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Singularity Confinement and Chaos in Discrete Systems
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We present a number of second order maps, which pass the singularity confinement test commonly
used to identify integrable discrete systems, but which nevertheless are nonintegrable. As a more sensi-
tive integrability test, we propose the analysis of the complexity (algebraic entropy) of the map using the
growth of the degree of its iterates: integrability is associated with polynomial growth while the generic
growth is exponential for chaotic systems. [S0031-9007(98)06579-X]

PACS numbers: 05.45.+b, 05.50.+q

Discrete systems have for a long time been a subject diVith these initial values we get the sequence (laere 1)
study in the field of dynamical systems. A strong prac-

tical motivation is the power of numerical exploration SR

for such systems [1], which led to interesting findings X0 = €,

in chaos theory. On the other hand, several numerical xi=el—u+te
algorithms (convergence acceleration algorithms) are re- ’

lated to integrable discrete maps (see [2] and references =€’ —u+e+ ..,
therein). Finding out whether a given system is chaotic X3 = —€ + 2€* + ...

or integrable is then a basic problem worth more investi-
gation. One open problem is to find atgorithmictest of X4 =u— €+ ...
integrability, and this is the subject of the present Letter. | this case the outcome is<“— % = 0" and the se-

Ir_l the ,case of continuous sy_stems one can test for th&uence emerges from the singularity with the valyee.,
Painlevé property” [3—6], which is closely related t0 \ithout losing the initial information. This means that the

integrability and has considerable predictive power. Ansystem (1) passes the singularity confinement test with-
analog of the Painleve test for discrete systems was presut problems; the singularity structure— € — €2 —

posed in [7] and has been used as a powerful constructive-2 _, _¢ _, ; s rather typical.
tool, e.g., to identify discrete Painlevé equations [8]. This Tphe problem is that system (1) is chaotic, as we shall

singularity confinement test similar in spirit to the con-  gow.  Our suspicion about the nonintegrability of (1)

tinuous Painlevé test in that it analyzes behavior around,qge when, motivated by [10], we evaluated the growth
a movable singularity of the map. When a map is iter-sf the degree of its iterates as follows.

ated, it may happen that we reach a point for which the \ye start by writing the map as a first order two-

next value is ill-defined due to the appearance of an ingimensjonal map

determinate formg — o, 0 X oo, or such. One should

then study the behavior around the singularity: If the map ¢ 2 pn = =1, %0) = prst = o Xni1) - (2)

can be continued in a way which allows one, after a finiteand then rewritep in terms of homogeneous coordinates

number of steps, to exit from the singularity without loss[y,,, z,, #,] by setting

of information, then the system is said to pass the test. Ze ¥
We show in this Letter that the confinement test is not Pn = <—", —") (3)

sufficient to ensure integrability. We also propose another tn tn .

indicator for rational maps: a measure of the “algebraic' "iS means that we are now working in the two-

entropy” [9,10], which has to do with global properties of dimensional projective spac€P, and that points with
the system (see later). homogeneous coordinat¢s,z,z] and [Ay, Az, At] are

We shall consider the map to be identified (projectivization). For (1) the mapmay
5 L be written as
n +t Xp—1 = X, T no
x-+1 X 1. X a/x . (.) y y3 + a3 —yzz
and some of its generalizations. Relation (1) defines a o:lz|— y3 . (4)
map (x,—1,x,) — x,+1. The potential singularity of this f ry?

map is reached if, at some step (say step 0), we arrive at |, cp, the above singularity pattern looks as follows:
xo = 0 (with a finite nonzeroc_,), because themn;, = o,

x2 =, but x3 =0 — o and it is not clear how to 0 1 1 0 0
proceed. To refine the analysis, let us assume that we u =0 =1 =11]=10].
arrive atxg = € by x_; = u, with suitable previous,’s. 1 0 0 0 0
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The last term of this sequence is not @P, and is Function (5) generates a sequence with exponential
now the manifestation of the ambiguity mentioned abovegrowth. The denominator gf contains two basic pieces
Note also that in this formulation it is clear that infinities of information. It first shows that the sequence of degrees
are not singularities: They look like any other point; theverifies the very specific relation
last component is just zero. The expansion around the

g ’ ’ dys = ddyes + ddysy —dy =0, (6)

singularity clarifies the situation. We get the sequence
whered = d, = 3 is the degree of the map, andd,

B 2 2
Z . ! u; T . } _ gzzz j: is the actual degree op”, after “projectivization.” It
) 2 €2 4+ also determines the asymptotic behavior &f If «
= is the smallest modulus of the roots of the denominator
A of (5), thend,+; = a~'d, asymptotically. In this case
— | 1 —9ue* + ... a = (3 — +/5)/2 and we define the algebraic entropy of
e+ ... the map by
" ued + ... u-+ ... +
NS NEACE £ = m Loy - oo 20
L e+ 1+ ...

