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Rotating Superconductors and the Frame-Independent London Equation
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A frame-independent, thermodynamically exact, London equation is presented, which is espec
valid for rotating superconductors. A direct result is the unexpectedly high accuracy (,10210) for the
usual expression of the London moment. [S0031-9007(98)07338-4]
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The defining property of superconductors to expel a
magnetic field from its bulk reverses when it is rotated, a
a spontaneous field (or London moment)

B ­ 22Vyg, g ; eymc , (1)

appears, whereV is the rotational velocity, whilem, es,0d
are, respectively, the bare mass and charge of the elec
[1,2]. (In MKSA units, g ­ eym.) This is intriguing
because some exact cancellations must have taken p
before microscopic parameters such ase or m will appear
on a macroscopic level, in a complicated many bod
system that any superconductor is. So in this sense,
London moment may perhaps be compared to the quant
Hall effect [3]. The bare chargee holds its place because
the superfluid velocity,

vs ­ sh̄y2md=w 2 gA , (2)

must be gauge invariant. (A is the vector potential, andw
is the macroscopic phase variable characterizing the sp
taneously broken symmetry.) Although this type of arg
ments does not apply tom, a common prefactor in Eq. (2),
many authors have convincingly argued why neverthele
and to what extent,m remains unrenormalized in the Lon
don moment [2,4–6].

In this paper, a symmetry argument as simple as t
gauge invariance is invoked to show why it is the ba
mass that enters Eqs. (1) and (2). The basic point is
following: Only as defined, with the bare massm, doesys

transform as a velocity.
There is a preferred coordinate system in supercond

tors, that of the lattice, and most useful properties are b
understood in this system. Confining one’s interest
these, the transformation property ofys is irrelevant, and
de Gennes’ famously pointed statement, that the massm
is completely arbitrary, and might well be taken as that
the Sun [7], valid.

Sometimes, however, other coordinate systems are m
advantageous, especially if the lattice itself (when rotati
or subject to a sound field) is not an inertial system.
theory that consistently relates the results from differe
frames is then desirable. And howys transforms is
an important input for such a frame-independent theo
As will be shown below, the London moment may b
understood as a direct consequence ofys being a velocity.
0031-9007y98y81(15)y3223(4)$15.00
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The superfluid velocityys as a thermodynamic variable
is a concept perhaps more of superfluid helium, and le
of superconductors. The reason frequently given is ag
the presence of the lattice, which breaks the translatio
invariance for the electrons. (Even without the lattice,
uniform background charge breaks the Galilean symm
try.) This is hardly convincing, as all the transformation
may well be defined to include the ions. Then the usu
invariance under translation, rotation, and Galilean boo
is restored, and we retain local conservation of (total) m
mentum and angular momentum. So,ys is a perfectly
legitimate thermodynamic variable also in the context
superconductors, it characterizes the spontaneously b
ken phase symmetry, and (as we shall see) it gives rise
persistent mass and charge current simultaneously.

In contrast to the exact gauge symmetry, the Galile
transformation property ofys, and hence Eq. (1), are
approximative and subject to relativistic corrections. Th
has been carefully considered by various authors, w
obtain values [2] between1024 and 1025. The relevant
quantity here is the work functionW of the electron, or
the electrochemical potential, overmc2. As pointed out
by these authors, this value is subject to further scrutin
as possibly important effects, such as the centrifugal for
in the rotating frame [5] or the presence of the symmet
breaking lattice [6], have not been included.

Eliminating these sources of uncertainties, especially
including the ions explicitly, the accuracy is shown in th
paper to be given bymchemyc2, wheremchem is the chemi-
cal potential of the superconductor, or the energy per u
mass of adding a (neutral) atom to the crystal. Becau
of the much greater mass of the atoms,mchemyc2 is tiny,
of order10210. This makes the correction negligible fo
all practical purposes, and renders Eq. (1) about 3 ord
of magnitude more precise than any present experimen
technique to determine the electron mass directly [8].

To understand the connection between Eq. (1) and
Galilean transformation property ofys, consider the Lon-
don equation, which for more than half a century has be
very useful to account for static properties of supercondu
tors, especially the Meißner effect and the associated m
netic healing phenomena. It is obtained by takingjs ­
%svs in the static Maxwell equation= 3 H ­ gjs, where
%s is the superfluid density, a stiffness constant. (Th
© 1998 The American Physical Society 3223
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superconducting number densityns ; %sym is probably
more familiar.) Applying a further curl on both sides, w
arrive at (what we for simplicity shall here call) the Londo
equation,= 3 = 3 H ­ 2%sg2B (B ; = 3 A), which
yields the magnetic penetration depthl ­ 6g

p
%s (for

H ­ B) [9]. Unfortunately, the same equation also insis
on vanishingB fields in the bulk, irrespective of a possible
rotationV fi 0.

