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Diffractive Deeply Inelastic Scattering of Hadronic States with Small Transverse Size
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Diffractive deeply inelastic scattering from a hadron is described in terms of diffractive quark
and gluon distributions. If the transverse size of the hadronic state is sufficiently small, these
distributions are calculable using perturbation theory. We present such a calculation and discuss
the underlying dynamics. We comment on the relation between this dynamics and the pattern of
scaling violation observed in the hard diffraction of large-size states at the DEpSdbllider HERA.
[S0031-9007(98)07390-6]
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The data [1,2] from the DES¥p collider HERA on The diffractive parton distributions ai, are not per-
diffractive deeply inelastic scattering can be interpretedurbatively calculable. Nevertheless, one would like to
[2,3] in terms of diffractive parton distribution functions, have some theoretically based insight into their behavior.

dfsi/i\f(f,xp, N To this end, notice that the problem lies with the large
(1) transverse size of the proton. The diffractive parton dis-
dxp dt tributions for a physically small state would, in principle,
This function gives the joint probability per unit¢ to  be perturbatively calculable. Quarkonium, for instance,
find a parton of types in a hadron of typed and to would do. Let us consider a slightly simpler model. Re-
find that the hadron is diffractively scattered. Specifically,place the proton by a special photon that couples only to
the hadron appears in the final state having lost & heavy quark of masi > 1 GeV with ay* coupling.
fraction xp of its longitudinal momentum, witht being  Then the diffractive gluon distribution can be represented
the invariant momentum transfer. The parton, measureih terms of cut Feynman diagrams such as the diagram
at a scaleu, carries a fractioné of the longitudinal shown in Fig. 1. The top part of this diagram represents
momentum of the proton, or a fractioB = ¢/xp of  the operator that defines the modified minimal subtrac-
the total longitudinal momentum transferred from thetion (MS) gluon distribution, as specified in more detail
hadron. Diffractive parton distribution functions [4] are below. The lower part represents the coupling of the pho-
also called “extended fracture functions” in the recentton to the heavyQQ state, which couples again to the
paper [5]. These are closely related to the “fracturediffractively scattered photon in the final state. This is

functions” introduced earlier in [6]. but one of many relevant diagrams.

The experimental results for the diffractive deeply in- In this paper, we investigate this model for the diffrac-

elastic structure functio®s'™ are related to the diffrac- tive gluon and quark distributions, taking the limit —
tive parton distributions by [4,7] 0 in which “pomeron exchange” dominates. Diagrams of
B dfdif{(g,xp,t,ﬂ) ordera? (a_s in Fig. 1_) are the Iowest_order diagrams that

FSit (x, 0%, xp, 1) = Z/ dg L make leading contributions, proportional td/xp)> as

a dxp dt xp — 0. We find that we can take the limif; — 0 inside

X Fu(x/€, 0% u?). (2) the integrals that represent the Feynman diagrams, and ex-

press the sum of the contributing diagrams as a simple

Here the hard scattering functiofi, is the same as ! o X
integral that we can evaluate by numerical integration.

in ordinary deeply inelastic scattering. Note that the
contribution from the diffractive gluon distribution can
be significant in this formula. Althougt, is of order
ay, while F, begins at order?, one may expect that Bpp, B xpp,
diffractive scattering is related to gluon exchange, so ’
that fo/il > fo/. Note also that the diffractive parton
distribution functions depend on a factorization scale
(which is typically set equal t@). The u dependence
of 4 follows from the u dependence off. That
is, the diffractive parton distributions obey the ordinary
perturbative DGLAP evolution equation. Sindé is
known and the evolution is known, the diffractive parton
distributions at a starting scaje, can be determined from FiG. 1. A typical Feynman graph contributing to the diffrac-
the experimental results [2,3]. tive deeply inelastic scattering of the model vector meson.
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We thus obtain an answer for the diffractive gluon andbe its “plus” momentum. The four-momentum transfer
quark distribution functions at a starting scalg = M. g = pa — pa has componentg* = (¢*,q,q). (Note
Evidently, the heavy quark state in the model vectorthat in our notationg is not the virtual photon mo-
meson is not the same as the light quark state in a protomentum, as is usual in the literature.) The diffracted
Nevertheless, since the model is based on non-Abeliahadron can be characterized by the fractional loss of
gauge theory, the qualitative features of the resultindongitudinal momenturmx, = ¢*/p4 and the invariant
diffractive parton distributions may give us hints aboutmomentum transfer = (ps — pa)*. For smallxp, ¢ is
the real world. After giving the formulas that express theapproximately given by = —q?.
solution of the model, we explore these qualitative features. Consider the definition of the diffractive parton distri-
Consider diffractive deeply inelastic scattering of abutions in terms of matrix elements of bilocal field opera-
hadronA. Let (py,s4) and(pa, sa) denote the momen- tors [4]. This is the same definition [8] as for inclusive
tum and spin of the incident and the diffracted hadronparton distributions except that one requires that the final
Let us work in a frame in which the incident hadron is state include the diffractively scattered hadron. For glu-
boosted along the positive light-cone direction andplgt | ons one has

dfgfaExptop) 1 ]
— dy e i€py” 54l Fa(0,97,0) ™ | par, sy X
o di mﬂ%m Z Ve émm<y )" pary w3 X)
X <pA’»SA'7X|Fa(O)V |pA’ SA>’ (3)

