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Energetics of Domain Walls in the 2D¢-J Model
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Using the density matrix renormalization group, we calculate the energy of a domain wall in the 2D
t-J model as a function of the linear hole density, as well as the interaction energy between walls,
for J/t = 0.35. Based on these results, we conclude that the ground state always has domain walls
for dopings0 < x < 0.3. For x =< 0.125, the system has (1,0) domain walls with ~ 0.5, while
for 0.125 < x =< 0.17 the system has a possibly phase-separated mixture of wallspwith 0.5 and
pe = 1. Forx = 0.17, there are only walls witlh, = 1. [S0031-9007(98)07331-1]

PACS numbers: 74.20.Mn, 71.10.Fd, 71.10.Pm

In the past few years experimental evidence for stripe The 7-J Hamiltonian in the subspace of no doubly
formation in the cuprates has been mounting [1]. Aoccupied sites is given by
proper theoretical description of domain walls and striped + nin;
phases in a doped two-dimensional antiferromagnet has? = ~ Z(Cm‘cﬂ + He) + JZ<SI' S) - 4J>'
been extremely difficult to develop, however. Although (ifs @ (1)
simple mean field theories for the/ or Hubbard models .o (ij) are near-neighbor sites, is a spin index,S;
yield domain walls, it is clear that real domain walls have 1 ; :
a much more subtly correlated ground state. Partialf?d<is ars electron spin and creation operators, ane-
filled domain walls have been particularly hard to describecitcit + ¢;jcii. The near-neighbor hopping and exchange
theoretically. interactions are andJ. We measure energies in units of

Recently, we reported numerical results [2] showing?- We consider only/ /¢t = 0.35 here.
a striped phase in a6 X 8 t-J system at a filling of First, we consider the energetics of a single domain
x = 0.125, which were in agreement with neutron scatter-wall. Imagine a single long domain wall in the form of
ing results for LaoideOAerCuo“_, a system inwhicha a closed |00p with a fixed number of holes. The |00p
suppression of superconductivity occurs nea= 0.125.  would be a large rectangle, if domain walls prefer to be
Here, domain walls with a linear filling of /2 hole per oriented in the (1,0) or (0, 1) directions. If we assume
unit length separatingr-phase-shifted antiferromagnetic that the domain wall is stable against evaporation into
regions were spaced four lattice spacings apart. The queBoles or pairs, then the loop will adjust its size in order
tion of what happens at other fillings was not addressed© minimize its energy. The linear hole densjty of the
and the possibility of other types of domain walls, suchdomain wall will have an optimal valug,. We expect
as diagonal walls, was not considered. Experimentallythat at very low doing, any domain wall will have doping
in the Nds system Tranquadat al.[1] report coexis- Pe¢- At higher doping, repulsion between domain walls
tence of superconducting and domain order for a ranggould lead to increased values of.
of dopings away from: = 0.125. For0.05 < x < 0.12, Let e(p¢) be the energy per hole of a domain wall
the inverse domain spacing was found to vargas Be- ~ With densityp,. Thenp, minimizese(p¢). In order to
yond x = 0.12 the inverse spacing remained relatively measurez(p¢), some care is needed. The important point
constant, increasing slightly asapproached 0.2. is that a loop can shrink or contract without inducing

