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Using the density matrix renormalization group, we calculate the energy of a domain wall in th
t-J model as a function of the linear hole densityr,, as well as the interaction energy between wall
for Jyt ­ 0.35. Based on these results, we conclude that the ground state always has domain
for dopings0 , x & 0.3. For x & 0.125, the system has (1, 0) domain walls withr, , 0.5, while
for 0.125 & x & 0.17 the system has a possibly phase-separated mixture of walls withr, , 0.5 and
r, ­ 1. For x * 0.17, there are only walls withr, ­ 1. [S0031-9007(98)07331-1]

PACS numbers: 74.20.Mn, 71.10.Fd, 71.10.Pm
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In the past few years experimental evidence for stri
formation in the cuprates has been mounting [1].
proper theoretical description of domain walls and strip
phases in a doped two-dimensional antiferromagnet
been extremely difficult to develop, however. Althoug
simple mean field theories for thet-J or Hubbard models
yield domain walls, it is clear that real domain walls hav
a much more subtly correlated ground state. Partia
filled domain walls have been particularly hard to descri
theoretically.

Recently, we reported numerical results [2] showin
a striped phase in a16 3 8 t-J system at a filling of
x ­ 0.125, which were in agreement with neutron scatte
ing results for La1.62xNd0.4SrxCuO4, a system in which a
suppression of superconductivity occurs nearx ­ 0.125.
Here, domain walls with a linear filling of 1y2 hole per
unit length separatingp-phase-shifted antiferromagneti
regions were spaced four lattice spacings apart. The qu
tion of what happens at other fillings was not address
and the possibility of other types of domain walls, suc
as diagonal walls, was not considered. Experimenta
in the Nd0.4 system Tranquadaet al. [1] report coexis-
tence of superconducting and domain order for a ran
of dopings away fromx ­ 0.125. For 0.05 & x & 0.12,
the inverse domain spacing was found to vary as2x. Be-
yond x ­ 0.12 the inverse spacing remained relative
constant, increasing slightly asx approached 0.2.

Here we address the question of the stability of doma
walls at low to moderate filling, by calculating the energ
of a domain wall in the 2Dt-J model, as a function of fill-
ing, using density matrix renormalization group (DMRG
[3] techniques. We use systems with boundary conditio
(BCs) carefully chosen not to frustrate the domain wal
We also estimate the repulsive interaction between d
main walls, allowing us to study the domain wall filling
and spacing of a striped phase as a function of dopingx.
The DMRG results for energies use extrapolation to e
tract the limit of zero truncation error, with up to 140
states per block kept. More details of the numerical tec
niques can be found in [2].
0031-9007y98y81(15)y3227(4)$15.00
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The t-J Hamiltonian in the subspace of no doubly
occupied sites is given by

H ­ 2t
X
kijls

scy
iscjs 1 H.c.d 1 J

X
kijl

µ
Si ? Sj 2

ninj

4

∂
.

(1)

Here kijl are near-neighbor sites,s is a spin index,$Si

andc
y
i,s are electron spin and creation operators, andni ­

c
y
i"ci" 1 c

y
i#ci#. The near-neighbor hopping and exchange

interactions aret andJ. We measure energies in units of
t. We consider onlyJyt ­ 0.35 here.

First, we consider the energetics of a single domai
wall. Imagine a single long domain wall in the form of
a closed loop with a fixed number of holes. The loop
would be a large rectangle, if domain walls prefer to be
oriented in the (1, 0) or (0, 1) directions. If we assume
that the domain wall is stable against evaporation int
holes or pairs, then the loop will adjust its size in orde
to minimize its energy. The linear hole densityr, of the
domain wall will have an optimal valuēr,. We expect
that at very low doing, any domain wall will have doping
r̄,. At higher doping, repulsion between domain walls
could lead to increased values ofr,.

