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Purifying Noisy Entanglement Requires Collective Measurements
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Known entanglement purification protocols for mixed states use collective measurements on sev
copies of the state in order to increase the entanglement of some of them. We address the questio
whether it is possible to purify the entanglement of a state by processing each copy separately. W
this is possible for pure states, we show that this is impossible, in general, for mixed states. T
importance of this result both conceptually and for experimental realization of purification is discusse
We also give explicit invariants of an entangled state of two qubits under local actions and classi
communication. [S0031-9007(98)07322-0]
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Entanglement is perhaps the key resource which d
tinguishes quantum from classical information theory.
plays a central role in quantum computation [1] and qua
tum error correcting codes [2], and it gives rise to som
completely new applications such as dense coding [3
teleportation [4], and certain forms of quantum cryptog
raphy [5]. In order to function optimally these applica
tions require maximally entangled states. Otherwise th
dense coding, teleportation, or quantum cryptography w
be imperfect and/or noisy. However, interactions wit
the environment always occur, and will degrade the qua
ity of the entanglement. If the destructive effects of th
environment are not too important, then they can be cou
teracted by entanglement concentration [6] or entang
ment purification [7–9]. This is realized by carrying ou
local measurements on the entangled particles and cla
cal communication. The entanglement of some pairs
thereby increased at the expense of the entanglemen
the others which is destroyed.

There are two fundamentally different types of purifica
tion protocols: those acting on individual pairs of entan
gled particles and those acting collectively on many pair
In this Letter we address the following question:Is it the
case that, whenever it is possible to purify by collectiv
actions, it is also possible to purify by actions on individ
ual pairs?

In the case of pure states this is indeed true. On
can always, with finite probability, bring an individual
entangled pure state to a maximally entangled state us
only local operations [6]. The main result of this Lette
is to show that there are situations in which entangleme
cannot be purified by actions on individual pairs, eve
though it can be purified by collective actions. This resu
is surprising because we expect entanglement to be
property of each pair individually rather than a globa
property of many pairs.

Specifically, we consider the case of Werner densi
matrices [10] for two spin-1y2 particles. It is known
[7] that it is always possible to purify singlets from
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Werner density matrices by collective methods (if th
initial Werner density matrix is entangled). Howeve
we will show that is not possible to purify singlets, o
even increase the fidelity of a Werner density matr
infinitesimally, by any combination of local actions an
classical communication acting on individual pairs. Th
is the case even though Werner statesdo have active
nonlocality at the single-pair level, since a single Wern
state can realize teleportation (although the teleportat
is imperfect, it nonetheless has fidelity better than a
classical procedure [11]).

As well as its implications for conceptual aspects o
nonlocality, our result has relevance to the experimen
realization of purification. The main experimental diffi
culty, which has so far prevented implementation in th
laboratory, is that purification protocols generally requi
collective measurements on many entangled pairs. S
measurements are very delicate as they involve control
interactions among different particles. On the other han
measurements on individual particles are much easier
realize. For instance, photodetectors and polarized be
splitters efficiently realize von Neumann measurements
the polarization of photons. More general positive oper
tor valued measurements (POVM’s) which necessitate
use of an ancilla have already been carried out. In t
case of photon polarization, the momentum of the phot
serves as a convenient ancilla and an arbitrary POVM
a photon can be realized with present technology (see [
and [13,14]).

Thus our result is disappointing from an experiment
point of view since it means that purification of arbitrar
states cannot be realized using present technology.

We now turn to the proof of our result. We conside
Werner states [10], namely, states of two qubits of the for

WsFd ­ FS 1
1 2 F

3
s14 2 Sd , (1)

whereS is the projection operator onto the singlet stat
c ­ s"# 2 #"dy

p
2, and 14 is the 4 3 4 identity matrix.
© 1998 The American Physical Society 3279
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F ­ trfW sFdSg is the fidelity of the Werner state. These
states play a central role in purification protocols becaus
by carrying out suitably chosen unitary transformation
on both particles, one can always bring any entangle
state to the Werner form. ForF # 1y2 a Werner state
is unentangled and can be expressed as a mixture
product states. But for1 . F . 1y2 there are purification
protocols which can extract states with arbitrary larg
entanglement from an initial set of Werner states. Th
simplest purification protocol which has been describe
uses collective measurements on pairs of Werner sta
[7]. We shall show that it is impossible to increase th
fidelity of a Werner state by local operations and classic
communication on an individual copy.

