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Phase Jumps near a Phase Synchronization Transition in Systems
of Two Coupled Chaotic Oscillators
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Phase synchronization transitions in two different coupled chaotic systems (Rdssler and Lorentz)
are investigated and shown to be well described by a reduced model of an overdamped periodically
driven nonlinear oscillator with a time varying coefficient. In both systems, the phase separation
increases witl27 phase jumps below the transition. The scaling rules of the jump near and away
from the transition are studied: Near the transition the average interval between two successive jumps
follows In{I) ~ —(e. — €)'/2, while away from the transitiod!) ~ (¢, — €)~'/2 for both systems.
[S0031-9007(98)06625-3]

PACS numbers: 05.45.+b, 05.40.+j, 82.40.Bj

In recent years, there has been much interest in urtransition by studying the spectra of Lyapunov exponents
derstanding complex dynamics that arises in various syg4]. They have demonstrated that the transition occurs
tems of interacting nonlinear dynamical units. Examplesvhen one of the exponents becomes zero. Nevertheless,
can be found ubiquitously in physical, chemical, biologi-the underlying physical mechanism for this transition has
cal, and physiological worlds. Coupled nonlinear chemi-not been clearly explained.
cal oscillators [1], populations of social amoebae [2], and In an attempt to elucidate the phenomenon, we have
neural networks [3] are good examples, just to name #&oked more closely near this transition and find that
few. One of the exciting scientific quarries on these couthe 6 increases with a sequence 2% jumps below
pled systems is to understand the coherent dynamical b#e transition as shown in the Fig. 1 inset. Furthermore,
havior of the coupled system. The most interesting recente find another transition a¢ = 0.0276 (= ¢,): It is
development in this regard is the so-called “phase synrealized that thé increases with an intermittent sequence
chronization” (PS) phenomenon observed in systems abf 277 jumps fore, < € < €., whereas the increases
two coupled chaotic oscillators [4—6]. Above a critical in a nearly periodic sequence @fr jumps fore < ;.
strength of the coupling, suitably defined phases of twdrhe transitions at,. and e, both are continuous. Since
chaotic oscillators lock each other and synchronize, whilehe phase desynchronization proceeds withi2thgumps,
their amplitudes remain uncorrelated with each other and
sustain an irregular motion of their own.

In this Letter, we discuss the physical mechanism for 100 -
this phenomenon first in a “phase-coherent” Rdssler sys " L e=0020
tem and later in a “non-phase-coherent” Lorentz system go | 4 T g //"
Both systems show the same mechanism and the san e
scaling properties near and away from the transition. The R ] 7
PS phenomenon in a coupled Lorentz system is reporte 60 . L ‘ —~
for the first time. 0 1200 1600 2000 0026
The phenomenon was first observed by Rosenblun ey S e
etal.[4] in a numerical simulation on a system of two () ~ 0028
coupled chaotic Rossler oscillators, a0 | e /\‘MW,,‘4“"‘”““:4,“‘%”%“,»'
561,2 = —wipy12 — 212 T f(xz,l - x1,2), //"”x f“‘””/ /""“““"”""/
V12 = wipx12 + 0.15y17, (1) e : ——
212 = 02 + zip(x12 — 10), 0 1000 2000 3000 4000
where w;, is the overall frequency of each chaotic Time

oscillator ande measures the strength of the coupling.FiG. 1. Time evolutions of phase separatiof) (n a sys-
Their result is reproduced in our Fig. 1. The PS transitiortem of two coupled Rossler attractors for various values of
occurs ate = 0.0286 (= €.) for the parameter values €. The phase difference is obtained Wy= ¢, — ¢, =

iven in the figure caption. The phase differen arctari yi/x1) — arctar y/x,) [7]. Equation (1) is numerically
i?’lcreases mon%tonicallp foe < € r\)/vhile for € > 0? ( solved using a fourth-order Runge-Kutta methad, = 1.015
y cs ¢ and0.985, respectively, and the same values are used through-