) This calculation indicates that the map has nonvanishing
and in the last term we are able to cancel the factogntropy, and therefore is likely to be nonintegrable.

8 : - ; .
e, after which we can let — 0, getting[u,0,1]. We  Nymerical chaos can be seen when we draw a picture
have thus emerged from the singularity with the initial of some orbits of the map; see Fig. 1. This figure was ob-
information . tained witha = 7. The two “cat’s paws” are around two

The cancellation mentioned above is crucial. It occurgygints of a nine-periodic orbit op. Such a point of or-

only if there is a singularity in the map, because the exyer nine ofp (x, = x,+1 = 3.043896...) is located at
istence of a singularity means that there will be commonye |ower left-hand corner of Fig. 2. The picture is char-
factors ofe. Such cancellations of common factors aréacteristic of chaotic behavior of a two-dimensional con-
necessary to reduce the growth of the degree because, olfsryative system.

erwise, the successive iterate$” of ¢ would be poly- In order to compare with a truly integrable system let
nomials of degree!”, whered is the degree ofp. For s consider [14]

integrable systems the cancellations are in fact so strong

that asymptotically the degree grows only polynomially.

The degree ofp is not canonical, since it is not in-
variant under coordinate changes. However, ghewth
of the degree is canonicg®]. It is generically exponen-
tial [11], but may become polynomial if the humber of
common factors is large enough. Thenjectureis that 70_,
integrability of the map implies polynomial growth [10] '
(see also [12,13]).

For the map (4) we get the following sequence of |
degrees: 1, 3, 9, 27, 73, 195, 513, 1347, 3529, .... The |
first four degrees follow thé&" rule; cancellations then |
take place. Note that the first drop of the degree is
3 X 27 — 73 = 8 corresponding to the factorization of
€% in the above calculation. From the nine first numbers |
of this sequence we inferred the generating function for |.-
the degrees:

a
Xp+1 + Xp—1 = 2 + —, (8)
n

1+ 3x3
I1—x)0+x)(x2=3x+1) ®)

The next degree, found by iteration of, is 9243 and
coincides with the prediction obtained by expanding

glx) = (

g =1+3x +9x? +27x% + 73x* + 195x° + 513x°
+ 1347x7 + 3529x% + 9243x° + 24201x'0 + .. ..

[A proof that (5) indeed is the generating function of the 0.0 7.0

degrees will be given elsewhere [9].] FIG. 1. A collection of orbits of the map generated by Eq. (1).
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3.60 and that it vanishes at infinity as
fle ) =ne1 +0(e), L>0. (12)
From these assumptions it follows, in particular, that
L) + € + 0()] = ba; “eSi[1 + 0(e)]. The
singularity analysis proceeds now as follows:
X—-1 = U,

Xo = x;" + €,
x1=f0; +e€ —u+x;+te,
X, = f()c;-k +e€) —u+ ba;LeLKf[l + 0(e)],

X3 =—x; —€+ Zbaj_LeLKf[l + 0(e)],

x4 =u—x; + Aj(e) + O(e),
with
Aj(e) = f{—x] — € + 2ba; " "M [1 + O(e)]}

- f(x;-‘ + €).
Thus in order forf to pass the singularity confinement
test, we need only to impose the condition that
Aje) =0(1), V], (13)
and that this term does not cancel thdependence in,.

A simple calculation shows that (13) is true at least
if () K;(L —1)=1 and (ii) the singularity structure
of f is even; i.e., both+x; and —x; are singular
é)oints of f and the expansions at these points match as
(xj + €) — f(—=x; — €) = O(e). The simplest such
unction is x 2 [yielding the map (1)], but it is easy

FIG. 2. A closeup of Fig. 1.

which is related tod-P;. This is also a third degree
map, but the singularity structure is now such that th
degrees growonly as 1, 3, 9, 19, 33, 51, 73, 99, 129, 16

201, .... The generating functional is A .
’ 9 9 to construct other examples. If attention is restricted to
_ 1+ 3x? ) rational functions, we can, e.g., pick any two relatively
g (1 —x)3° prime polynomialsQ(x) andP(x) of degreeM and define

— _ 2 _
and in fact the degrees grow polynomially according tof () = [POIP(=0))/[x°Q(x)O(=x)]. As an example,
the simple rule we performed the degree growth analysis above on the

special caseP = x + 5, Q = x + 3 and obtained en-
d, =2n* + 1. tropy £ = log[5 + +/21)/2]. Drawing the orbits again
corroborates the claim of nonintegrability.

