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Purifying Noisy Entanglement Requires Collective Measurements
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Known entanglement purification protocols for mixed states use collective measurements on several
copies of the state in order to increase the entanglement of some of them. We address the question of
whether it is possible to purify the entanglement of a state by processing each copy separately. While
this is possible for pure states, we show that this is impossible, in general, for mixed states. The
importance of this result both conceptually and for experimental realization of purification is discussed.
We also give explicit invariants of an entangled state of two qubits under local actions and classical
communication. [S0031-9007(98)07322-0]

PACS numbers: 03.67.—a, 03.65.Bz

Entanglement is perhaps the key resource which diswerner density matrices by collective methods (if the
tinguishes quantum from classical information theory. lItinitial Werner density matrix is entangled). However,
plays a central role in quantum computation [1] and quanwe will show that is not possible to purify singlets, or
tum error correcting codes [2], and it gives rise to somesven increase the fidelity of a Werner density matrix
completely new applications such as dense coding [3]infinitesimally, by any combination of local actions and
teleportation [4], and certain forms of quantum cryptog-classical communication acting on individual pairs. This
raphy [5]. In order to function optimally these applica- is the case even though Werner statiEs have active
tions require maximally entangled states. Otherwise th@onlocality at the single-pair level, since a single Werner
dense coding, teleportation, or quantum cryptography wilktate can realize teleportation (although the teleportation
be imperfect and/or noisy. However, interactions withis imperfect, it nonetheless has fidelity better than any
the environment always occur, and will degrade the qualelassical procedure [11]).
ity of the entanglement. If the destructive effects of the As well as its implications for conceptual aspects of
environment are not too important, then they can be coumonlocality, our result has relevance to the experimental
teracted by entanglement concentration [6] or entanglerealization of purification. The main experimental diffi-
ment purification [7—9]. This is realized by carrying out culty, which has so far prevented implementation in the
local measurements on the entangled particles and clas$&boratory, is that purification protocols generally require
cal communication. The entanglement of some pairs igollective measurements on many entangled pairs. Such
thereby increased at the expense of the entanglement ofeasurements are very delicate as they involve controlled
the others which is destroyed. interactions among different particles. On the other hand,

There are two fundamentally different types of purifica-measurements on individual particles are much easier to
tion protocols: those acting on individual pairs of entan-realize. For instance, photodetectors and polarized beam
gled particles and those acting collectively on many pairssplitters efficiently realize von Neumann measurements on
In this Letter we address the following questiols it the  the polarization of photons. More general positive opera-
case that, whenever it is possible to purify by collectivetor valued measurements (POVM'’s) which necessitate the
actions, it is also possible to purify by actions on individ- use of an ancilla have already been carried out. In the
ual pairs? case of photon polarization, the momentum of the photon

In the case of pure states this is indeed true. Oneserves as a convenient ancilla and an arbitrary POVM on
can always, with finite probability, bring an individual a photon can be realized with present technology (see [12]
entangled pure state to a maximally entangled state usingnd [13,14]).
only local operations [6]. The main result of this Letter Thus our result is disappointing from an experimental
is to show that there are situations in which entanglemenpoint of view since it means that purification of arbitrary
cannot be purified by actions on individual pairs, evenstates cannot be realized using present technology.
though it can be purified by collective actions. This result We now turn to the proof of our result. We consider
is surprising because we expect entanglement to be Werner states [10], namely, states of two qubits of the form
property of each pair individually rather than a global |- F
property of many pairs. W(F) = FS +

Specifically, we consider the case of Werner density 3
matrices [10] for two spin-42 particles. It is known whereS is the projection operator onto the singlet state,
[7] that it is always possible to purify singlets from = (1l — I1)/+/2, and 1, is the 4 X 4 identity matrix.

(14 — ), 1)
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F = tr[W(F)S] is the fidelity of the Werner state. These entanglement of formation, i.eE(p;) = E(p,) if and
states play a central role in purification protocols becauseanly if C(p;) = C(p2).
by carrying out suitably chosen unitary transformations To proceed, we must describe explicitly the possible
on both particles, one can always bring any entangletbcal operations that can be carried out on a density matrix
state to the Werner form. Fdr = 1/2 a Werner state p. Then we shall compute how the entanglement of
is unentangled and can be expressed as a mixture &frmation changes under these local operations. Consider
product states. Butfdr > F > 1/2there are purification a mixturep of two qubits shared between Alice and Bob.
protocols which can extract states with arbitrary largeAny purification protocol can be conceived as successive
entanglement from an initial set of Werner states. Theounds of measurements and communication by Alice and
simplest purification protocol which has been describedob. Suppose Alice carries out the first measurement. It
uses collective measurements on pairs of Werner statesn have many different outcomes. Let us suppose that it
[7]. We shall show that it is impossible to increase thehas outcome,;. Then after the measurement the state of
fidelity of a Werner state by local operations and classicathe system becomesilpAZ, up to normalization, where
communication on an individual copy. A;, is an arbitrary operator (in general non-Hermitian)
Consider asingle copy of the mixturep of two qubits  acting on the Hilbert space of Alice’s particla(4; are
shared between Alice and Bob (later we will consider thene elements of the POVM realized by Alice [17]). After
specific case of a Werner state). After carrying out locabommunicating the result of her measurement to Bob, he
actions and classical communication they will obtain acarries out a measurement and obtains outcgmeThe
density m%triprinal. In our proof _it V\,/,i|| be convenient ?tate of the system is thén,, ® B;, (il)]p[AI ® B;'rl (in],
to use the “entanglement of formation” [2] as a measure OhereB; (i)) is an arbitrary operator acting on the Hilbert

