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Rotating Superconductors and the Frame-Independent London Equation
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A frame-independent, thermodynamically exact, London equation is presented, which is especially
valid for rotating superconductors. A direct result is the unexpectedly high accurddy () for the
usual expression of the London moment. [S0031-9007(98)07338-4]

PACS numbers: 74.20.De

The defining property of superconductors to expel any The superfluid velocity,; as a thermodynamic variable
magnetic field from its bulk reverses when it is rotated, ands a concept perhaps more of superfluid helium, and less
a spontaneous field (or London moment) of superconductors. The reason frequently given is again

B=-20/y y = e/me (1) f[he presence of the lattice, which bree}ks the translgtional
’ ’ invariance for the electrons. (Even without the lattice, a
appears, wher is the rotational velocity, while:, e(<0)  uniform background charge breaks the Galilean symme-
are, respectively, the bare mass and charge of the electrany.) This is hardly convincing, as all the transformations
[1,2]. (In MKSA units,y = e¢/m.) This is intriguing may well be defined to include the ions. Then the usual
because some exact cancellations must have taken plaicewariance under translation, rotation, and Galilean boost
before microscopic parameters sucheaw m will appear s restored, and we retain local conservation of (total) mo-
on a macroscopic level, in a complicated many bodymentum and angular momentum. Sag, is a perfectly
system that any superconductor is. So in this sense, tHegitimate thermodynamic variable also in the context of
London moment may perhaps be compared to the quantusuperconductors, it characterizes the spontaneously bro-
Hall effect [3]. The bare chargeholds its place because ken phase symmetry, and (as we shall see) it gives rise to
the superfluid velocity, persistent mass and charge current simultaneously.
In contrast to the exact gauge symmetry, the Galilean
Ve = (i/2m)Vo = yA, (2) transformation property of:?s, gnd yhence yEq. (1), are
must be gauge invariant.A(is the vector potential, angd  approximative and subject to relativistic corrections. This
is the macroscopic phase variable characterizing the spohas been carefully considered by various authors, who
taneously broken symmetry.) Although this type of argu-obtain values [2] betweeh0™* and 107>, The relevant
ments does not apply te, a common prefactor in Eqg. (2), quantity here is the work functioi of the electron, or
many authors have convincingly argued why neverthelesshe electrochemical potential, overc’>. As pointed out
and to what extentn remains unrenormalized in the Lon- by these authors, this value is subject to further scrutiny,
don moment [2,4—6]. as possibly important effects, such as the centrifugal force

In this paper, a symmetry argument as simple as the the rotating frame [5] or the presence of the symmetry
gauge invariance is invoked to show why it is the barebreaking lattice [6], have not been included.
mass that enters Egs. (1) and (2). The basic point is the Eliminating these sources of uncertainties, especially by
following: Only as defined, with the bare massdoesuv including the ions explicitly, the accuracy is shown in this
transform as a velocity. paper to be given bytcpem/c?, Whereucpem is the chemi-

There is a preferred coordinate system in supercondueal potential of the superconductor, or the energy per unit
tors, that of the lattice, and most useful properties are beshass of adding a (neutral) atom to the crystal. Because
understood in this system. Confining one’s interest toof the much greater mass of the atomsyem/c? is tiny,
these, the transformation property of is irrelevant, and of order10~'°. This makes the correction negligible for
de Gennes’ famously pointed statement, that the mass all practical purposes, and renders Eq. (1) about 3 orders
is completely arbitrary, and might well be taken as that ofof magnitude more precise than any present experimental
the Sun [7], valid. technique to determine the electron mass directly [8].

Sometimes, however, other coordinate systems are more To understand the connection between Eq. (1) and the
advantageous, especially if the lattice itself (when rotatingsalilean transformation property @f;,, consider the Lon-
or subject to a sound field) is not an inertial system. Adon equation, which for more than half a century has been
theory that consistently relates the results from differenvery useful to account for static properties of superconduc-
frames is then desirable. And how; transforms is tors, especially the Mei3ner effect and the associated mag-
an important input for such a frame-independent theorynetic healing phenomena. It is obtained by takijpg=
As will be shown below, the London moment may be g,v; in the static Maxwell equatioN X H = vy j,, where
understood as a direct consequenceObeing a velocity. o, is the superfluid density, a stiffness constant. (The
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superconducting number density = o,/m is probably (h/2)¢ + u— =0. )
more familiar.) Applying a further curl on both sides, we
arrive at (what we for simplicity shall here call) the London
equationV X VX H = —o,¥’B (B =V X A), which
yields the magnetic penetration depth= *vy./o, (for
H = B)[9]. Unfortunately, the same equation also insists de = pdo + ®dp,, (8)

on VaniShinw fields in the bulk, irrespective of a pOSSible or as a function of the numbers of ions and e|ectr0ns’

rotation() # 0. de = u.d J 9
Because of its curious ineptness to describe rotating su- &= pedny + p-dn-. ©)

perconductors, the London equation is not usually conThese two pairs of independent variables are related by
sulted in this context (a notable exception is [2]; see also
[10]). Instead, Eq. (2) is considered alone, with a large
dose of healthy intuition to compensate for its incompleteWwith M,m as their mass ande|,e as their charge,
ness: If we rotate a bulk cylinder of superconductor, it respectively. As a result, the conjugate variables are
is essential that over the sample as a whale= v,uice,  related as

because otherwise very large currents would flow4].. we =Mp — ed, u— =mu + ed. (11)
This appears convincing, as taking the curl of Eq. (2) with

