshbach

final matrix manipulation needed is resonance [5]. Solid curve: an MQDT calculation using a

) constantK®, which is indistinguishable on this scale from a
PR 1 +iK el @) highly accurate FEMR-matrix calculation. Dashed line: the FT
1 -k approximation. Inset: The four long-range QDT parameters, as
. . . e . . functions of the parameter defined in the text, which coincide
From this expression, it is possible to extract inelasticon this scale for identical-atom collisions of Na, K, or Rb.
scattering cross sections or rate constants, and elastic

scattering cross sections, in the usual manner. When the
scattering length in channels desired, it is the threshold  Figure 1 shows a calculation of thg&-wave elastic
limit &; — 0 of the quantitya; = —(S5™ — 1)/2ik;,  scattering cross sectiarf! for two $5Rb atoms in the same
providedl; = 0. | fama) = | fomp) = |2, —2) atomic hyperfine states. The
The long-range field parameterd(e,l), G(e,l), solid line represents the cross section calculated with a
n(e, 1), and B(e, 1) can be tabulated once and for all asconstantshort-range reaction matriX*" via steps 1-
functions of the single parametgr= (2u)*Cee?, ina.u. 3 above. It is indistinguishable from the “essentially
This scaling isstrictly valid only for a pure van der Waals exact” cross section derived from a finite element (FEM)
long-range potential, but in practice it still holds to a good[17] R-matrix [6] solution of the coupled Schrédinger
approximation even for the above form &f*(R) with  equations, as implemented in our previous work [3]. The
additional Cg and Cyo terms. Our standardization of the MQDT results quantitatively reproduedl features of this
zero-energy scattering length ¢f(r) leads to one major spectrum, with &** computed from the coupled equations
benefit: the long-range parameters are almost independea the single energy E = 0. This excellent agreement
of the Cg, Cyp terms. When tabulated as functions of over an extended energy range confirms fiétis weakly
the parametery they are nearly atom independent for energy dependent. The calculation using a conskant
the cases we have explored numerically (see the inset ohatrix also predicts the energy of the zero-field Feshbach
Fig. 1). Additional details about these parameters will beresonance [5] (near 30 mK) to within 0.1 mK. The small
published separately, but for now a table for their valuesshift in the resonance position indicates th#&f is not
sufficient to reproduce, e.g., tifewave scattering calcu- strictly constant over this energy range. Effects associated
lations shown in this paper, can be found in Ref. [16].  with this slight energy dependence can be incorporated
We have verified that no accuracy is lost in calculatedby interpolation ofK*' after it is tabulated on a coarse
elastic and inelastic cross sections when the multichannenergy grid. (See Ref. [6] for a discussion of practical
solutions are represented beyone= ry by the semiana- considerations relevant to such interpolations.) Figure 1
lytic long-range reference functior(g‘?,g?), rather than exemplifies the usefulness of tabulating results in terms of
by brute force numerical solution. More to the point, theK*. Whereas the zero-energy scattering lenggnovides
resulting calculated reaction matriX*" hardly changes a useful approximation for the elastic scattering cross
over an energy range of 10-100 mK. The readesectiono = 8wa? only for collision energies belok ~
interested in seeing an implementation of the quantum wK in®Rb, the short-range reaction matkx" provides
defect calculation can find in Ref. [16] MATHEMATICA guantitative information over tens of mK, the entire range
notebook that implements steps 1-3 above for an energyelevant to cold collision physics.
independentk*™ matrix for 3Rb*Rb, and reproduces  The theory presented above still requires integration of
Fig. 1. coupled channel equations to obtakft". However, in
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cold alkali collisions the dominant spin exchange couplingB. [It may be of interest that, foNa, the difference
interaction is localized in the rang® ~ 25 a.u. To between elasti®Na scattering lengths fof, = 1, f, =

a good approximation the atoms move Rt< 20 a.u. 1 collisions isa(F = 2) — a(F = 0) = 5.3 a.u., while

in a set of uncoupled channels, labeled by their totatheir average is=52 a.u., after the Na potentials are
electronic spin quantum numbgr We thus integrate the revised to achieve consistency with the resonance positions
single-channelSchrédinger equations with all hyperfine observed by Ref. [4].]

interactionsomitted,and then match each solution to the In summary, we have presented a fully developed
energy-analytic base pdir?, ¢°) to obtain singletS = 0) MQDT theory applicable to cold collisions of alkali
and triplet(S = 1) quantum defectg.s (¢). The short- atoms that improves upon existing techniques by orders
range reaction matrix is then approximated by the energysf magnitude in efficiency. The theory parametrizes the

dependent frame transformation formula main energy and field dependences S, in terms
of four “standard” long-range MQDT parametefs G,
o= D (A ana ui(E2) (Ali"). (8) =, andB. The last quantity requiredk™, contains the
X entire multichannel nature of the physics, but depends

Here X;, = (ilA) represents the (symmetrized) unitary Weakly on energy and field. In many cas@és’ is
transformation matrix that connects the short-rangd€Presented solely in terms of single-channel parameters
basis |A) = |(sa, 55)S(iu, is)IFM) with the asymptotic plus a recoupling matrix, whlle stllllprpducmg quanntatl\_/e
hyperfine basis |i) = |(saia)fal(sy, is)fsFM). In a results_. The treatment yields S|m|!ar eff|C|enc;y gains
different implementation of the energy-dependent FT tha'nen implemented for photoassociation calculations.
used previously, we choogg to be a weighted average of _ We acknowledge support from the National Science
the channel energies appropriate for eigenchannbl), Foundation, a}nd helpful discussions with M. Cavagnero,
namely, ass, = 3., &]1(i|A)2. Finally, steps 1-3 above B0 Gao, F. Mies, and M. Raoult,
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features in common with our FT was recently proposed
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