If model (1) were an isolated example, it might be . . .
L : Another class of maps which passes the singularity
dismissed by somad hocrule. However, it turns out that . . ) .
confinement test is contained in

the singularity confinement test is somewhat insensitive
in general, and maps containing rather arbitrary functions Xn+1 T X1 = fuloxa), (14)
pass the test. Let us consider the more general map  where we just assume that the functiogis diverge
_ at some pointsy; (independent ofs), and vanishes at
Xnet T Xn—1 = X+ [ ), (10) infinity, but it is not necessary yet to specify how. Here
where f does not have to be rational. (Indeed, there igve allow nonautonomous maps; i.¢.,may also depend
no inherentreason to limit the singularity confinement on r, as indicated by the subscript (of course, this could
test to rational maps, while the notion of degree, andhave been done with the previous model as well). The
consequently, the definition of the algebraic entropy, issingularity analysis now goes as follows:
tightly related to (bi)-rationality. For nonrational trans- X_1=u,
formations, one should use a definition of entropy more
closely inspired from [11].)
It is clear that the map (10) can be iterated forwards xp = —u+ folx;j + e€),
and backwards except possibly whérdiverges. Let us . .
therefore assume thgtdiverges at some points with a x = —xj — e+ filfolyj + €) —u),
power series expansion starting as x3 =u — folx; + €

f&xj + €) = aje [l + 0(e)], K; >0, (11) + fo(=xj — e + fi(folx] + €) — u)).

xo=x}k+e,
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For the singularity to be confined at this step, it is sufficient that the behaviors at the singular points and at infinity match
so that

Vj,n Iém)[fn(x;k + 6) - fn+2(_x;‘( — €+t fn-*—l(fn(x;‘< + 6) - M))] =0, (15)

The singularity pattern is shorter than for (1)— 0 — ! Ablowitz, B. Grammaticos, X.B. Hu, S.H. Wang, and
©— () — o — o, and upon expanding the ambiguity Y. X. Yuan for discussions.

resolves tou. The confinement condition (15) is similar
to (13).

The above results show that the singularity confinement
test is only sensitive to the function’s behavior at its sin- [1] M. Henon, Q. J. Appl. Math.27, 291-312 (1969); in
gular points and at infinity. Especially for the nonrational ~ Chaotic Behaviour of Deterministic Systerfspceedings
case it is easy to dress a function which passes the test by of the Les Houches Summer School, Session XXXV,

something which does not alter this behavior edited by G. looss, R.H.G. Helleman, and R. Stora
9 ) (North-Holland, Amsterdam, 1983), pp. 53-170.

The singularity confinement test is definitely a useful [2] A. Nagai and J. Satsuma, Phys. Lett. 209, 305—312
tool for identifying potentially integrable systems. It is (1995).
probably necessary but, in the light of the present results,[3] S.v. Kovalevska, Acta Mathl2, 177-232 (1889).
it appears to be insufficient. Of course, for a given map, [4] P. Painlevé, C.R. Acad. Sci. (Parig)30, 1112-1115
the situation would be settled if one could establish any of  (1900).
the constructive properties associated with integrability, [5] A. Ramani, B. Grammaticos, and A. Bountis, Phys. Rep.
such as Lax pair, superposition principle, and conserva- 180 159-245 (1989).
tion laws, but in practice this is very difficult. [6] R. Conte, inThe Painlevé Property, One Century Later,
It is therefore important to continue developing and ~ CRM Series in Mathematical Physics (Springer-Verlag,
. - . . . - Berlin, 1998); solv-int/9710020.
refining methods for algorithmic testing of integrability. . . .
. . . - ._[7] B. Grammaticos, A. Ramani, and V. Papageorgiou, Phys.
For rational maps one such refinement is used in this

i Rev. Lett.67, 1825—1828 (1991).
Letter: Look at the growth of the degree of the map [8] A. Ramani, B. Grammaticos, and J. Hietarinta, Phys.

written in projective space, if the degree grows faster Rev. Lett.67, 1829-1831 (1991); B. Grammaticos, F.W.

than polynomially (nonvanishing algebraic entropy) it is  Nijjhoff, and A. Ramani, inThe Painlevé Property, One
likely that the system is not integrable. Of course, since  Century Later(Ref. [6]).

algebraic entropy may be seen as an adaptation of thg9] M. Bellon and C.-M. Viallet, chao-dyn/9805006, Report
measure of complexity of iterations of [11] to algebraic No. PAR-LPTHE 98-22.

maps, it must be related to Kolmogorov-Sinai entropyl10] G. Falqui and C.-M. Viallet, Commun. Math. Phyk54,
(see, for example, [15]). However, the algebraic entropy ~ 111-125 (1993).

is defined for any rational evolution map [9] and it does!11l V-I. Amnold, Bol. Soc. Bras. Mat21, 1-10 (1990).

not require the existence of an ergodic measure which 8- Aig%z Veselov, Commun. Math. Physl45 181-193
needed for the Kolmogorov-Sinai entropy. This mean ( )
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