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Localization of Waves without Bistability: Worms in Nematic Electroconvection
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A general localization mechanism for waves in dissipative systems is identified that does not require
the bistability of the basic state and the nonlinear plane-wave state. We conjecture that the mechanism
explains the two-dimensional localized wave structures (“worms”) that recently have been observed in
experiments on electroconvection in nematic liquid crystals where the transition to extended waves is
supercritical. The mechanism accounts for the shape of the worms, their propagation direction, and
certain aspects of their interaction. The dynamics of the localized waves can be steady or irregular
[S0031-9007(98)06560-0]
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A striking feature observed in a number of pattern
forming systems with large aspect ratio is the spontaneo
localization or confinement of the pattern to a small pa
of the system although the system is translationally inva
ant. Presumably the best studied structures of that ty
are the quasi-one-dimensional pulses of traveling wav
that have been found in convection in binary mixture
(e.g., [1]). They have been described theoretically as p
turbed solitons (e.g., [2,3]) and as bound pairs of fron
[4,5]. Other quasi-one-dimensional localized structure
have been found in Taylor vortex flow [6,7], directiona
solidification [8], cellular flames [9], and in models for
parametrically driven waves [10].

In two dimensions, localization appears to be harder
obtain; investigations of binary mixture convection hav
led only to long-lived, but eventually unstable wave pulse
[11]. Only recently have truly stable two-dimensiona
localized structures been found in parametrically drive
surface waves in granular media and in a highly visco
fluid [12]. In most systems the localized structures arise
a regime of bistability. In such situations they can often b
considered as a pair of fronts that are bound to each ot
by dispersion [4], an additional mode [5], or nonadiabat
effects [13–16].

Very recently [17] a two-dimensional localized wave
state has been found in a system in which the transiti
to the extended waves issupercritical,i.e., in which there
exist no fronts connecting the basic and the nonlinear sta
This rules out the mechanisms of localization mentione
above. Thus, previous efforts to explain these states tu
out to be insufficient [15] and the origin of localization
has remained quite puzzling. The experiments have be
performed in electroconvection of nematic liquid crysta
and due to their appearance the new localized states h
been called “worms.”

In this paper we discuss a general mechanism that c
lead to localization even if the bifurcation to the extende
waves is supercritical. It is based on the presence
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an additional, weakly damped field that is advected
the waves and that in turn affects their growth rate. W
conjecture that such a field arises in the electroconvect
system. In support of that we show that the mechanis
explains the shape of the worms, their direction
propagation, and certain aspects of their interaction.

Before the theoretical model is introduced a number
features of the experimentally observed worms need to
discussed. Because of the preferred direction associa
with the liquid crystal the system has axial anisotrop
In the regime in question convection arises in the for
of waves that travel at a fixed angle relative to the axis
anisotropy. Because of reflection symmetry there are fo
such directions of propagation (left and right zig, and le
and right zag) as indicated in Fig. 1. The worms cons
either of a combination of the left-traveling waves or o
the right-traveling waves.

According to recent calculations the transition to ex
tended waves is supercritical in this regime [18]. This
consistent with the experiments, where for larger condu
tivity of the liquid crystal extended chaotic waves are ob
served to arise supercritically and no indication of a chan
to subcritical behavior of these waves is seen [17]. Ne
ertheless, the worms arise already at parameter value
which the state without convection is stable [19]. In thex
direction the worms are quite long and their length appea
to be somewhat variable. In they direction, however, they
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FIG. 1. Sketch of the orientation of the group velocitiesuA,B
and of the directions of advectionhA,B [cf. Eqs. (1)–(3) below].
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are very narrow and their width is fixed. Unless perturbe
the worms travel only in thex direction. In that direction
the envelope of the worm has a characteristic shape: it ris
rapidly to its maximum at one end and decays slowly ov
the length of the worm. The worm travels toward the en
with the large amplitude (its “head”).

The worms occur very close to threshold and the b
furcation to the extended traveling waves is supercritic
[18]. Therefore a set of coupled complex Ginzburg
Landau equations is considered. Since in a given dev
oped worm a single set of zig and zag waves is observ
[17] we consider only these two waves.

Within the Ginzburg-Landau equations no sustaine
waves are possible below threshold since all nonline
terms are damping. We extend therefore these equati
by introducing an additional, weakly damped mode. Th
motivation for this mode arises from previous work in
the context of binary-mixture convection where it wa
found by one of the authors that pulses of traveling wav
can arise even for a supercritical bifurcation if the wave
advect a mode that feeds back into their growth rate [20
In addition, the weak-electrolyte model, which agree
quantitatively with the experiments with respect to th
linear properties [21], suggests that a charge-carrier mo
becomes slow in the regime in which worms appear [18

A minimal model for the advection of a scalar mode b
zig and zag waves is given by

≠tA ­ 2 uA ? =A 1 mA 1 bx≠2
xA 1 by≠2

yA 1 2a≠2
xyA

1 fCA 2 cjAj2A 2 gjBj2A , (1)

