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Diffractive Deeply Inelastic Scattering of Hadronic States with Small Transverse Size
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Diffractive deeply inelastic scattering from a hadron is described in terms of diffractive quark
and gluon distributions. If the transverse size of the hadronic state is sufficiently small, these
distributions are calculable using perturbation theory. We present such a calculation and discuss
the underlying dynamics. We comment on the relation between this dynamics and the pattern of
scaling violation observed in the hard diffraction of large-size states at the DESYep collider HERA.
[S0031-9007(98)07390-6]
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The data [1,2] from the DESYep collider HERA on
diffractive deeply inelastic scattering can be interprete
[2,3] in terms of diffractive parton distribution functions,

dfdiff
ayA sj, x…, t, md

dx… dt
. (1)

This function gives the joint probability per unitdj to
find a parton of typea in a hadron of typeA and to
find that the hadron is diffractively scattered. Specificall
the hadron appears in the final state having lost
fraction x… of its longitudinal momentum, witht being
the invariant momentum transfer. The parton, measur
at a scalem, carries a fractionj of the longitudinal
momentum of the proton, or a fractionb ­ jyx… of
the total longitudinal momentum transferred from th
hadron. Diffractive parton distribution functions [4] are
also called “extended fracture functions” in the rece
paper [5]. These are closely related to the “fractu
functions” introduced earlier in [6].

The experimental results for the diffractive deeply in
elastic structure functionFdiff

2 are related to the diffrac-
tive parton distributions by [4,7]

Fdiff
2 sx, Q2, x…, td ­

X
a

Z
dj

dfdiff
ayA sj, x…, t, md

dx… dt

3 F̂asxyj, Q2ym2d. (2)

Here the hard scattering function̂Fa is the same as
in ordinary deeply inelastic scattering. Note that th
contribution from the diffractive gluon distribution can
be significant in this formula. AlthougĥFg is of order
as, while F̂q begins at ordera0

s , one may expect that
diffractive scattering is related to gluon exchange,
that fdiff

gyA ¿ fdiff
qyA . Note also that the diffractive parton

distribution functions depend on a factorization scalem

(which is typically set equal toQ). The m dependence
of fdiff follows from the m dependence ofF̂. That
is, the diffractive parton distributions obey the ordinar
perturbative DGLAP evolution equation. SincêF is
known and the evolution is known, the diffractive parto
distributions at a starting scalem0 can be determined from
the experimental results [2,3].
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The diffractive parton distributions atm0 are not per-
turbatively calculable. Nevertheless, one would like
have some theoretically based insight into their behavi
To this end, notice that the problem lies with the larg
transverse size of the proton. The diffractive parton d
tributions for a physically small state would, in principle
be perturbatively calculable. Quarkonium, for instanc
would do. Let us consider a slightly simpler model. Re
place the proton by a special photon that couples only
a heavy quark of massM ¿ 1 GeV with agm coupling.
Then the diffractive gluon distribution can be represent
in terms of cut Feynman diagrams such as the diagr
shown in Fig. 1. The top part of this diagram represen
the operator that defines the modified minimal subtra
tion (MS ) gluon distribution, as specified in more deta
below. The lower part represents the coupling of the ph
ton to the heavyQQ̄ state, which couples again to the
diffractively scattered photon in the final state. This
but one of many relevant diagrams.

In this paper, we investigate this model for the diffrac
tive gluon and quark distributions, taking the limitx… !
0 in which “pomeron exchange” dominates. Diagrams
ordera4

s (as in Fig. 1) are the lowest order diagrams th
make leading contributions, proportional tos1yx…d2 as
x… ! 0. We find that we can take the limitx… ! 0 inside
the integrals that represent the Feynman diagrams, and
press the sum of the contributing diagrams as a sim
integral that we can evaluate by numerical integratio

FIG. 1. A typical Feynman graph contributing to the diffrac
tive deeply inelastic scattering of the model vector meson.
© 1998 The American Physical Society 3333
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We thus obtain an answer for the diffractive gluon a
quark distribution functions at a starting scalem0 ø M.