Consider asinglecopy of the mixturer of two qubits
shared between Alice and Bob (later we will consider th
specific case of a Werner state). After carrying out loc
actions and classical communication they will obtain
density matrixrfinal. In our proof it will be convenient
to use the “entanglement of formation” [2] as a measure
the entanglement ofr andrfinal. It is defined as follows:

(i) For a pure statejcl shared between Alice and Bob,
Escd ­ 2trrA ln2 rA ­ 2trrB ln2 rB, where rA ­
trBjcl kcj andrB ­ trAjcl kcj.

(ii) For a mixed stater the entanglement of formation
is the minimum entanglement of the mixtures of pur
states that realizer: Esrd ­ min

P
i piEscid, where

the minimum is taken over allpi, ci such thatr ­P
i pijcil kcij.
Hill and Wootters have given an explicit formula for the

entanglement of formation in the case of two entangle
qubits [15,16]. They introduce the operation of time
reversal,. For a single qubit the density matrix may be
written asr ­

1
2 s12 1 a ? sd (wherea ? a # 1, 12 is

the 2 3 2 identity matrix, andsi are the Pauli matrices).
Then r̃ :­ syrpsy ­

1
2 s12 2 a ? sd, where complex

conjugation is performed in the basis in whichsz is
diagonal. For a state of two qubits, the time revers
operation isr̃ ­ sy ≠ syrpsy ≠ sy. Now consider the
(non-Hermitian, but positive) matrixrr̃ and denote byli

the positive square root of its eigenvalues:

rr̃jỹil ­ l2
i jỹil . (2)

The “concurrence” of the stater is defined by

Csrd ­ maxh0, l1 2 l2 2 l3 2 l4j , (3)

where the li are taken in decreasing order, and th
entanglement of formationEsrd is

Esrd ­ H

√
1 1

p
1 2 C2srd

2

!
,

where

Hspd ­ 2p ln2 p 2 s1 2 pd ln2s1 2 pd . (4)

Note that 0 # C # 1 and that EsCd is a strictly
monotonic function ofC so that the concurrence is a
measure of entanglement which is equivalent to th
3280
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entanglement of formation, i.e.,Esr1d ­ Esr2d if and
only if Csr1d ­ Csr2d.

To proceed, we must describe explicitly the possibl
local operations that can be carried out on a density matr
r. Then we shall compute how the entanglement o
formation changes under these local operations. Consid
a mixturer of two qubits shared between Alice and Bob
Any purification protocol can be conceived as successiv
rounds of measurements and communication by Alice an
Bob. Suppose Alice carries out the first measurement.
can have many different outcomes. Let us suppose tha
has outcomei1. Then after the measurement the state o
the system becomesAi1 rA

y
i1

, up to normalization, where
Ai1 is an arbitrary operator (in general non-Hermitian
acting on the Hilbert space of Alice’s particle (A

y
i1

Ai1 are
the elements of the POVM realized by Alice [17]). After
communicating the result of her measurement to Bob, h
carries out a measurement and obtains outcomej1. The
state of the system is thenfAi1 ≠ Bj1 si1dgrfAy

i1
≠ B

y
j1

si1dg,
whereBj1 si1d is an arbitrary operator acting on the Hilbert
space of Bob’s particle which can depend on the outcom
i1 of Alice’s measurement. Therefore, afterN rounds of
measurements and communication, the state of the syst
can always be written as

rfinal ­
A ≠ BrAy ≠ By

trsA ≠ BrAy ≠ Byd
, (5)

whereA and B are arbitrary operators acting on Alice’s
and Bob’s Hilbert space, respectively. [A denotes the
product of theN operatorsAi1 , . . . , AiN si1, j1, i2, . . . , jN21d
representing the effects of theN measurements carried out
by Alice, and similarly forB.]

We will need below an explicit expression forA and
B. To this end, note that we can always write an arbitrar
operatorA in the form A ­ UA2fAUA1, whereUA1 and
UA2 are unitary operators andfA ­ ns12 1 aszd, with
0 # a # 1 and0 , n # 1ys1 1 ad, is a filtration along
thez axis. The upper bound onn arises from the fact that,
for fA to be physically realizable, its eigenvalues must b
between zero and one. The filtration changes the relati
weights of the components of the spin along the1z and
2z directions. We now writeA ­ UA2UA1U

y
A1f

a,z
A UA1 ­

UAf
a,n
A , where UA ­ UA2UA1 and f

a,n
A ­ ns12 1 an ?

sd and n is the vector1z rotated by the action ofUA1.
This is the expression we shall use below.