Vs = Vlauice Yields EQ. (1) withQ = 3V X vj,uice, but
it is not really consistent: Inserting, = va¢ice also in

Consider first the electrochemical potential: Take the
thermodynamic energy density either as a function of
the mass and charge density,

@0 = Mny + mn_, Pe = lel(ny — n-), (10)

Note two points: (i) This is the only place where
enters our considerations independently from Eq. (2), yet
i, = o,v, leads exactly to the large electric current thatSNc€@: pe, 1+, n— are all strictly conservedl, m, e are
Js = Os¥s Y J the bare parameters. (ii) Following the standard notation

was to be avoided in the first place. And setting= . lativistic phvsi ke th densi
viauice While considering linear motions of the supercon-!n relativistic physics, we take the energy denseiyto

ductor plays further havoc with physics include the rest energyc?. Then all three chemical
This paper reports the thermodynamic derivation of a°Ctentials contain a large constant term, especially

generalized London equation that is (i) valid in an arbitrary U= fehem + €2 (12)

inertial frame and (ii) given in terms of the macroscopic

. ; 'With the Josephson equation now given as
measured fields. Itis p q g

(F/2m)e + u = —ed/m, Vi + Vu = eE/m,

VXVXHy= _Qs')’('yB/n + 2Q), (3) (13)
whereH, denotes the field in the local rest frame of the .
lattice, and we may define a 4-vector
n=1+ Mchem/c2 (4) Ug = (Fl/zm)aa@ — YAL = (_M/Cavs)’ (14)

such that a transformed’,, in the system boosted by
v, is given as(—u'/c,v)) = (=[u + v - vi]/c, vy —
{LV/Cz), especially

is the relativistic correction. Clearly, this equation ac-
counts for the bulk value of the field3 = —29Q /vy,
and the attendant magnetic healing, both with and withou

rotations. vl =v, — uv/c’ (15)
Equation (3) is obtained by combining Taking p/c? = 1 + penem/c? = 7, we see thaw,/n
V X Hy = yjs, (5) transforms as a velocity, rendering the combination in
. _ 6 Eq. (6) invariant.
is = es(vs/m = ). (6) As is clear from EQ. (8)uchem IS the energy of adding

Both will be derived carefully below, but let us first an atom to the crystal at constant charge, divided by
establish a qualitative understanding: The static Maxwelthe mass of the atom. Estimating this energylé$ K
equation (5) is an Euler-Lagrange equation, expressing thgboiling/melting temperature), d0~'° J, and the atom as
fact that the free energy is minimal with respect to varia-having50 proton masss 10° electron mass= 10~% kg,
tions in the vector potentiadA; Eq. (6) is a constitutive we have|uchem| = 10° (m/s)?, oryp = 1-1071°,
relation, expressing the thermodynamic conjugate variable The main correction being so small, any inaccuracy
js = d&/dv, as a function of the two velocities, andv,, in Eq. (7) will be even less important. For instance,
wherew,, is the velocity of the lattice points. As the left the velocity dependent terms in the Josephson equation
side of Eq. (5) is invariant under a Galilean transformation{not considered above as the rest frame form was cho-
so must the right side- j, be, which may therefore depend sen) are smaller if the macroscopic velocity stays below
only on the velocity difference. Equation (6) states this,/ichem =~ 10> m/s. The same is true for the centrifugal
fact to linear order, including the relativistic correction. force, which slightly compresses the outer rim, and de-
(This is where the information that, is a velocity enters compresses the center, of the superconductor. As a result,
the equations.) the densityp, and, henceu hem (@) are inhomogeneous.
To understand the transformation behaviorigf we  However, sinceuchem — (€ X r)?/2 remains constant
start from the rest frame form of the Josephson equation[11], this correction is again of ordép /c)>.
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The reasons previous authors arrived at much largek is a local function oD, while p, from everywhere is
relativistic corrections vary: Some considered a differenheeded to calculat®. Local thermodynamics and hydro-
4-vector w, = (h/2m)d, ¢, which transforms asv, =  dynamics can deal only with quantities that preserve local-
w, — v(u_/mc?). [See, for instance, Eq. (10) of [5].] ity. The second question is discussed in details in [16], and
Mainly because of the smallness of the electron mass a result of the fact that the conserved, total momentum
m, the associated relativistic correctipn. /mc? deviates densityg'® contains field contributions. The third ques-
more strongly from 1. Others did consider the 4-vector oftion is discussed in [17], in which the dynamics of a hy-
Eq. (14), especially Cabrera [2], who, in fact, obtained thepothetical superfluid crystal is derived, where the equation
combinationu— — e®d as the relevant factor in the boost of motion for the displacement vectar is shown to be
transformation. The absence of ions in his considerations;; = v}’ + Y2, with Y? a dissipative term that accounts
however, prevented an interpretation of this combinatiorfor diffusion of defects and interstitials [15]. So, ¥’
as the chemical potential of the solid. In addition, theis zero (especially true in equilibrium), the lattice points
terme® was taken to be given only in the corotating, andmove withv,. This remains valid also for superconduc-
not in the laboratory frame, and was therefore neglectedors, the dynamics of which reduces to that of a superfluid
Interestingly, the best experimental evidence to date [12¢rystal in the limite — 0 of Eq. (2).
yields the value; — 1 = 10~*, and thus contradicts (both ~ We now revisit Eqg. (6): When deriving the constitutive
in sign and magnitude) all the above theories, including theelation for j,, the information that it must be an invariant
present one. gquantity was a consequence of asserting the consistency