Evidently, the heavy quark state in the model vec
meson is not the same as the light quark state in a pro
Nevertheless, since the model is based on non-Abe
gauge theory, the qualitative features of the result
diffractive parton distributions may give us hints abo
the real world. After giving the formulas that express t
solution of the model, we explore these qualitative featur

Consider diffractive deeply inelastic scattering of
hadronA. Let spA, sAd and spA0 , sA0d denote the momen-
tum and spin of the incident and the diffracted hadro
Let us work in a frame in which the incident hadron
boosted along the positive light-cone direction and letp1

A
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be its “plus” momentum. The four-momentum transfe
q ; pA 2 pA0 has componentsqm ­ sq1, q2, qd. (Note
that in our notationq is not the virtual photon mo-
mentum, as is usual in the literature.) The diffracted
hadron can be characterized by the fractional loss o
longitudinal momentumx… ­ q1yp1

A and the invariant
momentum transfert ­ spA 2 pA0d2. For smallx…, t is
approximately given byt . 2q2.

Consider the definition of the diffractive parton distri-
butions in terms of matrix elements of bilocal field opera
tors [4]. This is the same definition [8] as for inclusive
parton distributions except that one requires that the fin
state include the diffractively scattered hadron. For glu
ons one has
f the

t
ese are
dfdiff
gyA sj, x…, t, md

dx… dt
­

1
16p2

1

2pjp1
A

1
2

X
sA

Z
dy2e2ijp1

A y2
X
X,sA0

kpA, sAjeFas0, y2, 0d1njpA0 , sA0 ; Xl

3 kpA0 , sA0 ; XjeFas0dn
1jpA, sAl , (3)

whereeFas0, y2, 0d1n is the field strength operator modified by multiplication by an exponential of a line integral o
vector potential:

eFas0, y2, 0dmn ­

"
P exp

√
ig

Z `

y2

dx2 A1
c s0, x2, 0dtc

!#
ab

Fbs0, y2, 0dmn . (4)

The symbolP denotes path ordering of the exponential. The matricestc in Eq. (4) are the generators of the adjoin
representation of SU(3). The operator product in Eq. (3) has ultraviolet divergences. It is understood that th
renormalized at the scalem using theMS prescription.

Similarly, for quarks of typej one has

dfdiff
jyA sj, x…, t, md

dx…dt
­

1
16p2

1
4p

1
2

X
sA

Z
dy2e2ijp1

A y2
X

X,sA0

kpA, sAj ˜̄qjs0, y2, 0djpA0 , sA0 ; Xlg1

3 kpA0 , sA0 ; Xjq̃js0djpA, sAl , (5)
hs
e

ur
t
eir

g

whereeqjs0, y2, 0d is given by

eqjs0, y2, 0d ­

"
P exp

√
ig

Z `

y2

dx2 A1
c s0, x2, 0dtc

!#
3 qjs0, y2, 0d , (6)

with tc being the generators of the fundamental represe
tation of SU(3).

Consider now the case in whichA is a photon coupling
to heavy quarks, as discussed above. Let us consi
small longitudinal momentum transfers,x… ø 1, and let
n-

der

us examine leading-power contributions inx…. These
contributions first appear in perturbation theory in grap
of the same order as the one shown in Fig. 1. W
study the full set of graphs at this order. To perform
this study, we use the light cone gaugeA2 ­ 0. A
discussion of the gauge choice and the details of o
analysis will be given elsewhere [9]. Here we limi
ourselves to reporting the main results and discussing th
implications. To the leading power inx… we find that the
matrix elements (3) and (5) can be written in the followin
form (a ­ q, g):
dfdiff
ayA sb, x…, q2, Md