Where}N«“a(O,y‘,O)” is the field strength operator modified by multiplication by an exponential of a line integral of the
vector potential:

Fa(0,y~, 004" = [TGXP<igf dx—Ai(O,x‘,O)tcﬂ Fp(0,y7,0)4". (4)
- ab
The symbol? denotes path ordering of the exponential. The matricas Eq. (4) are the generators of the adjoint
representation of SU(3). The operator product in Eq. (3) has ultraviolet divergences. It is understood that these are
renormalized at the scaje using theMS prescription.
Similarly, for quarks of typg one has

Affin (& xp o) 1 f
dy e i€pay” , 0,y7,0)| par, sa; X
T M#MZZ yTeT T 3 (pasald 0y, Olpa s Xy

X <pA/7SA”X|q](0)IpAaSA>7 (5)

whereg;(0,y~,0) is given by us examine leading-power contributions ip. These
contributions first appear in perturbation theory in graphs
~ _ Y of the same order as the one shown in Fig. 1. We
q;0,y7,0) = | Pexpig | dx A (0,x7,0)z study the full set of graphs at this order. To perform
X g0,y 0; (©6) this study, we use the light cone gauge = 0. A
;Y >0 discussion of the gauge choice and the details of our
with z. being the generators of the fundamental represeranalysis will be given elsewhere [9]. Here we limit
tation of SU(3). ourselves to reporting the main results and discussing their
Consider now the case in whichis a photon coupling implications. To the leading power it} we find that the
to heavy quarks, as discussed above. Let us considematrix elements (3) and (5) can be written in the following
small longitudinal momentum transfers, < 1, and let | form (@ = ¢q, g):

VBt M) 1 LS [ o P )
prd[ 6477'2 2 = (277-)2 Z(q + S)2 (277_)2 S/Q(q + S,)2 q,S, M, g,

X Ua(xp,,B,q,s,s')L(q,s,M,s,s). (7)

This result can be interpreted in terms of graphs Wkthgluon propagators. The fact@r comes from the color-
exchange of two gluons in a color-singlet state (such asinglet projection of the two-gluon irreducible amplitude
the one depicted in Fig. 1). 1A~ = 0 gauge, only such associated with the insertion of the operators in Egs. (3)
graphs contribute leading power termsxgs— 0. The and (5). The factord describe the coupling of the two
denominators in the first line of Eq. (7) come from thegluons to the incoming quark-antiquark system.
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More precisely, the functiong, have the form Fora = ¢, the functionys has the following expression in
, gic, d*k terms of the2 X 2 Paulio matrices:
Ua(x[P’B’q’SvS) = 2 P
47 B0 — Bxp ) Q2m) / = 2
X Tr[ua(ﬂ’k9q’s )ua(ﬂ’kyqas)(]S-) ]70[1 'P) = ﬁkz + (1 — B)p2p g. ( )
Here c, is the color factor and is given for quarks and For a = g, the functiony is expressed in terms of two
gluons by transverse vector indicésj = 1,2 as
cg = CFNey,  cg = C3(N2 —1). (9)

29ij _ i
The functionu, can be written as Wil (K, p) = Bk ‘1]2 i 251_ :3)1; p’
ug = a(K,K) — ¢o(k,k + s) B (1-pB)p
+ .k, kK — q) — ¢y, (k,k — q —s). (10) | The functionsL in Eg. (7) are given by

(12)

eZQezg2 d*r 1
L(q,s,M,e, &) = 5 f dzTr{[-®t(z,r +s + zq,M,&') — ®T(z,r —s — (1 — 2)q, M, &)
4 2m)? Jo
+ @ (z,r + 2q,M, &) + ®T(z,r — (1 = 2)q, M, ")]P(z,x, M, &)},
(13)
where ¢p is the quark electric charge in units ef= | The only explicit 8 dependence in this integrand, in
Va4ma and particular, is contained in the functioi,. Inspection of
1 Egs. (8)—(12) shows that, f@@ — 0, the quark and gluon
D(z,k, M, ) = 7(1(2 T M) [(1-2)e -0k 0o Green'’s functions behave, respectively,la§~ consp’
. andU, ~ consp~!. For B — 1, the functionsU, have
—zk-oe-otiMe-ol, g constant behavigl — B)° at finite g2, s, ands’?.
(14) We now evaluate the diffractive distributions by per-
with £ ande’ being the initial and final photon transverse forming numerically the integrations (7), (8), (13). In
polarizations. Fig. 2 we report the results by plotting tiedependence

