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Localization of Waves without Bistability: Worms in Nematic Electroconvection
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A general localization mechanism for waves in dissipative systems is identified that does not require
the bistability of the basic state and the nonlinear plane-wave state. We conjecture that the mechanism
explains the two-dimensional localized wave structures (“worms”) that recently have been observed in
experiments on electroconvection in nematic liquid crystals where the transition to extended waves is
supercritical. The mechanism accounts for the shape of the worms, their propagation direction, and
certain aspects of their interaction. The dynamics of the localized waves can be steady or irregular.
[S0031-9007(98)06560-0]

PACS numbers: 47.20.—k, 47.54.+r, 61.30.Gd

A striking feature observed in a number of pattern-an additional, weakly damped field that is advected by
forming systems with large aspect ratio is the spontaneoutie waves and that in turn affects their growth rate. We
localization or confinement of the pattern to a small partconjecture that such a field arises in the electroconvection
of the system although the system is translationally invarisystem. In support of that we show that the mechanism
ant. Presumably the best studied structures of that typexplains the shape of the worms, their direction of
are the quasi-one-dimensional pulses of traveling wavegropagation, and certain aspects of their interaction.
that have been found in convection in binary mixtures Before the theoretical model is introduced a number of
(e.0., [1]). They have been described theoretically as perfeatures of the experimentally observed worms need to be
turbed solitons (e.g., [2,3]) and as bound pairs of frontsliscussed. Because of the preferred direction associated
[4,5]. Other quasi-one-dimensional localized structuresvith the liquid crystal the system has axial anisotropy.
have been found in Taylor vortex flow [6,7], directional In the regime in question convection arises in the form
solidification [8], cellular flames [9], and in models for of waves that travel at a fixed angle relative to the axis of
parametrically driven waves [10]. anisotropy. Because of reflection symmetry there are four

In two dimensions, localization appears to be harder tsuch directions of propagation (left and right zig, and left
obtain; investigations of binary mixture convection haveand right zag) as indicated in Fig. 1. The worms consist
led only to long-lived, but eventually unstable wave pulseither of a combination of the left-traveling waves or of
[11]. Only recently have truly stable two-dimensional the right-traveling waves.
localized structures been found in parametrically driven According to recent calculations the transition to ex-
surface waves in granular media and in a highly viscousended waves is supercritical in this regime [18]. This is
fluid [12]. In most systems the localized structures arise irconsistent with the experiments, where for larger conduc-
a regime of bistability. In such situations they can often beivity of the liquid crystal extended chaotic waves are ob-
considered as a pair of fronts that are bound to each othaerved to arise supercritically and no indication of a change
by dispersion [4], an additional mode [5], or nonadiabaticto subcritical behavior of these waves is seen [17]. Nev-
effects [13-16]. ertheless, the worms arise already at parameter values at

Very recently [17] a two-dimensional localized wave which the state without convection is stable [19]. In the
state has been found in a system in which the transitiodirection the worms are quite long and their length appears
to the extended waves sipercritical,i.e., in which there  to be somewhat variable. In tiyedirection, however, they
exist no fronts connecting the basic and the nonlinear state.

This rules out the mechanisms of localization mentioned

above. Thus, previous efforts to explain these states turn y h

out to be insufficient [15] and the origin of localization A

has remained quite puzzling. The experiments have been u,
performed in electroconvection of nematic liquid crystals

and due to their appearance the new localized states have u X

been called “worms.”
In this paper we discuss a general mechanism that can B

lead to localization even if the bifurcation to the extendedr|G. 1. Sketch of the orientation of the group velocitiess