Here we address the question of the stability of domairfrustration in the antiferromagnetic region inside or out.
walls at low to moderate f||||ng, by Ca|cu|ating the energyTherefore, in order to reduce finite size eﬁeCtS, we define
of a domain wall in the 2D-J model, as a function of fill-  e(p¢) using two systems, each without frustration. The
ing, using density matrix renormalization group (DMRG) first system, with energyzq,, has a domain wall and
[3] techniques. We use systems with boundary condition8Cs favoring ther-phase shift of the antiferromagnetism
(BCs) carefully chosen not to frustrate the domain wallsinduced by the domain wall, while the second, with
We also estimate the repulsive interaction between doenergyEo, has no holes at all and BCs favoring mo
main walls, a||owing us to Study the domain wall f||||ng phase Shift, but which are otherwise identical. Defining
and spacing of a striped phase as a function of doping Ng4yw as the number of holes in the domain wall, we have
The DMRG results for energies use extrapolation to ex- e(pe) = (Eqw — Eo)/Naw - ()
tract the limit of zero truncation error, with up to 1400 In practice, we use open BCs with staggered fields on
states per block kept. More details of the numerical techthe edges on either side of the domain wall to induce the
nigues can be found in [2]. desired antiferromagnetic order.
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In Fig. 1(a) we showe(p;) as a function ofpy, foral6 X 7 system at two values gf,. On these larger
measured on 46 X 6 system with open BCs, with the systems, the energy of the domain wall is lower. How-
domain wall parallel to ther axis, and with staggered ever, given the significant finite size corrections, and with
magnetic fields of magnitude.1 applied to the top and only two widths available, we cannot be sure that the do-
bottom rows of sites. We see a minimum @t ~ 0.5.  main wall phase is stable at very low doping. In the fol-
On the same plot, we show by horizontal lines the energyowing analysis, we will assume it is. At higher dopings,
per hole of one hole and of two holes placed in an opetthere is less uncertainty: the energy of the pair phase (the
8 X 8 system with a staggered field of magnitu@lé on  “without phase shift” curve) rises rapidly with doping.
all four sides. The fact that the energy per hole of two The concave nature of the X 6 domain wall energy
holes is lower than that of a single hole indicates that twdor 0.5 < p, < 1 suggests that in this region, a long
holes pair bind in agreement with exact diagonalizatiordomain wall will phase separate into a region with= 1
studies [4]. However, the energy of a domain walpat and a region withpy = 0.5. We have directly observed
is even lower, indicating that pairs condense into domairthis phase separation in a lont) X 6 domain wall.
walls even at arbitrarily low doping. Figure 1(b) shows the density profile along the wall for

The p, = 1 domain wall repels additional holes, lead- p¢ = 0.75. Here the holes have separated into regions
ing to the rapid increase ia(p¢) for p¢ > 1. Forpe <  with p, = 1 andpy ~ 0.5-0.6.

0.3, the holes are too far apart to induce thephase shift. In Fig. 1(a), we also show results for the energy per
Since our BCs for the doped system require this phasbkole of a diagonal domain wall, using a tiltel® X 7
shift, for p¢ < 0.3 the energy per hole is quite high. In system, which includes seven adjacent (1, 1) lines of sites.
this case BCs without the-phase shift give a lower en- Similar staggered fields for doped and undoped systems
ergy, as shown by the stars. However, here we find thawvere applied as for the (1,0) walls shown in Fig. 1(a).
the holes bind into isolated pairs rather than a stripe (notlere the linear hole density is defined as the number of
shown). The two-hole energy without the-phase shift holes per/2 lattice spacings, so that, = 1 corresponds
is higher than the two-hol8 X 8 line because of larger to a filled diagonal wall. The energy near = 1 is
finite-size effects on thé6 X 6 system. To judge the ef- slightly less than the energy of the (1,0) wall; however,
fects of the finite width of the system, results are showrthe width of the diagonal system is slightly greater. The
result shown for a (1, 0) domain wall onla X 7 system
shows that the energies are actually nearly degenerate at

-1.55 - ‘ pe¢ = 1. At lower values ofpy, (1, 0) walls are favored.
Oy In Figs. 2(a)-2(c) we show a system which allows
—-- 1 Pair (8x8) either a (1, 0) or (1, 1) filled domain wall:lat X 7 system

-1.60 | | m—mDiagonal Domain Wall | - with cylindrical BCs (periodic iny, open inx) doped

*—kw/o phase shift (16x6) @

¢>Domain Wall (16x7) with 14 holes. Here a single domain wall extends the

length of the system. Staggered edge fields on the left

—~-1.65 | 1 and right edges and a small local potential on one site

\c% on each edge were used to pin the ends of the domain
************* P - wall at specified sites. The initial DMRG buildup of

-1.70 | 1 the lattice was arranged to initially force an approximate

domain wall of the specified form to appear; however,
later sweeps allowed the system to relax, although the
-1.75 + § (a) 1 ends of the walls remained pinned. Within error bars,
‘ ‘ all three domain wall configurations shown in Figs. 2(a)—
0.0 0.5 1.0 2(c) have identical energies. In Fig. 2(a), a (1,1) domain
) e ' wall wraps around the system. In Fig. 2(b), a wall with