In Eqg. (7), the Green’s function&, are universal: as
long as the diffracted system is small enough that lowest
order perturbation theory applies, these functions control — 7T
the scattering. The dependence on the specific diffracted i
system is contained in the functioids In Ref. [9], we
will utilize a selection of hadronic functions.

The explicit form of the Green’s functior/, is
given in Egs. (8)—(12). In the framework of -ordered

10

perturbation theory, the functiogr in Eq. (10) can be 10 E

interpreted as the wave function for an effective quark | dotted: q/M=0.2 \

or gluon state created by the operator in Egs. (3) or (5). " dashed: q/M=1 ‘ 1

(Here the line integral o ™ in Egs. (4) and (6) represents 107 dotdash: q/M=2 | -
o | | | | I

the interaction of an effective infinite-momentum parton -
with the gluon field.) The wave function description is [
natural in approaches that look at diffractive scattering
in a frame in which this quark or gluon system has
large “minus” momentum [9-12]. Note that each of
the terms in Eqg. (10) would give rise to an ultraviolet-
divergent integration ovek in Eq. (8), but that the bad
behavior cancels among the terms. This is beckdser

o corresponds to the partons being at the same transverse

1
=y
I

1071

107°}

position. But since the net color of the state is zero, the 1073}
coupling of the state to gluons vanishes in this limit. :

At the leading power level, the, dependence of 10® 100 10°
the diffractive parton distributions is given simply by B8/(1-8)

2
the overall factorl/xj, that we have factored from the _ ., . 3 dependence of the gluon (above) and

: : 2
integral in Eq. (8). Thes and: (or q°) dependences, guark (below) diffractive distributions for different values
on the other hand, are nontrivial and come from theof > = |7|. The rescaled distributionsg, are defined as

factors in the integrand in the right-hand side of Eq. (7).1.(B8.q*/M?) = x2M*[df5) /(dxpdt)]/(aeh ).
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FIG. 3. Q2 evolution of tt;e diffractive singlet quark distribu-
tion 3(B,0%) = N3, [o dq>dfsi /(dxp dr), where N =

/A "
xﬂ%/(aze‘éaj) and the sum runs ovgr= {u,i,d,d,...}.

of the quark and gluon diffractive distributions for dif-
ferent values ofq. To emphasize the regions of small
B and largeB we make a logarithmic plot in the vari-
able 8/(1 — B). The curves in Fig. 2 reflect the behav-
ior of the functionsU, discussed above. In particular, as
B — 1 theq # 0 distributions have a constant behavior.

The asymptotic constants, on the other hand, are small
compared to the values of the distributions at intermediate

B. Correspondingly, the diffractive distributions fall off
as one approaches the smdll— B) region. Note that
the gluon distribution is much larger than the quark distri-
bution. Roughly, the different order of magnitude is ac-
counted for by the color factors in Eq. (?),/c, = 27/2.
The calculation described so far does not have scalin

violation. One may interpret the results above as a model

for the diffractive distribution functions at a scale of order

M? and study the scale dependence due to renormalization

group evolution. In Fig. 3 we report the result of using
the ordinary evolution equations for the evolution of the
initial distributions up to different values a®?. In this

figure we plot the flavor-singlet quark distribution. In
Iegging order this is proportional to the structure function
FO

mass to beDi = M? = 2 Ge\? (about the charm quark

mass squared) and we have integrated the distributions

df$iy /ldxpdt] overt = —q? from 0 to M>.

Here we have assumed the initial scale and the

In particular, one of the most peculiar features of the
HERA data [1,2] is the striking difference in th@’ evo-
lution between the diffractive and the inclusive structure
functions. In our calculation, the diffractive quark distri-
bution grows withQ? at low 8 and decreases at high
(Fig. 3). The stability point at which the behavior changes
is B = 0.5. Thisis in striking contrast with the case of the
inclusive quark distribution in a proton, for which the sta-
bility point is atx = 0.08, but is in qualitative agreement
with the behavior found in the HERA experiments. The
explanation for growth in the quark distribution up to such
large values of3 in the diffractive case is that the initial
gluon distribution (Fig. 2) is large even at large values of
B. As Q?increases, the gluons feed the quark distribution
through the splittingg — ¢g.
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