dx… dt
­

1
64p2

1
2

X
´

X
´0

Z d2s
s2pd2

1
s2sq 1 sd2

Z d2s0

s2pd2

1
s02sq 1 s0d2 Lsq, s, M, ´, ´0d

3 Uasx…, b, q, s, s0dLsq, s0, M, ´, ´0 d . (7)
e
(3)
This result can be interpreted in terms of graphs wi
exchange of two gluons in a color-singlet state (such
the one depicted in Fig. 1). InA2 ­ 0 gauge, only such
graphs contribute leading power terms asx… ! 0. The
denominators in the first line of Eq. (7) come from th
th
as

e

gluon propagators. The factorU comes from the color-
singlet projection of the two-gluon irreducible amplitud
associated with the insertion of the operators in Eqs.
and (5). The factorsL describe the coupling of the two
gluons to the incoming quark-antiquark system.
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More precisely, the functionsUa have the form

Uasx…, b, q, s, s0d ­
g4

s ca

4pbs1 2 bdx2
…

Z d2k
s2pd2

3 Trfuy
a sb, k, q, s0duasb, k, q, sdg .

(8)
Here ca is the color factor and is given for quarks an
gluons by

cq ­ C2
FNc, cg ­ C2

AsN2
c 2 1d . (9)

The functionua can be written as
ua ­ cask, kd 2 cask, k 1 sd

1 cask, k 2 qd 2 cask, k 2 q 2 sd . (10)
d

For a ­ q, the functionc has the following expression in
terms of the2 3 2 Paulis matrices:

cqsk, pd ­

p
bs1 2 bdk2

bk2 1 s1 2 bdp2 p ? s . (11)

For a ­ g, the functionc is expressed in terms of two
transverse vector indicesi, j ­ 1, 2 as

c ij
g sk, pd ­

bk2dij 1 2s1 2 bdpipj

bk2 1 s1 2 bdp2 . (12)

The functionsL in Eq. (7) are given by
Lsq, s, M, ´, ´0d ­
e2

Qe2g2
s

4p

Z d2r
s2pd2

Z 1

0
dz Trhf2Fysz, r 1 s 1 zq, M, ´0 d 2 Fysz, r 2 s 2 s1 2 zdq, M, ´0d

1 Fysz, r 1 zq, M, ´0 d 1 Fysz, r 2 s1 2 zdq, M, ´0dgFsz, r, M, ´dj ,
(13)
r-

d

where eQ is the quark electric charge in units ofe ­p
4pa and

Fsz, k, M, ´d ­
1

sk2 1 M2d
fs1 2 zd´ ? sk ? s

2 zk ? s´ ? s 1 iM´ ? sg ,
(14)

with ´ and´0 being the initial and final photon transvers
polarizations.

In Eq. (7), the Green’s functionsUa are universal: as
long as the diffracted system is small enough that lowe
order perturbation theory applies, these functions cont
the scattering. The dependence on the specific diffrac
system is contained in the functionsL. In Ref. [9], we
will utilize a selection of hadronic functionsL.

The explicit form of the Green’s functionUa is
given in Eqs. (8)–(12). In the framework ofx2-ordered
perturbation theory, the functionc in Eq. (10) can be
interpreted as the wave function for an effective qua
or gluon state created by the operator in Eqs. (3) or (
(Here the line integral ofA1 in Eqs. (4) and (6) represents
the interaction of an effective infinite-momentum parto
with the gluon field.) The wave function description i
natural in approaches that look at diffractive scatterin
in a frame in which this quark or gluon system ha
large “minus” momentum [9–12]. Note that each o
the terms in Eq. (10) would give rise to an ultraviole
divergent integration overk in Eq. (8), but that the bad
behavior cancels among the terms. This is becausek2 !
` corresponds to the partons being at the same transve
position. But since the net color of the state is zero, t
coupling of the state to gluons vanishes in this limit.