: : : both (1,0) and (1,1) parts is present. Notice that the
1.0 | wall resists being situated at an intermediate angle. In
0.8 | | Fig. 2(c), a (1, 0) domain wall is present. The degeneracy
a of these states indicates that filled domain walls have
06 ¢ (b) - the same energy, whether they run in the (1,0) or (1,1)
directions. This suggests that filled domain walls might

0.4 ‘ ‘ ‘ readily fluctuate or form static disordered configurations.

O 10 20 30 40 Note that at low doping, in a strictly 2D system, one

| would expect infinite, straight (1,0) domain walls with

X filling given by the optimal fillingps, = 0.5. However,

FIG. 1. (a) Energy per hole of various hole configurations, adl @ System V‘_”th weak coupll_ng to other. planes,. In
discussed in the text. (b) Linear density profile fod@x 6  order to maintain long range antiferromagnetic order, it is

wall, showing phase separation. more likely that domain walls would form closed loops,
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FIG. 2. (a)—(c): Hole density, showing domain walls in a
14 X 7 system. The figures are rotated 9§ for compactness.
(d) Hole and spin densities showing a looped wall athax 8 IG. 3
system with 16 holes. The diameter of the gray holes an -
the length of the arrows are proportional to- (n;) and(S;),
respectively, according to the scales shown.

X

(a) Energy per hole of (0, 1) domain walls ohtax 6
ystem, as a function of domain wall separation. The inset

shows the transverse hole density in one of the walls. (b) The

energy of an array of domain walls as a function of doping

r<,hort distances. The solid curve in Fig. 3(a) is a simple

so that most of each plane would be in the dom'nanexponential fit

antiferromagnetic domain. In Fig. 2(d) we show a loop
on a20 X 8 system. In this system, staggered fields e(d) = e(®) + V(d) = e(®) + Ae /", 3)

without any phase shifts were applied to all four S|desWith e(e0) = —1.79, A = 0.87, andw = 1.8. The source

reventing a domain wall from ending on a side. Under . . :
'?hese circ%mstances a loop forms. Ig a system of weakIOf the repulsion appears to be the finite width of the walls:

| ) the hole density distribution spreads out over several
coupled planes, the size of a typical loop would be set t?attice spacings. In the inset of Fig. 3(a), we show the

balance repulsion between opposite sides of the loop and, density per site as a function 6f for a 13 X 6

the exchange cost from the coupling to adjacent planes, ; ; : X S
. system with a single domain wall in the center. This gives
[If the exchange coupling between planes were~

10-5J and assuming the repulsion is given by Eq. (3),the density profile of a wall. An isolated wall, far from

the loop size would be about 15-20 lattice spacings.iound"jlrles in thel. X 6 system withp, = 2/3, Is site

. . , . . entered. However, walls near boundaries can be more
At higher dopings of just a few percent, the interaction ) ) .
ond centered; there appears to be little energy difference
between walls would favor the more closely packed

; between walls which are site centered, bond centered, or
striped phases. . : . i i
_ . .in between. Notice the substantial width of the wall; only
In order to understand this interaction between domai

walls, we have studied ah X 6 system with cylindrical 0% of the hole density is on the center leg. The effective

BCs. In this system, stable transverse domain wallg 2> of the wall as a whole seems to be very high, so that
o y ' it is effectively pinned by truncation errors in DMRG. In
with four holes wrap around the system. These walls

have p; = 2/3: apparently, the short distance aroundother words, we believe very little of the apparent width
the cylinder stabilizes this otherwise forbidden value of° hlcjvsvirrlm 'S t?:ée :gslljjrl]tgoror? gotlcin grt?ﬁeegw;wa” Ee5r].hole
p¢. However, we do not expect these finite size effectsIn a d%main wall and Eg. (3) for the regﬁlsEon or
to strongly effect the interwall interactions. We studied 9 P P