Let esr,d be the energy per hole of a domain wall
with densityr,. Then r̄, minimizesesr,d. In order to
measureesr,d, some care is needed. The important poin
is that a loop can shrink or contract without inducing
frustration in the antiferromagnetic region inside or out
Therefore, in order to reduce finite size effects, we defin
esr,d using two systems, each without frustration. The
first system, with energyEdw , has a domain wall and
BCs favoring thep-phase shift of the antiferromagnetism
induced by the domain wall, while the second, with
energyE0, has no holes at all and BCs favoring nop-
phase shift, but which are otherwise identical. Defining
Ndw as the number of holes in the domain wall, we have

esr,d ­ sEdw 2 E0dyNdw . (2)
In practice, we use open BCs with staggered fields o
the edges on either side of the domain wall to induce th
desired antiferromagnetic order.
© 1998 The American Physical Society 3227
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In Fig. 1(a) we showesr,d as a function of r,,
measured on a16 3 6 system with open BCs, with the
domain wall parallel to thex axis, and with staggered
magnetic fields of magnitude0.1 applied to the top and
bottom rows of sites. We see a minimum atr̄, , 0.5.
On the same plot, we show by horizontal lines the ener
per hole of one hole and of two holes placed in an op
8 3 8 system with a staggered field of magnitude0.1 on
all four sides. The fact that the energy per hole of tw
holes is lower than that of a single hole indicates that tw
holes pair bind in agreement with exact diagonalizati
studies [4]. However, the energy of a domain wall atr̄,

is even lower, indicating that pairs condense into doma
walls even at arbitrarily low doping.

The r, ­ 1 domain wall repels additional holes, lead
ing to the rapid increase inesr,d for r, . 1. For r, &

0.3, the holes are too far apart to induce thep-phase shift.
Since our BCs for the doped system require this pha
shift, for r, & 0.3 the energy per hole is quite high. In
this case BCs without thep-phase shift give a lower en-
ergy, as shown by the stars. However, here we find t
the holes bind into isolated pairs rather than a stripe (n
shown). The two-hole energy without thep-phase shift
is higher than the two-hole8 3 8 line because of larger
finite-size effects on the16 3 6 system. To judge the ef-
fects of the finite width of the system, results are show
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FIG. 1. (a) Energy per hole of various hole configurations,
discussed in the text. (b) Linear density profile for a40 3 6
wall, showing phase separation.
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for a 16 3 7 system at two values ofr,. On these larger
systems, the energy of the domain wall is lower. How
ever, given the significant finite size corrections, and w
only two widths available, we cannot be sure that the d
main wall phase is stable at very low doping. In the fo
lowing analysis, we will assume it is. At higher dopings
there is less uncertainty: the energy of the pair phase (
“without phase shift” curve) rises rapidly with doping.

The concave nature of the16 3 6 domain wall energy
for 0.5 , r, , 1 suggests that in this region, a lon
domain wall will phase separate into a region withr, ­ 1
and a region withr, ­ 0.5. We have directly observed
this phase separation in a long40 3 6 domain wall.
Figure 1(b) shows the density profile along the wall fo
r, ­ 0.75. Here the holes have separated into regio
with r, ­ 1 andr, , 0.5 0.6.

In Fig. 1(a), we also show results for the energy p
hole of a diagonal domain wall, using a tilted12 3 7
system, which includes seven adjacent (1, 1) lines of sit
Similar staggered fields for doped and undoped syste
were applied as for the (1, 0) walls shown in Fig. 1(a
Here the linear hole density is defined as the number
holes per

p
2 lattice spacings, so thatr, ­ 1 corresponds

to a filled diagonal wall. The energy nearr, ­ 1 is
slightly less than the energy of the (1, 0) wall; howeve
the width of the diagonal system is slightly greater. Th
result shown for a (1, 0) domain wall on a16 3 7 system
shows that the energies are actually nearly degenerat
r, ­ 1. At lower values ofr,, (1, 0) walls are favored.