In addition to carrying out local measurements an
communication, Alice and Bob could also randomize th
state they obtain. That is they “forget” which opera
tions they carried out and thus obtain a convex com
bination of different final states

P
i pir

i
final. However,

such randomization can only decrease the entangleme
Es

P
i pir

i
finald #

P
i piEsr

i
finald, as shown in [2,7]. This

is natural since randomization loses information about th
staterfinal. For this reason we shall suppose that Alice
and Bob do not carry out randomization.
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Having described howr changes under local opera-
tions, we must describe how̃r changes. We will then
be in a position to calculate how the concurrence chang
under local operations. Let us first collect some prope
ties of the time reversal operation. (i) Ifr ­ rA ≠ rB,
then r̃ ­ r̃A ≠ r̃B. (ii) If r ­ Or0Oy, where O is
a (possibly non-Hermitian) operator, thenr̃ ­ Õr̃0Õy.
(iii) If UA ­ cosu12 1 i sinuq ? s is a unitary transfor-
mation carried out by Alice, theñUA ­ UA. (iv) If f

a,n
A

is a filtration carried out by Alice, theñf
a,n
A ­ f

a,2n
A .

Therefore since

rfinal ­
UAf

a,n
A ≠ UBf

b,m
B rf

a,n
A U

y
A ≠ f

b,m
B U

y
B

tsr; a, n; b, md
, (6)

with the normalization
tsr; a, n; b, md ­ trff

a,n
A f

a,n
A ≠ f

b,m
B f

b,m
B rg , (7)

then

r̃final ­
UAf

a,2n
A ≠ UBf

b,2m
B r̃f

a,2n
A U

y
A ≠ f

b,2m
B U

y
B

tsr; a, n; b, md
.

(8)
We have definedf

b,m
B ­ ms12 1 bm ? s d, where 0 #

b # 1 and0 , m # 1ys1 1 bd.
Using the fact thatf

a,n
A f

a,2n
A ­ n2s1 2 a2d12 and

f
b,m
B f

b,2m
B ­ m2s1 2 b2d12, one finds that

rfinalr̃final ­
m2n2s1 2 a2d s1 2 b2d

t2sr; a, n; b, md
UAf

a,n
A

≠ UBf
b,m
B rr̃f

a,2n
A U

y
A ≠ f

b,2m
B U

y
B .

(9)
es
r-

From this expression, one obtains the eigenvalues o
rfinalr̃final which we need to compute the concurrence
of rfinal:

rfinalr̃finaljw̃il ­
m4n4s1 2 a2d2s1 2 b2d2

t2sr; a, n; b, md
l2

i jw̃il ,

(10)

where

jw̃il ­ UAf
a,n
A ≠ UBf

b,m
B jỹil (11)

and jỹil is an eigenvector ofrr̃ with eigenvaluel
2
i .

Hence

Csrfinald ­
m2n2s1 2 a2d s1 2 b2d

tsr; a, n; b, md
Csrd . (12)

Since the entanglement of formation is a strictly increas
ing function of the concurrenceCsrd, the entanglement
of formation can only increase ifC increases.

To complete the calculation we need the normalization
t. To this end we introduce the following representation
of a density matrix of two qubits

r ­
1
4

f14 1 a ? s ≠ 12 1 12 ≠ b ? s

1 Rijsi ≠ sjg . (13)

A straightforward calculation then yields
tsr; a, n; b, md ­ m2n2fs1 1 a2d s1 1 b2d 1 2as1 1 b2dn ? a 1 2bs1 1 a2dm ? b 1 4abRijnimjg . (14)
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For a Werner statea ­ b ­ 0, Rij ­
124F

3 dij, and

tsssWsFd; a, n; b, mddd ­ m2n2

"
s1 1 a2d s1 1 b2d

1
4
3

s1 2 4Fdabn ? m

#
.

(15)

Simple algebra then shows thatCsrfinald # Csrd, which
proves that the entanglement of formation of a Wern
state can never be increased by local operations on
single copy. In fact, it is possible to show that, fo
any Bell-diagonal state (i.e., one witha ­ b ­ 0), the
entanglement of formation cannot be increased by loc
actions on an individual copy.