At the leading power level, thex… dependence of
the diffractive parton distributions is given simply by
the overall factor1yx2

… that we have factored from the
integral in Eq. (8). Theb and t (or q2) dependences,
on the other hand, are nontrivial and come from th
factors in the integrand in the right-hand side of Eq. (7
e
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The only explicit b dependence in this integrand, in
particular, is contained in the functionsUa. Inspection of
Eqs. (8)–(12) shows that, forb ! 0, the quark and gluon
Green’s functions behave, respectively, asUq , constb0

andUg , constb21. For b ! 1, the functionsUa have
a constant behaviors1 2 bd0 at finiteq2, s2, ands02.

We now evaluate the diffractive distributions by pe
forming numerically the integrations (7), (8), (13). In
Fig. 2 we report the results by plotting theb dependence

FIG. 2. The b dependence of the gluon (above) an
quark (below) diffractive distributions for different values
of q2 . jtj. The rescaled distributionsha are defined as
hasb, q2yM2d ­ x2

…M2fdfdiff
ayA ysdx…dtdgysa2e4

Qa4
s d.
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FIG. 3. Q2 evolution of the diffractive singlet quark distribu-
tion Ssb, Q2d ­ N

P
j

RM2

0 dq2 dfdiff
jyA ysdx… dtd, whereN ­

x2
…ysa2e4

Qa4
s d and the sum runs overj ­ hu, ū, d, d̄, . . .j.

of the quark and gluon diffractive distributions for dif-
ferent values ofq. To emphasize the regions of smal
b and largeb we make a logarithmic plot in the vari-
ablebys1 2 bd. The curves in Fig. 2 reflect the behav
ior of the functionsUa discussed above. In particular, a
b ! 1 the q fi 0 distributions have a constant behavior
The asymptotic constants, on the other hand, are sm
compared to the values of the distributions at intermedia
b. Correspondingly, the diffractive distributions fall off
as one approaches the smalls1 2 bd region. Note that
the gluon distribution is much larger than the quark distr
bution. Roughly, the different order of magnitude is ac
counted for by the color factors in Eq. (9),cgycq ­ 27y2.

The calculation described so far does not have scali
violation. One may interpret the results above as a mod
for the diffractive distribution functions at a scale of orde
M2 and study the scale dependence due to renormalizat
group evolution. In Fig. 3 we report the result of usin
the ordinary evolution equations for the evolution of th
initial distributions up to different values ofQ2. In this
figure we plot the flavor-singlet quark distribution. In
leading order this is proportional to the structure functio
Fdiff

2 . Here we have assumed the initial scale and t
mass to beQ2

0 ­ M2 ­ 2 GeV2 (about the charm quark
mass squared) and we have integrated the distributio
dfdiff

ayA yfdx…dtg over t . 2q2 from 0 to M2.
Is there any relation between these calculations and

data from diffractive deeply inelastic scattering at HERA
Obviously, the protons probed in experiments at HER
have a large transverse size, in contrast to the small-s
hadronic state considered in our calculation. Neverth
less, we find, by studying different hadronic wave func
tions [9], that theb behavior as well as the relative size
of the singlet quark and gluon distributions depends on
weakly on the specific nature of the incoming hadron
state. This suggests that qualitative features of the resu
for small-size hadrons may apply with more generality.
3336
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In particular, one of the most peculiar features of th
HERA data [1,2] is the striking difference in theQ2 evo-
lution between the diffractive and the inclusive structure
functions. In our calculation, the diffractive quark distri-
bution grows withQ2 at low b and decreases at highb
(Fig. 3). The stability point at which the behavior change
is b ø 0.5. This is in striking contrast with the case of the
inclusive quark distribution in a proton, for which the sta-
bility point is atx ø 0.08, but is in qualitative agreement
with the behavior found in the HERA experiments. The
explanation for growth in the quark distribution up to such
large values ofb in the diffractive case is that the initial
gluon distribution (Fig. 2) is large even at large values o
b. As Q2 increases, the gluons feed the quark distributio
through the splittingg ! qq̄.
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