In Figs. 2(a)–2(c) we show a system which allow
either a (1, 0) or (1, 1) filled domain wall: a14 3 7 system
with cylindrical BCs (periodic iny, open in x) doped
with 14 holes. Here a single domain wall extends th
length of the system. Staggered edge fields on the
and right edges and a small local potential on one s
on each edge were used to pin the ends of the dom
wall at specified sites. The initial DMRG buildup o
the lattice was arranged to initially force an approxima
domain wall of the specified form to appear; howeve
later sweeps allowed the system to relax, although
ends of the walls remained pinned. Within error bar
all three domain wall configurations shown in Figs. 2(a
2(c) have identical energies. In Fig. 2(a), a (1, 1) doma
wall wraps around the system. In Fig. 2(b), a wall wit
both (1, 0) and (1, 1) parts is present. Notice that t
wall resists being situated at an intermediate angle.
Fig. 2(c), a (1, 0) domain wall is present. The degenera
of these states indicates that filled domain walls ha
the same energy, whether they run in the (1, 0) or (1,
directions. This suggests that filled domain walls mig
readily fluctuate or form static disordered configurations

Note that at low doping, in a strictly 2D system, on
would expect infinite, straight (1, 0) domain walls wit
filling given by the optimal fillingr̄, ø 0.5. However,
in a system with weak coupling to other planes,
order to maintain long range antiferromagnetic order, it
more likely that domain walls would form closed loops
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FIG. 2. (a)–(c): Hole density, showing domain walls in
14 3 7 system. The figures are rotated by90± for compactness.
(d) Hole and spin densities showing a looped wall on a20 3 8
system with 16 holes. The diameter of the gray holes a
the length of the arrows are proportional to1 2 knil and kSz

i l,
respectively, according to the scales shown.

so that most of each plane would be in the domina
antiferromagnetic domain. In Fig. 2(d) we show a loo
on a 20 3 8 system. In this system, staggered field
without any phase shifts were applied to all four side
preventing a domain wall from ending on a side. Und
these circumstances, a loop forms. In a system of wea
coupled planes, the size of a typical loop would be set
balance repulsion between opposite sides of the loop a
the exchange cost from the coupling to adjacent plan
[If the exchange coupling between planes wereJ 0 ,
1025J and assuming the repulsion is given by Eq. (3
the loop size would be about 15–20 lattice spacing
At higher dopings of just a few percent, the interaction
between walls would favor the more closely packe
striped phases.

In order to understand this interaction between doma
walls, we have studied anL 3 6 system with cylindrical
BCs. In this system, stable transverse domain wa
with four holes wrap around the system. These wa
have r, ­ 2y3: apparently, the short distance aroun
the cylinder stabilizes this otherwise forbidden value
r,. However, we do not expect these finite size effec
to strongly effect the interwall interactions. We studie
systems with eight or twelve holes, forming two or thre
domain walls, and studied various lengths ofL. The
energy per hole as a function of the domain wall spaci
d is shown in Fig. 3(a). The walls repel rather strongly
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FIG. 3. (a) Energy per hole of (0, 1) domain walls on a16 3 6
system, as a function of domain wall separation. The ins
shows the transverse hole density in one of the walls. (b) Th
energy of an array of domain walls as a function of dopingx.

short distances. The solid curve in Fig. 3(a) is a simp
exponential fit

esdd ; es`d 1 V sdd ­ es`d 1 Ae2dyw , (3)

with es`d ­ 21.79, A ­ 0.87, andw ­ 1.8. The source
of the repulsion appears to be the finite width of the walls
the hole density distribution spreads out over sever
lattice spacings. In the inset of Fig. 3(a), we show th
hole density per site as a function of,x for a 13 3 6
system with a single domain wall in the center. This give
the density profile of a wall. An isolated wall, far from
boundaries in theL 3 6 system withr, ­ 2y3, is site
centered. However, walls near boundaries can be mo
bond centered; there appears to be little energy differen
between walls which are site centered, bond centered,
in between. Notice the substantial width of the wall; only
30% of the hole density is on the center leg. The effectiv
mass of the wall as a whole seems to be very high, so th
it is effectively pinned by truncation errors in DMRG. In
other words, we believe very little of the apparent width
shown is due to uniform motion of the entire wall [5].