Because of its curious ineptness to describe rotating
perconductors, the London equation is not usually co
sulted in this context (a notable exception is [2]; see al
[10]). Instead, Eq. (2) is considered alone, with a larg
dose of healthy intuition to compensate for its incomplet
ness: If we rotate a bulk cylinder of superconductor, i
is essential that over the sample as a wholeys ­ ylattice,
because otherwise very large currents would flow . . .[4].
This appears convincing, as taking the curl of Eq. (2) wi
ys ­ ylattice yields Eq. (1) withV ­ 1

2 = 3 ylattice, but
it is not really consistent: Insertingys ­ ylattice also in
js ­ %svs leads exactly to the large electric current tha
was to be avoided in the first place. And settingys ­
ylattice while considering linear motions of the supercon
ductor plays further havoc with physics.

This paper reports the thermodynamic derivation of
generalized London equation that is (i) valid in an arbitra
inertial frame and (ii) given in terms of the macroscopi
measured fields. It is

= 3 = 3 H0 ­ 2%sgsgByh 1 2Vd , (3)

whereH0 denotes the field in the local rest frame of th
lattice, and

h ; 1 1 mchemyc2 (4)

is the relativistic correction. Clearly, this equation ac
counts for the bulk value of the field,B ­ 22hVyg,
and the attendant magnetic healing, both with and witho
rotations.

Equation (3) is obtained by combining

= 3 H0 ­ gjs , (5)

js ­ %ssvsyh 2 vnd . (6)

Both will be derived carefully below, but let us firs
establish a qualitative understanding: The static Maxw
equation (5) is an Euler-Lagrange equation, expressing
fact that the free energy is minimal with respect to vari
tions in the vector potentialdA; Eq. (6) is a constitutive
relation, expressing the thermodynamic conjugate varia
js ; ≠´y≠vs as a function of the two velocities,ys andyn,
whereyn is the velocity of the lattice points. As the lef
side of Eq. (5) is invariant under a Galilean transformatio
so must the right side,js be, which may therefore depend
only on the velocity difference. Equation (6) states th
fact to linear order, including the relativistic correction
(This is where the information thatys is a velocity enters
the equations.)

To understand the transformation behavior ofys, we
start from the rest frame form of the Josephson equatio
3224
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sh̄y2d Ùw 1 m2 ­ 0 . (7)

Consider first the electrochemical potentialm2: Take the
thermodynamic energy densitý either as a function of
the mass and charge density,

d´ ­ md% 1 Fdre , (8)

or as a function of the numbers of ions and electrons,

d´ ­ m1dn1 1 m2dn2 . (9)

These two pairs of independent variables are related by

% ­ Mn1 1 mn2, re ­ jej sn1 2 n2d , (10)

with M, m as their mass andjej, e as their charge,
respectively. As a result, the conjugate variables a
related as

m1 ­ Mm 2 eF, m2 ­ mm 1 eF . (11)

Note two points: (i) This is the only place wherem
enters our considerations independently from Eq. (2), y
since% , re, n1, n2 are all strictly conserved,M, m, e are
the bare parameters. (ii) Following the standard notati
in relativistic physics, we take the energy density´ to
include the rest energy,%c2. Then all three chemical
potentials contain a large constant term, especially

m ­ mchem 1 c2. (12)

With the Josephson equation now given as

sh̄y2md Ùw 1 m ­ 2eFym, Ùvs 1 =m ­ eEym ,
(13)

we may define a 4-vector

ua ; sh̄y2md≠aw 2 gAa ­ s2myc, vsd , (14)

such that a transformedu0
a , in the system boosted by

v, is given as s2m0yc, v 0
sd ­ s2fm 1 v ? vsgyc, vs 2

mvyc2d, especially

v 0
s ­ vs 2 mvyc2. (15)

Taking myc2 ­ 1 1 mchemyc2 ; h, we see thatvsyh

transforms as a velocity, rendering the combination
Eq. (6) invariant.

