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Phase Jumps near a Phase Synchronization Transition in Systems
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Phase synchronization transitions in two different coupled chaotic systems (Rössler and Lo
are investigated and shown to be well described by a reduced model of an overdamped period
driven nonlinear oscillator with a time varying coefficient. In both systems, the phase separ
increases with2p phase jumps below the transition. The scaling rules of the jump near and a
from the transition are studied: Near the transition the average interval between two successive
follows lnkll , 2sec 2 ed1y2, while away from the transitionkll , set 2 ed21y2 for both systems.
[S0031-9007(98)06625-3]
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In recent years, there has been much interest in u
derstanding complex dynamics that arises in various sy
tems of interacting nonlinear dynamical units. Example
can be found ubiquitously in physical, chemical, biolog
cal, and physiological worlds. Coupled nonlinear chem
cal oscillators [1], populations of social amoebae [2], an
neural networks [3] are good examples, just to name
few. One of the exciting scientific quarries on these co
pled systems is to understand the coherent dynamical
havior of the coupled system. The most interesting rece
development in this regard is the so-called “phase sy
chronization” (PS) phenomenon observed in systems
two coupled chaotic oscillators [4–6]. Above a critica
strength of the coupling, suitably defined phases of tw
chaotic oscillators lock each other and synchronize, wh
their amplitudes remain uncorrelated with each other a
sustain an irregular motion of their own.

In this Letter, we discuss the physical mechanism f
this phenomenon first in a “phase-coherent” Rössler sy
tem and later in a “non-phase-coherent” Lorentz syste
Both systems show the same mechanism and the sa
scaling properties near and away from the transition. T
PS phenomenon in a coupled Lorentz system is repor
for the first time.

The phenomenon was first observed by Rosenblu
et al. [4] in a numerical simulation on a system of two
coupled chaotic Rössler oscillators,

Ùx1,2 ­ 2v1,2y1,2 2 z1,2 1 esx2,1 2 x1,2d ,

Ùy1,2 ­ v1,2x1,2 1 0.15y1,2 , (1)

Ùz1,2 ­ 0.2 1 z1,2sx1,2 2 10d ,

where v1,2 is the overall frequency of each chaotic
oscillator ande measures the strength of the coupling
Their result is reproduced in our Fig. 1. The PS transitio
occurs ate ­ 0.0286 s­ ecd for the parameter values
given in the figure caption. The phase difference (u)
increases monotonically fore , ec, while for e . ec

it is basically py2 with a small amplitude fluctuation
of high frequency. Rosenblumet al. have identified this
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transition by studying the spectra of Lyapunov exponen
[4]. They have demonstrated that the transition occu
when one of the exponents becomes zero. Neverthel
the underlying physical mechanism for this transition h
not been clearly explained.

In an attempt to elucidate the phenomenon, we ha
looked more closely near this transition and find th
the u increases with a sequence of2p jumps below
the transition as shown in the Fig. 1 inset. Furthermo
we find another transition ate ­ 0.0276 (­ et): It is
realized that theu increases with an intermittent sequenc
of 2p jumps for et & e , ec, whereas theu increases
in a nearly periodic sequence of2p jumps for e & et .
The transitions atec and et both are continuous. Since
the phase desynchronization proceeds with the2p jumps,

FIG. 1. Time evolutions of phase separation (u) in a sys-
tem of two coupled Rössler attractors for various values
e. The phase difference is obtained byu ­ f1 2 f2 ­
arctans y1yx1d 2 arctans y2yx2d [7]. Equation (1) is numerically
solved using a fourth-order Runge-Kutta method,v1,2 ­ 1.015
and0.985, respectively, and the same values are used throu
out this paper. The inset focuses a single2p jump that ap-
peared in the plot fore ­ 0.028.
© 1998 The American Physical Society 321
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understanding their physical origin is of an essenti
importance in characterizing the nature of the transitio
Here we provide a physical picture for these phase jum
using a simple model reduced from Eq. (1), and w
investigate the scaling properties of them near and aw
from the transition.