systems with eight or twelve holes, forming two or threegglt\?vggm'ﬁ:r;gﬁgﬁlcvgf élséz\i'; cr?gi;]dee(rjéhienrela_?ﬁgshlp
domain walls, and studied various lengths bf The P o ping-

energy per hole as a function of the domain wall spacingenergy per site of an array of domain walls is given by

d is shown in Fig. 3(a). The walls repel rather strongly at E(p¢,d) = x[e(pe) + V(d)]. 4)
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For p¢ = 1/2, d = 1/2x, while for p; = 1, d = 1/x.  rather than stripes so that the magnetic peak would remain
For fixedp¢, we define at (7, 7). Forx > 0.125, walls with py = 1 and spac-

E(x) = E[ p¢,d(x)] — x[2e(1) — ¢(0.5)]. (5) Ingd give rise to an additional peak, which has not been
observed thus far. However, as is obvious from Fig. 4(a),
the p¢ = 1 walls seem to be much more subject to dis-
order and fluctuations, which would significantly weaken
and broaden this peak. Observation of this second peak
would lend strong support to our results, as would a non-
monotonic shift in the peak near= 0.2.

In our DMRG calculations, large scale fluctuations are
difficult to observe, so that a slowly fluctuating striped
phase would tend to appear static to us. While this is
certainly a disadvantage of DMRG, it makes it easier to
rule out uniform phases—phases in which there are no
signs of domain walls. In numerous calculations with
various BCs, andk < 0.3, we have not seen a uniform
phase [7]. We have observed apparently disordered walls,
particularly with x = 0.15-0.20, but it is difficult to
determine in these cases whether an ordered phase is being
frustrated by BCs. Note that even if the = 1 walls are
'fluctuating or disordered, this probably does not strongly
reduce the energy per site relative to the slightly disordered
walls shown in Fig. 4(a), so that the phase separation into
regions withp, = 0.5 walls would be unaffected.

In summary, we find that the (1,0) domain walls

The second term in Eq. (5) is like a shift in the chemical
potential, making the curvature in the energy more visible
In Fig. 3(b), we plotE(x) for p, = 1/2 and p, = 1
arrays of walls. At low values of, all the walls have
pe = 0.5 and therefore/ ™' = 2x. For large values of,

all the walls havep, = 1 and therefored ™! = x. For
0.11 < x < 0.16, using a Maxwell construction one finds
a mixture of walls with two different spacings,,, and
di. We believe the Maxwell construction is relatively
insensitive to inaccuracies #(d), which was determined
only roughly using walls on ah X 6 system with a fixed
value of p,. However, the precise values df/,, andd;
could be sensitive t& (d).

To determined;, and d; more precisely, we have
simulated a28 X 8 system, with cylindrical BCs, with
four (0, 1) p¢ = 0.5 walls and two (0, 1o, = 1.0 walls,
andx = 0.14. The results are shown in Fig. 4(a). Here
the wall spacings naturally adjustdg,, andd;. We find
dij» = 4 andd, = 6, implying that domain wall phase
separation occurs fod.125 < x < 0.17. (Note that in
this case, the system cannot continuously adpysaway
from 1/2 or 1,.and It m_ay be that interactions be.tweenformed in the dopedr-J model have a linear filling
wallfgll\(vou)ld 'IS'EIﬂ thepf._ 0.5 wall tg a sqmewlrllat differ- p¢ = 0.5 and an inverse spacing~' = 2x for doping
ent filling. e resulting inverse domain wall spacing is ) . v
plotted in Fig. 4(b). Also shown are experimental results, = 0.125. Forx = 0.17, the domain walls have, = 1

s . : andd ™! = x. It is tempting to identify the underdoped
[6] for the shift in the magnetic peak in ba,Sr,CuQ;. regime with thep, = 0.5 walls and the overdoped regime
Here we assume that far < 0.03 the system has loops | p¢=1. We also find thatpy = 1 (1,0) walls

are nearly degenerate with diagonal (1, 1) domain walls,
suggesting that these walls may have large fluctuations.
Finally, an experimental test of this picture would be the

— (a) observation of a broadened neutron scattering peak with a
reduced shift forx = 0.20-0.22.
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