it is basically 77/2 with a small amplitude fluctuation out this paper. The inset focuses a singte jump that ap-
of high frequency. Rosenbluet al. have identified this peared in the plot foe = 0.028.
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understanding their physical origin is of an essentiatime duration of27 /w1, in the spirit of the assumption
importance in characterizing the nature of the transitionused in obtaining the reduced model [9]. It is quite clear
Here we provide a physical picture for these phase jumpghat the functional form of the constructeff closely
using a simple model reduced from Eq. (1), and wefollows that of F(6) given in Eq. (2). This functional
investigate the scaling properties of them near and awagsrm is double checked by computing the right-hand side
from the transition. _ of Eq. (2). Thek (= 3 + %) fluctuates between 2 and
The simplified model is 4 periodically with a typical mean value of 2.1.
do €Ay A\ . The 27 jump can be naturally explained by realizing
o (@1 — @) — 5 <A_1 + A_2>S'”(‘9) = F(0), that the reduced model is nothing but a model describing
() an overdamped particle moving in a “noisy wash-board
potential” as shown in Figs. 2(c) and 2(d). There are
wheref = (¢ — ¢2), A1x = \/xm2 + yl’z2 and @, —  two factors influencing the sliding of the particle: One
w,) is the overall frequency mismatch. Tieand % is the s_hape of t_he potential by itself, and the oth_er is the
in Eq. (2) should be understood as the average valudd/ctuating amplitude factok. If we assume thak is a
over the slow time scale originating from the frequency

constant for simplicity (for examplel = 2), the system
mismatch &, — w,). The process leading to Eq. (2) would show a saddle-node bifurcation at= (w; —

from Eq. (1) was briefly discussed by others to obtain &2): Above the bifurcation pointd > (w1 — w,)], the
qualitative estimate o€, but with no clear proof [8]. In potgntlal would acquire a series of local minima, and the
the following, we explicitly demonstrate that the original Particle would be trapped in one of them permanently.
system [Eq. (1)] with a proper reduction is the same a elow the transmon,' where therg is no stable f|xgd pomt,
the simplified model [Eq. (2)], and then we explain thethe part|cle' would shd@w-perlod_lcal_ly.. The qgalltatlve
physical mechanism for the observed jumps. difference in the shapes df(0) is visible in Figs. 2(c)

Shown in Figs. 2(a) and 2(b) are numerically computed"md _Z(d)' ) ) ) )
With the time-varying factorK incorporated in the

é'nodel, the dynamics of th@w phase jumps becomes
nontrivial. Figure 3(a) with 3(c) illustrates a typical case
away from the transition. In this case, the strength of
the periodic forcing %K) stays below the bifurcation
fhreshold 0.03 all of the time, and it can be simply
regarded as thermal noise as far as the particle trapping

‘fi—f as a function ofé for two different values ofe.

Equation (1) is numerically integrated as explained in th
caption of Fig. 1, andd and % are computed. Those
values are averaged over a period2ef/(w; — w>) to

remove the fast time-scale dynamics that occur over th

a8 €=0.020 €=0.028 (or PS) is concerned. Here, the constant force term
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FIG. 2. Numerically computed forcé(6) = 7 in (a) and
(b), and corresponding potentiéld) = — [ F(#)d# in (c) and
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the other away from the onset of PS transition.

FIG. 3. Temporal evolutions of phase separatigt) @and
corresponding nonlinear strength fact@k(/2), one near and
A saddle-

(d) as functions of). The horizontal dotted lines in (a) and (b) node bifurcation occurs whesk /2 crosses the dotted horizon-

indicate the threshold for a saddle-node bifurcation.
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(w1 — w,) dominates the dynamics a&f. Figure 3(b) close vicinity of the transition point as shown in Fig. 4(b).
with 3(d) obtained very near the PS transition contrasts th&he distribution function no longer retains the symmetry
previous case: The*{) stays mostly above 0.03 on the of normal distribution and becomes a Lorentzian shape.
average except for some durations of time, during whichThe bandwidth becomes much broadefeasoves closer
a2 jump occurs. The observellr jump is analogous toward e. [notice the different scales in Figs. 4(a) and
to the phase slippage process corresponding to thermd(b)].
activation over a high energy barrier in dc Josephson [10]. The qualitative difference i®(/)s near and away from
However, the aperiodic time-varying amplitude facfor the transition is also reflected in the different scaling
is not of thermal nature but follows the deterministic behavior of(l) as shown in Figs. 4(c) and 4(d). Upon
dynamics of the amplitudes. Indeed, the dynamics othe decreasing sequence ef from e., (/) gradually
phase jumps very nea. is strongly correlated with the approaches to an asymptotic value @f, = 209.0 [=
temporal evolution oK. 27 /(w; — wjy)] ate = 0. During the decrease, there are