≠tB ­ 2 uB ? =B 1 mB 1 bx≠2
xB 1 by≠2

yB 2 2a≠2
xyB

1 fCB 2 cjBj2B 2 gjAj2B , (2)

≠tC ­ d≠2
xC 2 aC 1 hA ? =jAj2 1 hB ? =jBj2. (3)

The equations for the complex wave amplitudesA and
B are the usual complex Ginzburg-Landau equations f

FIG. 2. Gray-scale plot ofAeiqA?r 1 BeiqB?r for a numer-
ically determined worm solution of Eqs. (1)–(3) foruA ­
s0.05, 0.75d, m ­ 20.025, bx ­ by ­ 1, a ­ 0, c ­ 1, g ­
0.5, f ­ 1, a ­ 20.02, d ­ 0.7, hA ­ s1, 1d. The worm trav-
els to the left (toward its head). The envelope of the solutio
reflects the spatial dependence of the modeC (cf. Fig. 4(b).
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oblique waves [22]. The equation for the scalar mod
C is obtained by considering the currentsjA ; hAjAj2

and jB ; hBjBj2 that are due to the advection by th
respective waves. In addition, damping and diffusion
the modeC is allowed. In the following we first focus on
the effect ofC and will mostly consider the dispersionles
case in which all coefficients are real.

Equations (1)–(3) are solved numerically using a pse
dospectral code with an integrating-factoryRunge-Kutta
time-stepping scheme. Figure 2 shows a worm soluti
obtained in this way. For illustration purposes it show
the real part of the quantityAeiqA?r 1 BeiqB?r which gives
an indication of how this solution would appear in exper
ments. As in the experiment the convective amplitude
large at one end of the worm (head) and decays slowly
wards the other end. In agreement with the experimen
the worm propagates toward its head.

To understand how this localized solution can aris
already below the thresholdm ­ 0 although the transition
to extended waves is supercritical, two one-dimension
reductions of Eqs. (1)–(3) are considered. The long a
narrow shape of the worms suggests that the localizat
mechanisms along and transverse to the worm differ fro
each other. If one ignores thex dependence, Eqs. (1)–
(3) reduce to two equations describing standing wav
coupled toC and the worm is replaced by a stationar
pulse of standing waves. Such a solution is show
in Fig. 3. It exists because theC mode enhances the
growth rate in the center of the pulse and keeps t
two componentsA and B together. Since the currents
generatingC vanish if jAj ­ jBj, the pulse can exist only
if the two traveling-wave components are shifted wit
respect to each other. The shift is due to the gro
velocity in the y direction. Thus, the worm disappear
in a saddle-node bifurcation when the group velocity
reduced below a certain value. The standing-wave pu
is stable since the production ofC increases with the shift
betweenA andB.

For the understanding of the existence and stabil
of the worm solution in Fig. 2 it is crucial to note
that the standing-wave pulse shown in Fig. 3 arises
a subcritical bifurcationalthough the bifurcation to the
extended standing (or traveling) waves is supercritic
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FIG. 3. Standing-wave pulse in one dimension (y direction).
Parameter values corresponding to Fig. 2.
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Thus, the standing-wave pulse can exist already form ,

0 and can coexist with the basic stateA ­ B ­ C ­ 0.
The standing-wave pulse can be considered as a bu

ing block for the worm: in terms of a one-dimensiona
reduction along thex direction the worm can be seen a
a pair of fronts connecting the basic state with thecoex-
isting standing-wave-pulse state. For stability these two
fronts have to exhibit a repulsive interaction. With re
spect to thex direction the zig and the zag making up th
worms are waves traveling in the same direction. Bas
on results for traveling-wave pulses [4,5,23] it is therefo
expected that the fronts can interact (i) via the wave nu
ber [4], which is driven by the dispersive terms, and (
via the additional modeC [5,23].

If the interaction viaC dominates, a simple connection
between the stability of the traveling-wave pulse (her
the worm) and its direction of propagation emerges [5
There is a large peak ofC at the head and a shallow
depression ofC at the tail (cf. Fig. 4). Since positive
(negative)C enhances (reduces) the local growth rate
the convective mode both fronts are pushed to the l
by C. If the worm travels towards its head, the depressi
at the trailing front will be reduced by the remnan
of the positive peak ahead of it. This is not the ca
for the leading peak. Thus, the trailing front is pushe
less to the left than the leading front amounting to
repulsive interaction. For the traveling-wave pulses th
interaction has been determined previously in the limit
weak diffusiond and dampinga and for widely separated
fronts [5].

For the present case of fronts in the standing-wave a
plitude the corresponding calculation would be conside
ably more involved. We expect, however, that the sam
qualitative picture holds. This would imply that the worm
is stable if it travels towards its head and unstable o
erwise [5]. Indeed the experimentally observed worm
travel towards their heads. It should be noted that su
ciently strong dispersion can lead to additional stabiliz
tion of the worms [23].