As is clear from Eq. (8),mchem is the energy of adding
an atom to the crystal at constant charge, divided
the mass of the atom. Estimating this energy as104 K
(boiling/melting temperature), or10219 J, and the atom as
having50 proton massø 105 electron massø 10225 kg,
we havejmchemj ø 106 smysd2, or h ø 1 10210.

The main correction being so small, any inaccura
in Eq. (7) will be even less important. For instance
the velocity dependent terms in the Josephson equat
(not considered above as the rest frame form was ch
sen) are smaller if the macroscopic velocity stays belo
p

mchem ø 103 mys. The same is true for the centrifuga
force, which slightly compresses the outer rim, and d
compresses the center, of the superconductor. As a res
the density% , and, hence,mchems% d are inhomogeneous.
However, sincemchem 2 sV 3 rd2y2 remains constant
[11], this correction is again of ordersyycd2.
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The reasons previous authors arrived at much larg
relativistic corrections vary: Some considered a differe
4-vector wa ; sh̄y2md≠aw, which transforms asw 0

s ­
ws 2 vsm2ymc2d. [See, for instance, Eq. (10) of [5].]
Mainly because of the smallness of the electron ma
m, the associated relativistic correctionm2ymc2 deviates
more strongly from 1. Others did consider the 4-vector
Eq. (14), especially Cabrera [2], who, in fact, obtained th
combination,m2 2 eF as the relevant factor in the boos
transformation. The absence of ions in his consideratio
however, prevented an interpretation of this combinati
as the chemical potential of the solid. In addition, th
termeF was taken to be given only in the corotating, an
not in the laboratory frame, and was therefore neglecte
Interestingly, the best experimental evidence to date [1
yields the valueh 2 1 ø 1024, and thus contradicts (both
in sign and magnitude) all the above theories, including t
present one.

We now proceed to prove Eq. (5) by thermodynam
considerations, in a way that is similar to the minimizatio
procedure of the Ginsburg-Landau functional [13], thoug
the procedure is executed in a general inertial frame h
[14], not necessarily that of the lattice. The basic Gibb
relation is

d´ ­ Tds 1 md% 1 vn ? dgtot 1 sijd=jui

1 E0 ? dD 1 H0 ? dB 1 js ? dvs . (16)

The first four terms are those of a normal solid [15], wit
´, s, % , gtot denoting the densities of energy, entropy, mas
and momentum, respectively, whileui is the displacement
vector. The conjugate variables are defined by the resp
tive derivatives, e.g.,T ; ≠´y≠s, or yn ; ≠´y≠gtot. The
next two terms account for the presence of fields, where
subscript 0 denotes the respective field in the rest fram
vn ­ 0. The last term appears in superconducting or s
perfluid phases, with the variable given by Eq. (2). Ac
cepting that the energy is given as in Eq. (16), minimizin
the free energy while keeping the conserved quantities c
stant, stationarity with respect to variations in the vect
potential,

d
Z

s´ 2 Tsd ­
Z

fH0ds= 3 Ad 2 jsdsgAdg 1 . . . ,

quickly leads to Eq. (5). The other equilibrium condition
are [11]≠iy

n
j 1 ≠jy

n
i ­ 0, ≠tvn 1 =m ­ 0, =jsij ­ 0,

andE0 ­ 0.
Although the basic structure of Eq. (16) simply state

the fact that the thermodynamic equilibrium of a superco
ducting crystal depends on the specified variables, th
are perhaps three points that may seem puzzling at fi
(i) Why is the termFdre of Eq. (8) substituted by its par-
tially integrated form,E0 ? dD of Eq. (16)? (ii) Why do
the two fields,E andH, assume their local rest frame val
ues? (iii) To what extent isvn the velocity of the lattice?
The answer to the first question is connected to locali
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E0 is a local function ofD, while re from everywhere is
needed to calculateF. Local thermodynamics and hydro
dynamics can deal only with quantities that preserve loc
ity. The second question is discussed in details in [16], a
is a result of the fact that the conserved, total moment
densitygtot contains field contributions. The third que
tion is discussed in [17], in which the dynamics of a h
pothetical superfluid crystal is derived, where the equat
of motion for the displacement vectorui is shown to be
Ùui ­ y

n
i 1 YD, with YD a dissipative term that account

for diffusion of defects and interstitials [15]. So, ifYD

is zero (especially true in equilibrium), the lattice poin
move withyn. This remains valid also for supercondu
tors, the dynamics of which reduces to that of a superfl
crystal in the limite ! 0 of Eq. (2).