waves is supercritical. It is based on the presence dodnd of the directions of advectidn, 5 [cf. Egs. (1)—(3) below].
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are very narrow and their width is fixed. Unless perturbedpblique waves [22]. The equation for the scalar mode
the worms travel only in the direction. In that direction C is obtained by considering the currenis = hy|A[?
the envelope of the worm has a characteristic shape: it risesd jz = hg|B|*> that are due to the advection by the
rapidly to its maximum at one end and decays slowly overespective waves. In addition, damping and diffusion of
the length of the worm. The worm travels toward the endhe modeC is allowed. In the following we first focus on
with the large amplitude (its “head”). the effect ofC and will mostly consider the dispersionless
The worms occur very close to threshold and the bicase in which all coefficients are real.
furcation to the extended traveling waves is supercritical Equations (1)—(3) are solved numerically using a pseu-
[18]. Therefore a set of coupled complex Ginzburg-dospectral code with an integrating-fagtBunge-Kutta
Landau equations is considered. Since in a given devetime-stepping scheme. Figure 2 shows a worm solution
oped worm a single set of zig and zag waves is observedbtained in this way. For illustration purposes it shows
[17] we consider only these two waves. the real part of the quantitye’9™ + Be'9#'* which gives
Within the Ginzburg-Landau equations no sustainedan indication of how this solution would appear in experi-
waves are possible below threshold since all nonlineaments. As in the experiment the convective amplitude is
terms are damping. We extend therefore these equatiofarge at one end of the worm (head) and decays slowly to-
by introducing an additional, weakly damped mode. Thewards the other end. In agreement with the experiments,
motivation for this mode arises from previous work in the worm propagates toward its head.
the context of binary-mixture convection where it was To understand how this localized solution can arise
found by one of the authors that pulses of traveling waveslready below the threshojd = 0 although the transition
can arise even for a supercritical bifurcation if the wavedo extended waves is supercritical, two one-dimensional
advect a mode that feeds back into their growth rate [20]teductions of Egs. (1)—(3) are considered. The long and
In addition, the weak-electrolyte model, which agreesnarrow shape of the worms suggests that the localization
quantitatively with the experiments with respect to themechanisms along and transverse to the worm differ from
linear properties [21], suggests that a charge-carrier modeach other. If one ignores the dependence, Egs. (1)—
becomes slow in the regime in which worms appear [18].(3) reduce to two equations describing standing waves
A minimal model for the advection of a scalar mode bycoupled toC and the worm is replaced by a stationary

zig and zag waves is given by pulse of standing waves. Such a solution is shown
) 5 5 in Fig. 3. It exists because th€ mode enhances the
9 A= —uy VA + uA + boiA + bydjA + 2ady,A  growth rate in the center of the pulse and keeps the

two componentsA and B together. Since the currents

+ fCA — clAPA — glBIPA, (1) generatingC vanish if|A| = |B|, the pulse can exist only

if the two traveling-wave components are shifted with

9B = —up-VB+ uB + b,9’B + byaiB — 2a8§yB respect to each other. The shift is due to the group
velocity in they direction. Thus, the worm disappears

+ fCB — c|BI’B — g|AI’B, (2)  in a saddle-node bifurcation when the group velocity is

reduced below a certain value. The standing-wave pulse
9,C = 5°C — aC + hy - VAP + hy - VIBP. (3) is stable since the production 6fincreases with the shift
* betweemA andB.
The equations for the complex wave amplitudesand For the understanding of the existence and stability

B are the usual complex Ginzburg-Landau equations foff the worm solution in Fig. 2 it is crucial to note
that the standing-wave pulse shown in Fig. 3 arises in

a subcritical bifurcationalthough the bifurcation to the
extended standing (or traveling) waves is supercritical.
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FIG. 2. Gray-scale plot ofAe’94T + Be'9T for a numer-
ically determined worm solution of Egs. (1)—(3) far, = 100 200 50.0

(0.05,0.75), w = —0.025, b, = b, =1, a=0,c=1, g = Position y

05, f=1,a =-002,8 =07, hs = (1,1). The worm trav-

els to the left (toward its head). The envelope of the solutionFIG. 3. Standing-wave pulse in one dimensigndjrection).
reflects the spatial dependence of the madef. Fig. 4(b). Parameter values corresponding to Fig. 2.
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Thus, the standing-wave pulse can exist alreadyufox ~ shows theC field of the worms at the final time of the run.
0 and can coexist with the basic state= B = C = 0. As in the experiment, the worms approach roughly a typi-

The standing-wave pulse can be considered as a buildal distance in the direction and almost travel on “tracks.”
ing block for the worm: in terms of a one-dimensional When u is increased the number of tracks is found to in-
reduction along the: direction the worm can be seen as crease. Figure 4(b) also demonstrates that the localization
a pair of fronts connecting the basic state with doex- mechanism in the direction is much stronger than that in
isting standing-wave-pulse statd-or stability these two thex direction: while all worms have essentially the same
fronts have to exhibit a repulsive interaction. With re-width, they vary substantially in their length. This is ex-
spect to ther direction the zig and the zag making up the pected since the localization in thedirection is achieved
worms are waves traveling in the same direction. Basedia the interaction of fronts, which is very weak and de-
on results for traveling-wave pulses [4,5,23] it is thereforecays exponentially in space. Thus, the time scales over
expected that the fronts can interact (i) via the wave numwhich the worms reach their final length is much longer
ber [4], which is driven by the dispersive terms, and (ii) and perturbations from other worms affect the length more
via the additional mod€ [5,23]. strongly than the width.