the_er;tanglementtqz and’;ﬁ“ala It: 'f defmi?_ as folijovg/s:b space of Bob’s particle which can depend on the outcome
(i) For a pure statéy) shared between Alice and Bob, i1 of Alice’s measurement. Therefore, aft€rrounds of

E@) = _trpé* Iy pa = —trpplny g, Where  pa = peasyrements and communication, the state of the system
trply) Gyl andps = traly) (. . can always be written as
(i) For a mixed statep the entanglement of formation
is the minimum entanglement of the mixtures of pure _ A®BpAT @ Bt 5
states that realizep: E(p) = minY; p;E(;), where Prinal = (4 ® BpAt ® BY)’ (5)
the minimum is taken over alp;, ¢; such thatp = _ . _
S il il whereA and B are arbitrary operators acting on Alice’s
Hill and Wootters have given an explicit formula for the and Bob’s Hilbert space, respectivelyA [denotes the
entanglement of formation in the case of two entangledProduct of theV operatorsa;,, ..., A; (i1, ji, iz, ..., jn-1)

qubits [15,16]. They introduce the operation of time representing the effects of tiemeasurements carried out
reversal~. For a single qubit the density matrix may be by Alice, and similarly forB.] _

written asp = %(12 +a- o) (Wherea -a =<1, 1,is We will need below an explicit expression fdr and
the2 X 2 identity matrix, ando; are the Pauli matrices). B- To this end, note that we can always write an arbitrary
Then p == oyp*oy = %(12 — « - o), where complex operatorA in the form A = Uy faUa1, Where Uy, a_nd
conjugation is performed in the basis in which is U4z @ré unitary operators anfh = »(I2 + ao), with

diagonal. For a state of two qubits, the time reversaf = ¢ = 1and0 <w = 1/(1 + a), is a filtration along
operation isp = o, ® oyp*o, ® o,. Now consider the thez axis. The upper bound anarises from the fact that,

(non-Hermitian, but positive) matrix5 and denote by\; for f4 to be physically realizab_le, igs eigenvalues must be
the positive square root of its eigenvalues: between zero and one. The filtration changes the relative

weights of the components of the spin along the and

~|~\ 21~ a,z
AT = Aili). (@) __ directions. We now writel — UnUn UL F4" U =
The “concurrence” of the staje is defined by Uafs", where Uy = UpoUa; and 4" = v(1, + an -
C(p) =max0,A; — Ay — A3 — A4}, (3) o) andn is the vector+z rotated by the action ob/;.

This is the expression we shall use below.
In addition to carrying out local measurements and
communication, Alice and Bob could also randomize the
E(p) — H(l +41 - Cz(ﬂ)) state they obtain. That is they *forget’ which opera-
2 ’ tions they carried out and thus obtain a convex com-
bination of different final state$; p;pfinai. HoOwever,
such randomization can only decrease the entanglement:
Hip) = =plnp = (1 = p)im(l = p). () E(3, piphina) = s piE(plinar), @s shown in [2,7]. This
Note that 0 = C =1 and that E(C) is a strictly is natural since randomization loses information about the
monotonic function ofC so that the concurrence is a statepsina. For this reason we shall suppose that Alice
measure of entanglement which is equivalent to theand Bob do not carry out randomization.

where the A; are taken in decreasing order, and the
entanglement of formatioB(p) is

where
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Having described how changes under local opera- From this expression, one obtains the eigenvalues of
tions, we must describe hoyw changes. We will then pgina1prinar Which we need to compute the concurrence
be in a position to calculate how the concurrence changes pfiar:
under local operations. Let us first collect some proper- 44 - -
ties of the time reversal operation. (i) #f = ps ® ps, pri(l — a®) (1 — b%) 2l
then p = p, ® pp. (i) If p = 0p’0Ot, where O is 2(p;a,n;b,m) e
a (possibly non-Hermitian) operator, thgn= 0p'0". (10)
(i) If Uy = cosf1, + isinfq - o is a unitary transfor-
mation carried out by Alice, theb, = Uy. (iv) If f4"  where