The simplified model is

du

dt
­ sv1 2 v2d 2

e

2

µ
A2

A1
1

A1

A2

∂
sinsud ; Fsud ,

(2)

whereu ­ sf1 2 f2d, A1,2 ­
p

x 2
1,2 1 y 2

1,2 and (v1 2

v2) is the overall frequency mismatch. Theu and du

dt
in Eq. (2) should be understood as the average valu
over the slow time scale originating from the frequenc
mismatch (v1 2 v2). The process leading to Eq. (2
from Eq. (1) was briefly discussed by others to obtain
qualitative estimate ofec but with no clear proof [8]. In
the following, we explicitly demonstrate that the origina
system [Eq. (1)] with a proper reduction is the same
the simplified model [Eq. (2)], and then we explain th
physical mechanism for the observed2p jumps.

Shown in Figs. 2(a) and 2(b) are numerically compute
du

dt as a function ofu for two different values ofe.
Equation (1) is numerically integrated as explained in th
caption of Fig. 1, andu and du

dt are computed. Those
values are averaged over a period of2pysv1 2 v2d to
remove the fast time-scale dynamics that occur over t

FIG. 2. Numerically computed forceFsud ­ du

dt in (a) and
(b), and corresponding potentialV sud ­ 2

R
Fsuddu in (c) and

(d) as functions ofu. The horizontal dotted lines in (a) and (b
indicate the threshold for a saddle-node bifurcation.
322
al
n.
ps
e
ay

es
y

)
a

l
as
e

d

e

he

)

time duration of2pyv1,2 in the spirit of the assumption
used in obtaining the reduced model [9]. It is quite cle
that the functional form of the constructeddu

dt closely
follows that of Fsud given in Eq. (2). This functional
form is double checked by computing the right-hand si
of Eq. (2). TheK s­ A2

A1
1

A1

A2
d fluctuates between 2 and

4 periodically with a typical mean value of 2.1.
The 2p jump can be naturally explained by realizin

that the reduced model is nothing but a model describ
an overdamped particle moving in a “noisy wash-boa
potential” as shown in Figs. 2(c) and 2(d). There a
two factors influencing the sliding of the particle: On
is the shape of the potential by itself, and the other is
fluctuating amplitude factorK. If we assume thatK is a
constant for simplicity (for example,K ­ 2), the system
would show a saddle-node bifurcation ate ­ sv1 2

v2d. Above the bifurcation point [e . sv1 2 v2d], the
potential would acquire a series of local minima, and t
particle would be trapped in one of them permanent
Below the transition, where there is no stable fixed poi
the particle would slide2p-periodically. The qualitative
difference in the shapes ofV sud is visible in Figs. 2(c)
and 2(d).

With the time-varying factorK incorporated in the
model, the dynamics of the2p phase jumps become
nontrivial. Figure 3(a) with 3(c) illustrates a typical cas
away from the transition. In this case, the strength
the periodic forcing (eK

2 ) stays below the bifurcation
threshold 0.03 all of the time, and it can be simply
regarded as thermal noise as far as the particle trapp
(or PS) is concerned. Here, the constant force te

0 2000 4000
Time
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0.03

0.04
0

50

100

θ

0 2000 4000
Time

ε = 0.020 ε = 0.028

(a) (b)

(d)(c)εK
2

FIG. 3. Temporal evolutions of phase separation (u) and
corresponding nonlinear strength factor (eKy2), one near and
the other away from the onset of PS transition. A sadd
node bifurcation occurs wheneKy2 crosses the dotted horizon
tal line.
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(v1 2 v2) dominates the dynamics ofu. Figure 3(b)
with 3(d) obtained very near the PS transition contrasts
previous case: The (eK

2 ) stays mostly above 0.03 on the
average except for some durations of time, during whi
a 2p jump occurs. The observed2p jump is analogous
to the phase slippage process corresponding to ther
activation over a high energy barrier in dc Josephson [1
However, the aperiodic time-varying amplitude factorK
is not of thermal nature but follows the determinist
dynamics of the amplitudes. Indeed, the dynamics
phase jumps very nearec is strongly correlated with the
temporal evolution ofK.