If the interaction viaC dominates, a simple connection  So far the waves have been taken dispersionless. In the
between the stability of the traveling-wave pulse (hereexperiments it is found that with increasing conductivity
the worm) and its direction of propagation emerges [5]the worm regime crosses over to a regime characterized by
There is a large peak of at the head and a shallow bursts in the convective amplitude, i.e., patches or blobs of
depression ofC at the tail (cf. Fig. 4). Since positive large amplitude appear and disappear in an irregular fash-
(negative)C enhances (reduces) the local growth rate ofion, and finally a regime of extended convection exhibiting
the convective mode both fronts are pushed to the lefspatiotemporal chaos of patches of zigs, zags, and rectan-
by C. If the worm travels towards its head, the depressiorgles is reached [17]. This suggests that dispersion becomes
at the trailing front will be reduced by the remnantsincreasingly important along this path in parameter space
of the positive peak ahead of it. This is not the caseand indeed the imaginary parts of the coefficients in the
for the leading peak. Thus, the trailing front is pushedGinzburg-Landau equations fer and B (with C elimi-
less to the left than the leading front amounting to anated) increase in this direction [18].
repulsive interaction. For the traveling-wave pulses this Figure 5 shows the result of a run with intermediate
interaction has been determined previously in the limit ofvalues of the imaginary coefficients. The values have been
weak diffusions and dampingx and for widely separated chosen with some guidance from [18]. In this regime
fronts [5]. the worms turn out to be unstable and start to travel

For the present case of fronts in the standing-wave amot only in thex direction but also in the direction.
plitude the corresponding calculation would be considerThe motion in they direction is driven by imbalances
ably more involved. We expect, however, that the saméetween the amplitudes of the zig and the zag component
qualitative picture holds. This would imply that the worm which lead to enhanced advection 6ftowards one or
is stable if it travels towards its head and unstable oththe other lateral sides of the worm. In addition, the
erwise [5]. Indeed the experimentally observed wormsamplitude of the worms grows and decays as indicated
travel towards their heads. It should be noted that suffiby the size of the symbols marking theosition in Fig. 5.
ciently strong dispersion can lead to additional stabiliza-These strong variations in the amplitude may be related to

tion of the worms [23]. the bursting seen in the experiments.
When increasingu < 0 towards u = 0 the width of
the worm and the maximal value 6f remain essentially 200

unchanged, but the worm grows in length. Consequently
the spatial integralN" = [ |A|>dx dy, which corresponds
to a kind of Nusselt number, increases smoothly excef
for a very small jump inN" at the saddle-node bifurca- = 3
tion in which the worm first appears. In a sufficiently £ 100 g
large system, when the threshqld= 0 is surpassed a se-
quence of transitions to more than a single worm occurs
When the worms become long enough to span the whol
system they loose their pronounced head structurecand
becomes independent of

In the experiments the worms exhibit a typical spacing
in they direction which decreases with increasing applied ) o
voltage. To investigate this aspect within Egs. (1)—(3), th&!G. 4. Formation of worms from small random initial con-

¢ | luti tarting f d initial diti ditions. Parameters as in Fig. 2 except far= 0.05 and
emporal evolution starting from random initial conditions ,, “_" 75 .75). (a) y location of the maxima inC as a

is followed. Figure 4(a) gives theposition of the emerg-  function of time. (b)C field for + = 800. Note the depression
ing worms as a function of time far = 0.05. Figure 4(b) of C along the sides and the back of the worms.

Pos

0
0 200 400 600
Time

335



VOLUME 81, NUMBER 2 PHYSICAL REVIEW LETTERS 13JLy 1998

50 L. Kramer and M. Treiber kindly made their results avail-
able prior to publication. This research has been sup-
40 ported by DOE under Grant No. DE-FG02-92ER14303.
o
g 30
3
& 20
>

[1] D. Bensimon, P. Kolodner, and C. Surko, J. Fluid Mech.
217, 441 (1990); P. Kolodner, Phys. Rev. B0, 2731
(1994); J. Niemela, G. Ahlers, and D. Cannell, Phys. Rev.

0 > ‘ Lett. 64, 1365 (1990); W. Barten, M. Licke, M. Kamps,
0 200 400 600 800 and R. Schmitz, Phys. Rev. %, 5662 (1995).
Time [2] O. Thual and S. Fauve, J. Phys. (Pard9) 1829 (1988).