We now revisit Eq. (6): When deriving the constitutiv
relation forjs, the information that it must be an invarian
quantity was a consequence of asserting the consiste
of Eq. (5). More prudently, this should be obtained as
result. So, the form ofjs will be derived independently
below, without the reference to Eq. (5), or even the inp
that ysyh is a velocity—though the equivalent informa
tion of Eq. (13), the Josephson equation, is needed.
we shall see, this calculation will also provide insights
an analogy between superconductors and superfluid3He.
We start the derivation by observing that the energy c
rentQ contains the termjsm, then deduce the form of the
total momentum density by the known symmetry of t
energy stress 4-tensor,gtot ­ Qyc2, and, finally, we ob-
tain the explicit form ofjs via a Maxwell relation linking
gtot to js.

The energy currentQ is obtained by evaluatingÙ́ via
Eq. (16), and requiring that it is given as a total divergen
Ù́ ­ 2= ? Q. In the rest framevn ­ 0, and disregarding
dissipative terms, we haveÙs, Ùui ­ 0; hence only four
terms remain:

Ù́ ­ m Ù% 1 E ? ÙD 1 H ? ÙB 1 js ? Ùvs .

With Ùvs given as in Eq. (13), the Maxwell equations an
the continuity equation must contain the correspond
counter terms,

ÙB ­ 2c= 3 E , (17)

ÙD ­ c= 3 H 2 ejsym , (18)

Ù% 1 = ? js ­ 0 , (19)
such that the energy current isQ ­ jsm 1 cE 3 H. The
same calculation in a general framevn fi 0 is tedious, but
not more difficult. And of the new terms, all,yn, the
overwhelming one is that associated with the rest ma
%c2vn. So the total momentum density is

gtot ­ %vn 1 jsmyc2 1 E 3 Hyc , (20)

while the neglected terms are again relativistic correctio
ones that are completely irrelevant in the present cont
Now consider the Maxwell relation,

≠gtot
i y≠js

j jyn ­ ≠ys
j y≠yn

i jjs ­ smyc2ddij . (21)
3225
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Evaluating the first expression via Eq. (20) we arrive at th
third expression; and the second equals sign only allow
functional dependence as given in Eq. (6). This conclud
the independent proof.

The total momentum density, Eq. (20), may be writte
asgtot ­ s% 2 %sdvn 1 %svs for E ­ 0, implying a lit-
eral nonclassical rotational inertia[18] for superconduc-
tors—though it is, of course, much smaller than in He I
Employing Eqs. (5) and (6), one finds in a superconduc
ing cylinder of radiusR ¿ l that the superfluid velocity
ys deviates from the normal one,vn ­ V 3 R, by the
amountls2V 1 gBextd expfsr 2 Rdylg (r is the distance
from the center, andBext the external field). Therefore, the
fraction of%sy% of the total mass does not quite participat
in the rotation of the rest,s% 2 %sdy% , and reduces (or en-
hances) the moment of inertia accordingly—as a functio
of the external magnetic field.

Equations (18) and (19) show thatjs ; ≠´y≠vs trans-
ports both electric charge and mass in equilibrium, with
quotient given by the microscopic parametereym. As is
clear from the derivation, this is intimately related to th
form of the Josephson equation, and to the relationsh
betweengtot andjs. If the Josephson equation, Eq. (13)
were of the formsh̄y2md Ùw ­ 2eFym, the terms,js

in Eqs. (19) and (20) (i.e., in the momentum density an
mass current) would vanish; if it weresh̄y2md Ùw 1 m ­
0, the persistent electric current, in Eq. (18), is zero. Th
first is a hypothetical case of pure superfluidity in the ele
tric charge, and the second is a case of pure superfluid
in the mass, such as realized in He II. The specific sum
Eq. (13) characterizes a phase with condensed electro
ones that carry mass and charge of the given ratio.

All this is reminiscent of the relative broken symmetrie
in the superfluid phases of3He [19]—especially3He-A1,
in which the condensation is in the up-spin populatio
of 3He particles that carry both spin and mass, with th
ratio h̄y2m. And the corresponding broken symmetr
is a linear combination of spin and phase symmetry—
one forgets the less obvious orbital one. The microscop
coefficienth̄y2m also characterizes the ratio between th
equilibrium currents for mass and spin, and it enters t
relevant Josephson equation [20] which—as in Eq. (13)
contains two thermodynamic conjugate variables,m ;
≠´y≠% andv ; ≠´y≠s. This gives rise to a number of
useful analogies that should be explored.
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