We note that the above result also shows that local o
erations and classical communication cannot increase
fidelity of an entangled Werner matrix. This is becaus
for Werner matrices, the entanglement of formation is
increasing function of the fidelity (althoughrfinal is not
necessarily of Werner form, it can be randomized, a
thus brought into Werner form, without increasing its en
tanglement of formation).
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The results that we have described above have be
obtained by brute force. However, we would like to un
derstand in a deeper way why density matrices beha
differently from pure states as far as entanglement puri
cation is concerned. By actions on a single copy of an
entangled pure state one can extract a singlet, with fin
probability. Why can the same thing not be achieved fo
density matrices? We do not know the complete answ
to this question yet. However, we can gain some intuitio
by analyzing the following scenarios.

Consider first the case of a pure statec of two spin-
1y2 particles. We wish to obtain a singlet from it. This
can be achieved [6] but only with a given probabilityP
of success. This probability depends on the initial sta
c. Indeed, the overall average amount of entangleme
in the system cannot increase, so the initial entangleme
Ec and the probabilityP must satisfy the inequality

PEsinglet # Ec . (16)

Thus if we start from different initial statesc, which are
closer and closer to a nonentangled state, one finds t
although one can always obtain a singlet, the probabili
of success must, and indeed does, go to zero.
3281
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Now suppose it were the case that purifying densi
matrices can be achieved in a similar way, namely th
a given goal (a given final state) can always be obtain
from any initial stater with some nonzero probability of
success. Specifically, let our goal be to obtain a fixe
Werner state with fidelityFfinal . 1y2 (it may be too
ambitious to try to obtain a singlet, so we do not assum
that Ffinal ­ 1) and let us assume that for any initia
fidelity 1y2 , F , Ffinal this can be done. Once again
if we consider what happens as our initial state ten
towards the unentangled Werner state (withF ­ 1y2), the
probability of successmusttend towards zero. However,
as we show below, it turns out that, no matter wha
local actions we perform, any possible outcome of th
measurement occurs with a finite probability which doe
not tend to zero asF ! 1y2. Roughly speaking, this is
because the nonentangled limit of the family of Werne
states, namely, the Werner state withF ­ 1y2, is still a
mixed state, and the noise contained in it does not allo
any outcome of any measurement to remain “silent
Thus there can be no measurement which could achie
the goal described.

ConsiderWfinal to be our fixed goal. Suppose that i
were possible to choose actions which allowed one
obtainWfinal starting fromWsFd. ThenWfinal would be
given by

Wfinal ­
UAf

a,n
A ≠ UBf

b,m
B WsFdfa,n

A U
y
A ≠ f

b,m
B U

y
B

tsssW sFd; a, n; b, mddd
,

(17)

as in (6). The probability of obtainingWfinal would then
be equal to the normalizationtsssW sFd; a, n; b, mddd which
is given in (15). It is straightforward to show that this
probability does not go to zero asF ! 1y2 (excluding
the trivial casem or n equal to zero, in which one filters
out all of the particles). Thus one cannot purify to a fixe
output state.

The above argument just shows that mixed stat
cannot have the same simple behavior as pure sta
More subtle behavior is not ruled out by the argumen
For example it might have been the case that an individu
Werner state can be purified only in a small range
fidelities, sayFmin , F , Ffinal, with Fmin . 1y2. If
this were the case, then asF ! 1y2 the probability of
obtainingWfinal need not tend to zero since asF ! 1y2
the state cannot be purified. The proof given in the fir
part of this Letter, however, shows that this is not the cas

Finally, we note that our expression for the eigenva
ues of rr̃ shows that their ratiosl2

i yl
2
j are invariant
3282
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under arbitrary local operations and classical communic
tion (excluding randomizations). This therefore provide
a characterization of the equivalence classes of dens
matrices under such operations. This may have impo
tant applications because it provides a simple criterio
for distinguishing states whose entanglement is fundame
tally different. Whether this characterization is complete
i.e., whether their are additional independent functions o
r which are invariant under local operations and class
cal communication, is still an open question. Also how
to characterize the equivalence of density matrices und
local operations, classical communication,and random-
ization is unknown. (The invariants of multiparticle en-
tangled states under localunitary operations have been
discussed in [18,19].)
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