Pfinal Pfinal [ Wi) =

is a filtration carried out by Alice, thefiy™ = £ ". y , b,y
Therefore since W) = Uafa™ ® Usfp™ i) (11)
a,;n b,m an, .t bm T
Pfinal = Usfa” @ Usfp pfa Us ® fp UB, (6) and |5;) is an eigenvector ofpp with eigenvalueA?.
t(p;a,n;b, m) Hence
with the normalization . R )
t(psa,m;b,m) = ulf1"f5" ® (5" 15" p],  (7) o wvi(l—a)(d = b
C(pfmal) - - C(p) (12)
then t(p:a,n;b,m)
a,—n b,—m _ ,a,—n,.T b,—m . T
Prinal = Usfa” @ Upfp” pfa’ Us ® fs Us ) Since the entanglement of formation is a strictly increas-
t(p;a,n;b,m) ing function of the concurrenc€(p), the entanglement
(8) of formation can only increase @ increases.
We have deﬁnecyg’m = u(l, + bm - &), where0 =< To complete the calculation we need the normalization
b=1land0 < u = 1/(1 + b). t. To this end we introduce the following representation

Using the fact thatfi"fi " = v2(1 — a?)1, and Of a density matrix of two qubits
2™ Fe ™™ = u2(1 — b?)1,, one finds that
1 —a) A =b)  an
PfinalPfinal = tz(p;a,n;b,m) Uafa

b, ~ pd,— t b,— T
® Upfp" ppfa "Us ® f5 "Us.

1
p=2[14+a-0'®12+12®ﬂ~a'
+Rij0','®0'j]. (13)

(9) A straightforward calculation then yields

|
t(psa,n;b,m) = w?v?[(1 + a®) (1 + b?) + 2a(l + b*n - @ + 2b(1 + a®)m - B + 4abR;n;m;]. (14)

For a Werner state = 8 = 0, R;; = # 8;j, and |

The results that we have described above have been
obtained by brute force. However, we would like to un-
t(W(F);a,n;b,m) = ,u,21/2|:(1 + a®) (1 + b?) derstand in a deeper way why density matrices behave
differently from pure states as far as entanglement purifi-
4 cation is concerned. By actions on a single copy of any
+ 3 (1 — 4F)abn - m |. entangled pure state one can extract a singlet, with finite
probability. Why can the same thing not be achieved for
(15) densit ices?
y matrices? We do not know the complete answer
Simple algebra then shows th@t prina1) = C(p), Which  tg this question yet. However, we can gain some intuition
proves that the entanglement of formation of a WernEby ana|yzing the fo”owing scenarios.
state can never be increased by local operations on a Consider first the case of a pure stateof two spin-
single copy. In fact, it is possible to show that, for 1/2 particles. We wish to obtain a singlet from it. This
any Bell-diagonal state (i.e., one wih = B8 = 0), the  can be achieved [6] but only with a given probability
entanglement of formation cannot be increased by locayf success. This probability depends on the initial state
actions on an individual copy. . Indeed, the overall average amount of entanglement
We note that the above result also shows that local opn the system cannot increase, so the initial entanglement

erations and classical communication cannot increase thg¢ and the probability? must satisfy the inequality
fidelity of an entangled Werner matrix. This is because,
PEsinglet = El//' (16)

for Werner matrices, the entanglement of formation is an
increasing function of the fidelity (althoughyi,,; is not  Thus if we start from different initial stateg, which are
necessarily of Werner form, it can be randomized, andloser and closer to a nonentangled state, one finds that
thus brought into Werner form, without increasing its en-although one can always obtain a singlet, the probability
tanglement of formation). of success must, and indeed does, go to zero.
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Now suppose it were the case that purifying densityunder arbitrary local operations and classical communica-
matrices can be achieved in a similar way, namely thation (excluding randomizations). This therefore provides
a given goal (a given final state) can always be obtained characterization of the equivalence classes of density
from any initial statep with some nonzero probability of matrices under such operations. This may have impor-
success. Specifically, let our goal be to obtain a fixedant applications because it provides a simple criterion
Werner state with fidelityF,.; > 1/2 (it may be too for distinguishing states whose entanglement is fundamen-
ambitious to try to obtain a singlet, so we do not assuméally different. Whether this characterization is complete,
that Frinap = 1) and let us assume that for any initial i.e., whether their are additional independent functions of
fidelity 1/2 < F < Ffina this can be done. Once again p which are invariant under local operations and classi-
if we consider what happens as our initial state tendgal communication, is still an open question. Also how
towards the unentangled Werner state (Witk= 1/2), the  to characterize the equivalence of density matrices under
probability of succesmusttend towards zero. However, local operations, classical communicati@and random-
as we show below, it turns out that, no matter whatization is unknown. (The invariants of multiparticle en-
local actions we perform, any possible outcome of thaangled states under locahitary operations have been
measurement occurs with a finite probability which doediscussed in [18,19].)
not tend to zero ag — 1/2. Roughly speaking, this is We are very grateful to Colin Sparrow for his help at
because the nonentangled limit of the family of Werneran early stage in this work. S.P. warmly acknowledges
states, namely, the Werner state with= 1/2, is still a  very useful discussions with P. K. Aravind.
mixed state, and the noise contained in it does not allow
any outcome of any measurement to remain “silent.”
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