Using the results of Fig. 1 for the energy per hole
in a domain wall and Eq. (3) for the repulsion per
hole between domain walls, we consider the relationsh
between the domain wall spacingd and the dopingx. The
energy per site of an array of domain walls is given by

Esr,, dd ; xfesr,d 1 V sddg . (4)
3229
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For r, ­ 1y2, d ­ 1y2x, while for r, ­ 1, d ­ 1yx.
For fixedr,, we define

Esxd ; Ef r,, dsxdg 2 xf2es1d 2 es0.5dg . (5)

The second term in Eq. (5) is like a shift in the chemica
potential, making the curvature in the energy more visible
In Fig. 3(b), we plot Esxd for r, ­ 1y2 and r, ­ 1
arrays of walls. At low values ofx, all the walls have
r, ­ 0.5 and therefored21 ­ 2x. For large values ofx,
all the walls haver, ­ 1 and therefored21 ­ x. For
0.11 , x , 0.16, using a Maxwell construction one finds
a mixture of walls with two different spacingsd1y2 and
d1. We believe the Maxwell construction is relatively
insensitive to inaccuracies inV sdd, which was determined
only roughly using walls on anL 3 6 system with a fixed
value ofr,. However, the precise values ofd1y2 andd1
could be sensitive toV sdd.

To determined1y2 and d1 more precisely, we have
simulated a28 3 8 system, with cylindrical BCs, with
four (0, 1)r, ­ 0.5 walls and two (0, 1)r, ­ 1.0 walls,
andx ­ 0.14. The results are shown in Fig. 4(a). Here,
the wall spacings naturally adjust tod1y2 andd1. We find
d1y2 ­ 4 and d1 ­ 6, implying that domain wall phase
separation occurs for0.125 , x , 0.17. (Note that in
this case, the system cannot continuously adjustr, away
from 1y2 or 1, and it may be that interactions between
walls would shift ther, ­ 0.5 wall to a somewhat differ-
ent filling.) The resulting inverse domain wall spacing is
plotted in Fig. 4(b). Also shown are experimental results
[6] for the shift in the magnetic peak in La22xSrxCuO4.
Here we assume that forx , 0.03 the system has loops
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FIG. 4. (a) Domain walls with r, ­ 1 and r, ­ 0.5
on a 28 3 8 system, with 32 holes and cylindrical BCs.
(b) Shift in the magnetic structure factor peak fromsp, pd
versusx. The solid circles are results [6] for La22xSrxCuO4.
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rather than stripes so that the magnetic peak would rem
at sp, pd. For x . 0.125, walls with r, ­ 1 and spac-
ing d1 give rise to an additional peak, which has not bee
observed thus far. However, as is obvious from Fig. 4(a
the r, ­ 1 walls seem to be much more subject to dis
order and fluctuations, which would significantly weake
and broaden this peak. Observation of this second pe
would lend strong support to our results, as would a no
monotonic shift in the peak nearx * 0.2.

In our DMRG calculations, large scale fluctuations a
difficult to observe, so that a slowly fluctuating stripe
phase would tend to appear static to us. While this
certainly a disadvantage of DMRG, it makes it easier
rule out uniform phases—phases in which there are
signs of domain walls. In numerous calculations wit
various BCs, andx , 0.3, we have not seen a uniform
phase [7]. We have observed apparently disordered wa
particularly with x ­ 0.15 0.20, but it is difficult to
determine in these cases whether an ordered phase is b
frustrated by BCs. Note that even if ther, ­ 1 walls are
fluctuating or disordered, this probably does not strong
reduce the energy per site relative to the slightly disorder
walls shown in Fig. 4(a), so that the phase separation in
regions withr, ­ 0.5 walls would be unaffected.

In summary, we find that the (1, 0) domain wall
formed in the dopedt-J model have a linear filling
r, ø 0.5 and an inverse spacingd21 ­ 2x for doping
x & 0.125. Forx * 0.17, the domain walls haver, ­ 1
and d21 ­ x. It is tempting to identify the underdoped
regime with ther, ­ 0.5 walls and the overdoped regime
with r, ­ 1. We also find thatr, ­ 1 (1, 0) walls
are nearly degenerate with diagonal (1, 1) domain wal
suggesting that these walls may have large fluctuatio
Finally, an experimental test of this picture would be th
observation of a broadened neutron scattering peak wit
reduced shift forx ø 0.20 0.22.
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