In an attempt to quantify the qualitative difference i
the dynamics of phase separation near and away from
transition, we have computed the probability distributio
function of time interval between two successive2p jumps
Psld and the average time intervalkll for various values
of coupling constante. Figure 4(a) shows threePslds
some distance away. Their statistics follow very close
to that of a normal distribution. The bandwidth becom
narrower as the system moves farther away from t
transition indicating that the system is more dominat
by the constant force term (v1 2 v2). This behavior
dramatically changes when the system approaches to
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FIG. 4. Probability distribution functionPsld of the 2p jump
interval (l) in (a) and (b);kll vs set 2 ed21y2 in (c); andlnkll
vs sec 2 ed1y2 in (d). All are computed for a time duration
of 1000 numbers of2p jumps. The solid lines in (a) and (b)
are running averages on five neighbors of raw data. The so
lines in (c) and (d) are straight lines fitting to the numerical
obtained data withet ­ 0.0276 andec ­ 0.0286, respectively.
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close vicinity of the transition point as shown in Fig. 4(b
The distribution function no longer retains the symmet
of normal distribution and becomes a Lorentzian shap
The bandwidth becomes much broader ase moves closer
toward ec [notice the different scales in Figs. 4(a) an
4(b)].

The qualitative difference inPslds near and away from
the transition is also reflected in the different scalin
behavior ofkll as shown in Figs. 4(c) and 4(d). Upo
the decreasing sequence ofe from ec, kll gradually
approaches to an asymptotic value ofkll0 ­ 209.0 [­
2pysv1 2 v2d] at e ­ 0. During the decrease, there ar
two distinct regimes in whichkll obeys different scaling
rules:kll , set 2 ed21y2 for e & et and lnkll , 2sec 2

ed1y2 for et & e , ec. The scaling rulekll , set 2

ed21y2 together with the correspondingPsld of Fig. 4(a)
for e & et is the same of type-I intermittency [11]. In
this regime, the dynamics ofK could be considered as
random noise playing the role of chaotic reinjection for
type-I intermittency to occur. The intermittent behavio
is weak since the system is away from the saddle-no
bifurcation. On the other hand, for the regimeet &

e , ec, the scaling rule is different and the associate
Psld is a Lorentzian distribution that is also distinguishe
from the one of type-I intermittency. The phenomeno
of exponentially rare2p phase jumps very near the
transition is consistent with the statistical law of th
eyelet intermittency found in a circle map coupled to
perturbed tent map that was recently developed to mo
the PS phenomenon [12]. When their study is transla
to our analysis,eK

2 should stay below the saddle-nod
bifurcation line for some minimum duration for a2p

jump to occur. This is clearly seen in our Fig. 3(d).
All of these observations appear to be quite general a

applicable to any coupled chaotic system as long as
involved chaotic attractor keeps some degree of “pha
coherence.” The phase coherence of a chaotic attra
means that a suitably defined phase increases steadil
time. In this sense, the Rössler system discussed ab
is an example of a perfect phase coherent system, w
the Lorentz system discussed next is not a phase cohe
system.

With a system of coupled Lorentz chaotic oscillato
we qualitatively find the same properties as shown
Fig. 5. Utilizing the reflection symmetry (x $ 2x and
y $ 2y), a new variableu ­

p
x2 1 y2 is defined, and

a phase can be suitably defined on au-z plane with the
origin at the unstable fixed point in the middle. In thi
representation, the Lorentz system becomes almost ph
coherent but with some occasional retreats as shown
the bottom left of Fig. 5(a). Nevertheless, the similari
between Fig. 5(b) and Fig. 1 is quite clear. The pha
desynchronization in Fig. 5(b) also proceeds with a
intermittent sequence of2p phase jumps that become
more frequent away from the transition. The scaling rul
of kll near and away from the transition are the same
323
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in the Rössler system [Figs. 5(c) and 5(d)]. The pha
increase away from the transition is not quite periodi
since the fluctuation ofK is much more drastic than it is
in the Rössler system (not shown).

In summary, we have shown that the PS phenomen
in a system of two coupled Rössler attractors can be w
approximated by a single first-order equation [Eq. (2
for u with the time-varying amplitude factorK . The
same physical picture is also applicable to the coupl
Lorentz system. The different scaling rules ofkll near
and away from the PS transition are found and th
continuous transition atet is identified for the first time
and discussed in connection with the dynamics ofK .
The PS phenomenon demonstrated in the coupled Lore
system is significant, since the system retains some deg
of phase noncoherence.