We now proceed to prove Eq. (5) by thermodynamicof Eq. (5). More prudently, this should be obtained as a
considerations, in a way that is similar to the minimizationresult. So, the form of, will be derived independently
procedure of the Ginsburg-Landau functional [13], thoughbelow, without the reference to Eq. (5), or even the input
the procedure is executed in a general inertial frame herthat v,/ 7 is a velocity—though the equivalent informa-
[14], not necessarily that of the lattice. The basic Gibbdion of Eq. (13), the Josephson equation, is needed. As

relation is we shall see, this calculation will also provide insights in
an analogy between superconductors and superfiiél
de = Tds + udo + v, - dg"* + 0;;dV,;u; We start the derivation by observing that the energy cur-

+Eo-dD + Hy - dB + j, - dv,. (16) rentQ contains the ternj, u, then deduce the form of the
total momentum density by the known symmetry of the

The first four terms are those of a normal solid [15], withe€nergy stress 4-tensqz;* = Q/c?, and, finally, we ob-
£,s,0, gmt denoting the densities of energy, entropy, massi,lain the explicit form ofj; via a Maxwell relation linking
and momentum, respectively, whilg is the displacement g tO j;.
vector. The conjugate variables are defined by the respec- The energy currenQ is obtained by evaluating via
tive derivatives, e.gT = d&/ds, orv, = de/dg'. The EQ. (16), and requiring thatitis given as a total divergence,
next two terms account for the presence of fields, where the = —V - Q. In the rest frame,, = 0, and disregarding
subscript, denotes the respective field in the rest framedissipative terms, we have, u; = 0; hence only four
v, = 0. The last term appears in superconducting or suterms remain:
perfluid phases, with the variable given by Eq. (2). Ac- e=u0 +E-D+H-B+j, v,.

cepting that the energy is given as in Eq. (16), minimizing: . . .
the free energy while keeping the conserved quantities corj- ith v; given as in Eq' (13), the Ma_xwell equations a’.‘d
fhe continuity equation must contain the corresponding

stant, stationarity with respect to variations in the vecto
counter terms,

potential, .
B=-cVXE, (17)
5](8 — Ts) = f[HOS(V X A) — js8(yA)] + ..., D =cVXH - ej/m, (18)
e+V-j =0, (19)

quickly leads to Eq. (5). The other equilibrium conditions such that the energy curreni@= j,u + ¢cE X H. The

are [11]9,vj + a;v; =0,9,v" + Vu = 0,V,0;; = 0, same calculation in a general framg # 0 is tedious, but

andE, = 0. not more difficult. And of the new terms, attv,, the
Although the basic structure of Eq. (16) simply statesoverwhelming one is that associated with the rest mass,

the fact that the thermodynamic equilibrium of a superconp ¢?v,. So the total momentum density is

ducting crystal depends on the specified variables, there

are perhaps three points that may seem puzzling at first:

(i) Why is the term®dp, of Eq. (8) substituted by its par- hjje the neglected terms are again relativistic corrections,

tially integrated formE, - dD of Eq. (16)? (i) Why do  qneq that are completely irrelevant in the present context.
the two fields E andH, assume their local rest frame val- Now consider the Maxwell relation

ues? (iii) To what extent is, the velocity of the lattice?
The answer to the first question is connected to locality: 981/ 0j31y, = avi/ v}, = (n/c*)di;. (21)
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Evaluating the first expression via Eq. (20) we arrive at the [2] B. Cabrera, Jpn. J. Appl. Phy26-3 1961 (1987), and
third expression; and the second equals sign only allows a  references therein.
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= = :
Equtons (12)and (19)show = s/ rans. 110/ ey Q. i WS and erg n
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