When increasingm , 0 towardsm ­ 0 the width of
the worm and the maximal value ofC remain essentially
unchanged, but the worm grows in length. Consequen
the spatial integralN ­

R
jAj2dx dy, which corresponds

to a kind of Nusselt number, increases smoothly exce
for a very small jump inN at the saddle-node bifurca
tion in which the worm first appears. In a sufficientl
large system, when the thresholdm ­ 0 is surpassed a se
quence of transitions to more than a single worm occu
When the worms become long enough to span the wh
system they loose their pronounced head structure anC
becomes independent ofx.

In the experiments the worms exhibit a typical spacin
in they direction which decreases with increasing applie
voltage. To investigate this aspect within Eqs. (1)–(3), t
temporal evolution starting from random initial condition
is followed. Figure 4(a) gives they position of the emerg-
ing worms as a function of time form ­ 0.05. Figure 4(b)
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shows theC field of the worms at the final time of the run.
As in the experiment, the worms approach roughly a typ
cal distance in they direction and almost travel on “tracks.”
Whenm is increased the number of tracks is found to in
crease. Figure 4(b) also demonstrates that the localizat
mechanism in they direction is much stronger than that in
thex direction: while all worms have essentially the sam
width, they vary substantially in their length. This is ex
pected since the localization in thex direction is achieved
via the interaction of fronts, which is very weak and de
cays exponentially in space. Thus, the time scales ov
which the worms reach their final length is much longe
and perturbations from other worms affect the length mo
strongly than the width.

So far the waves have been taken dispersionless. In
experiments it is found that with increasing conductivit
the worm regime crosses over to a regime characterized
bursts in the convective amplitude, i.e., patches or blobs
large amplitude appear and disappear in an irregular fas
ion, and finally a regime of extended convection exhibitin
spatiotemporal chaos of patches of zigs, zags, and rect
gles is reached [17]. This suggests that dispersion becom
increasingly important along this path in parameter spa
and indeed the imaginary parts of the coefficients in th
Ginzburg-Landau equations forA and B (with C elimi-
nated) increase in this direction [18].

Figure 5 shows the result of a run with intermediat
values of the imaginary coefficients. The values have be
chosen with some guidance from [18]. In this regim
the worms turn out to be unstable and start to trav
not only in thex direction but also in they direction.
The motion in they direction is driven by imbalances
between the amplitudes of the zig and the zag compone
which lead to enhanced advection ofC towards one or
the other lateral sides of the worm. In addition, th
amplitude of the worms grows and decays as indicat
by the size of the symbols marking they position in Fig. 5.
These strong variations in the amplitude may be related
the bursting seen in the experiments.

FIG. 4. Formation of worms from small random initial con-
ditions. Parameters as in Fig. 2 except form ­ 0.05 and
uA ­ s0.75, 0.75d. (a) y location of the maxima inC as a
function of time. (b)C field for t ­ 800. Note the depression
of C along the sides and the back of the worms.
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FIG. 5. Unsteady motion of worms.y location as a function
of time for uA ­ s0.05, 0.05d, m ­ 0.05, bx ­ by ­ 1 2
0.35i, a ­ 0, c ­ 1 1 0.5i, g ­ 0.5 1 0.9i, f ­ 1, a ­
20.05, d ­ 0.4, hA ­ s1, 1d. The size of the symbols indicates
the height of the maximum ofC.

In conclusion, we have introduced an extension t
the complex Ginzburg-Landau equations for zig and za
waves that leads in a simple way to localized, wormlike so
lutions although the bifurcation to extended waves is supe
critical. The localization mechanisms differ in thex and
the y directions: while the worm is spatially homoclinic
in the y direction, i.e., there is only the basic state as
fixed point and the standing-wave pulse represents an
cursion from it, it is heteroclinic in thex direction; i.e.,
it connects the basic state with a nonlinear periodic sol
tion—the standing-wave pulse—via two fronts. Within
this framework the worms travel towards their end wit
larger amplitude, in agreement with experimental observ
tions. The observed typical spacing between the worm
in they direction is interpreted as the distance over whic
the advected fieldC suppresses convection. In addition
the slow decay ofC suggests a long memory for the po
sition of a worm after the convection has decayed awa
This is consistent with recent observations (Ref. [23] i
[19]). If one assumes that the damping of the addition
mode increases with the conductivity the presented mod
captures qualitatively the experimentally observed chan
from steady worms to extended spatiotemporal chaos v
an irregular bursting as the conductivity is increased. E
tended spatiotemporal chaos is obtained when the damp
is large and the additional mode can be eliminated [24].

The localization presented here is similar in spirit t
that found in parity-breaking bifurcations. There the lo
calized structures are drift waves embedded in a statio
ary, spatially periodic state (rather than an unpattern
state) [6,8,9] and the additional field is the wave num
ber of the underlying pattern [25].

H. R. gratefully acknowledges discussions with
L. Kramer, M. Treiber, Y. Tu, G. Ahlers, and M. Dennin.
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