We conclude our study by listing several important is
sues left for future investigation. First, a general frame
work based on different time scales would be developed f
the reduction of the original systems to the type of Eq. (2
Second, the PS phenomenon would be extended to a lar
context of frequency locking ofm:n (m and n, incom-
mensurate integers): The phase synchronization is o
a particular case of a winding number,V ­ myn ­ 0y1
[13,14]. Third, the effect of phase incoherence in the P
phenomenon would be studied. Finally, the PS phenom
non in a system of two coupled chaotic attractors can
generalized to a population of attractors. The coherent s
ral waves recently observed in a coupled chaotic syste
by Goryachev and Kapral can be understood in this ven
of thought [15]. Also, Osipovet al. recently reported PS
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FIG. 5. Phase synchronization phenomenon in a system
two coupled Lorentz attractors:Ùx1,2 ­ 10.0s y1,2 2 x1,2d 1
hsx2,1 2 x1,2d; Ùy1,2 ­ s36.5 1 g1,2dx1,2 2 y1,2 2 x1,2z1,2; and
Ùz1,2 ­ 23.0z1,2 1 x1,2y1,2 (g1,2 ­ 1.5 and 21.5, respectively),
showing: (a) one of two coupled Lorentz attractors projecte
on theu-z plane; (b)u vs time for different values ofh; (c) kll
vs sht 2 hd21y2; and (d) lnkll vs shc 2 hd1y2. ht ­ 6.7 and
hc ­ 12.0.
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effects in a lattice of a nonidentical Rössler oscillator in
relation to clustering dynamics and defect dynamics [16]
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ucation (DSRI-96-2444) and the Ministry of Science and
Technology (HPC-COSE) of Korea, and Korea Researc
Foundation (nondirected research fund, 97-003-D00105

Note added.—After the submission of this Letter, an
independent study on the phenomenon of phase synch
nization appeared [17]. Their model, a modified Rössle
system driven by a periodic forcing, also shows the pre
ence of2p phase jumps. The scaling rule of exponen
tially rare phase jumps is reported and viewed as th
unstable-unstable pair bifurcation crisis.

*Electronic address: kyoung@nld.korea.ac.kr
†Electronic address: genpace@qopt.korea.ac.kr

[1] Waves and Patterns in Chemical and Biological Media
edited by H. L. Swinney and V. I. Krinsky (MIT, Cam-
bridge, MA, 1992).

[2] K. J. Lee, E. C. Cox, and R. E. Goldstein, Phys. Rev. Lett
76, 1174 (1996).

[3] R. Huerta, M. I. Rabinovich, H. D. I. Abarbanel, and
M. Bazhenov, Phys. Rev. E55, R2108 (1997).

[4] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys
Rev. Lett.76, 1804 (1996).

[5] U. Parlitz, L. Junge, W. Lauterborn, and L. Kocarev, Phys
Rev. E54, 2115 (1996).

[6] G. D. Funk, I. J. Valenzuela, and W. K. Milsom, J. Exp.
Biol. 2000, 915 (1997).

[7] For discussions on different definitions of a phase of a
chaotic attractor, see Ref. [14]; T. Yalcmkaya and Y.-C
Lai, Phys. Rev. Lett.79, 3885 (1997).

[8] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys
Rev. Lett.78, 4193 (1997).

[9] We find that the slow dynamics in the system is an orde
of 2pysv1 2 v2d near the transition. This contrasts to
the statement in Ref. [8] that the slow dynamics is an
order of2pyv1,2.

[10] V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett.22,
1364 (1969); M. Basler, W. Krech, and K. Y. Platov, Phys
Rev. B55, 1114 (1997).

[11] Dissipative Structures and Weak Turbulence,edited by
P. Manneville (Academic Press, New York, 1990).

[12] A. Pikovsky, G. Osipov, M. Rosenblum, M. Zaks, and
J. Kurths, Phys. Rev. Lett.79, 47 (1997).

[13] N. F. Rulkov and M. M. Sushchik, Phys. Lett. A214, 145
(1996).

[14] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and
J. Kurths, Physica (Amsterdam)104D, 219 (1997).

[15] A. Goryachev and R. Kapral, Phys. Rev. Lett.76, 1619
(1996).

[16] G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, and
J. Kurths, Phys. Rev. E55, 2353 (1997); A. S. Pikovsky,
M. G. Rosenblum, and J. Kurths, Europhys. Lett.34, 165
(1996).

[17] E. Rosa, Jr., E. Ott, and M. H. Hess, Phys. Rev. Lett.80,
1642 (1998).