. . ) [3] H. Riecke, Physica (AmsterdarPD, 69 (1996).
FIG. 5. Unsteady motion of wormsy location as a function [4] B. Malomed and A. Nepomnyashchy, Phys. Rev42
of time for uy = (0.05,005), p =005 by =b =1-— 6009 (1990): V. Hakim and Y. Pomeau, Eur. J. Mech. B
035, a=0, c=1+05i, g=05+09i, f=1, a = Suppl.10, 137 (1991)

%g'%zight:o(f).fﬁeh?n:xi(r#ulr)ﬁ nge size of the symbols indicates [5] H. Herrero and H. Riecke, Physica (Amsterda83D, 79
(1995).

[6] R. Wiener and D. McAlister, Phys. Rev. Le#9, 2915
In conclusion, we have introduced an extension to (1992).
the complex Ginzburg-Landau equations for zig and zag[7] A. Groisman and V. Steinberg, Phys. Rev. L&18, 1460
waves that leads in a simple way to localized, wormlike so-  (1997).
lutions although the bifurcation to extended waves is super-[8] A. Simon, J. Bechhoefer, and A. Libchaber, Phys. Rev.
critical. The localization mechanisms differ in theand Lett. 61, 2574 (1988). , i
the y directions: while the worm is spatially homoclinic [ A- Bayliss, B. Matkowsky, and H. Riecke, Physica

. X . . X . (Amsterdam)74D, 1 (1994).
in the y direction, i.e., there is only the basic state as 10] G. Granzow and H. Riecke, Phys. Rev. Lel, 2451

fixed point and the standing-wave pulse represents an ex- ~ (1996): p. Raitt and H. Riecke, Phys. Rev.55, 5448
cursion from it, it is heteroclinic in the direction; i.e., (1997).
it connects the basic state with a nonlinear periodic solup11] K. Lerman, E. Bodenschatz, D. Cannell, and G. Ahlers,
tion—the standing-wave pulse—uvia two fronts. Within Phys. Rev. Lett70, 3572 (1993).
this framework the worms travel towards their end with[12] P. Umbanhowar, F. Melo, and H. Swinney, Nature
larger amplitude, in agreement with experimental observa-  (London) 382 793 (1996); O. Lioubashevski, H. Arbell,
tions. The observed typical spacing between the worms  and J. Fineberg, Phys. Rev. Let6, 3959 (1996).
in the y direction is interpreted as the distance over which13] D. Bensimon, B. Shraiman, and V. Croquette, Phys. Rev.
the advected field” suppresses convection. In addition, A 38, 5461 (1988). ,
the slow decay of” suggests a long memory for the po- 14 H- Sakaguchi and H. Brand, Physica (Amsterdziap,

. . 274 (1996); H. Sakaguchi and H. Brand, Europhys. Lett.
sition of a worm aﬁgr the convection hgs decayed away. 39349 (1997),
This is consistent with recent obser\{atlons (Ref. [_2:_%] INr15] v. Tu, Phys. Rev. B56, R3765 (1997).
[19]). If one assumes that the damping of the additionajyg) . crawford and H. Riecke (to be published).
mode increases with the conductivity the presented modei7] m. Dennin, G. Ahlers, and D. Cannell, Scien2@2, 388
captures qualitatively the experimentally observed change  (1996); M. Dennin, G. Ahlers, and D. Cannell, Phys.
from steady worms to extended spatiotemporal chaos via Rev. Lett. 77, 2475 (1996); M. Dennin, D. Cannell, and
an irregular bursting as the conductivity is increased. Ex-  G. Ahlers, Phys. Rev. B7, 638 (1998).
tended spatiotemporal chaos is obtained when the dampirig8] M. Treiber and L. Kramer, Phys. Rev. E (to be published).
is large and the additional mode can be eliminated [24]. [19] U. Bisang and G. Ahlers, Phys. Rev. Leif, 3061 (1998).

The localization presented here is similar in spirit to[20] H. Riecke, Physica (AmsterdarB)D, 253 (1992).

that found in parity-breaking bifurcations. There the Io—[g} m g@gﬂ?;:ltPQ?’:r'nEfz’t'ol‘séﬂi’b:l)’iiaéggfi)'
calized structures are drift waves embedded in a statiori? ] H Riecke and W.-J Rappel P?lys Rev. Lat5, 4035
ary, spatially periodic state (rather than an unpatterne (1'995)_ T ’ ' '

state) [6,8,9] and the additional field is the wave numq24] M. Treiber, H. Riecke, and L. Kramer (unpublished).

ber of the underlying pattern [25]. . . _[25] H. Riecke and H.-G. Paap, Phys. Rev4B 8605 (1992);
H.R. gratefully acknowledges discussions with B. Caroli, C. Caroli, and S. Fauve, J. Phys. | (Fran2e)
L. Kramer, M. Treiber, Y. Tu, G. Ahlers, and M. Dennin. 281 (1992).

336