In an attempt to quantify the qualitative difference intwo distinct regimes in whick/) obeys different scaling
the dynamics of phase separation near and away from theles:(I) ~ (¢, — €) /2 fore < ¢, and Il) ~ —(e, —
transition, we have computed the probability distributione)'/2 for €, < € < €.. The scaling rule{l) ~ (e, —
function of time interval between two successivejumps  €)~'/2 together with the corresponding(/) of Fig. 4(a)
P(l) and the average time intervdl) for various values for € < e, is the same of type-| intermittency [11]. In
of coupling constant. Figure 4(a) shows thre®(/)s this regime, the dynamics o could be considered as
some distance away. Their statistics follow very closelyrandom noise playing the role of chaotic reinjection for a
to that of a normal distribution. The bandwidth becomegype-I intermittency to occur. The intermittent behavior
narrower as the system moves farther away from thés weak since the system is away from the saddle-node
transition indicating that the system is more dominatedifurcation. On the other hand, for the regimg <
by the constant force termw( — w;). This behavior € < €., the scaling rule is different and the associated
dramatically changes when the system approaches to th¥!) is a Lorentzian distribution that is also distinguished
from the one of type-l intermittency. The phenomenon
of exponentially rare27 phase jumps very near the
transition is consistent with the statistical law of the
eyelet intermittency found in a circle map coupled to a
perturbed tent map that was recently developed to model
the PS phenomenon [12]. When their study is translated
to our analysis,% should stay below the saddle-node
bifurcation line for some minimum duration for 2ar
jump to occur. This is clearly seen in our Fig. 3(d).

All of these observations appear to be quite general and
applicable to any coupled chaotic system as long as the
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involved chaotic attractor keeps some degree of “phase
coherence.” The phase coherence of a chaotic attractor
means that a suitably defined phase increases steadily in
time. In this sense, the Rdssler system discussed above
is an example of a perfect phase coherent system, while
the Lorentz system discussed next is not a phase coherent
system.

With a system of coupled Lorentz chaotic oscillators
we qualitatively find the same properties as shown in
Fig. 5. Utilizing the reflection symmetryx(<~ —x and
y < —y), a new variablex = \/x2 + y2 is defined, and
a phase can be suitably defined om-a plane with the
origin at the unstable fixed point in the middle. In this
representation, the Lorentz system becomes almost phase
coherent but with some occasional retreats as shown in

FIG. 4. Probability distribution functio®(/) of the 27 jump

the bottom left of Fig. 5(a). Nevertheless, the similarity
interval () in (a) and (b)i{!) vs (e, — €)~2 in (c); andin{l)

A ) ) between Fig. 5(b) and Fig. 1 is quite clear. The phase
vs (€. — €)"* in (d). All are computed for & time duration yeqynchronization in Fig. 5(b) also proceeds with an
of 1000 numbers of27 jumps. The solid lines in (a) and (b) . termittent sequence of hase iumos that becomes
are running averages on five neighbors of raw data. The solitf? q T p jump

lines in (c) and (d) are straight lines fitting to the numerically more frequent away from the transition. The scaling rules
obtained data witke, = 0.0276 ande. = 0.0286, respectively.  of (/) near and away from the transition are the same as
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in the Rossler system [Figs. 5(c) and 5(d)]. The phaseffects in a lattice of a nonidentical Réssler oscillator in
increase away from the transition is not quite periodicrelation to clustering dynamics and defect dynamics [16].
since the fluctuation oK is much more drastic than itis  This work was supported in part by the Ministry of Ed-
in the RoOssler system (not shown). ucation (DSRI-96-2444) and the Ministry of Science and
In summary, we have shown that the PS phenomenomechnology (HPC-COSE) of Korea, and Korea Research
in a system of two coupled Rdssler attractors can be welFoundation (nondirected research fund, 97-003-D00105).
approximated by a single first-order equation [Eq. (2)] Note added—After the submission of this Letter, an
for # with the time-varying amplitude factok. The independent study on the phenomenon of phase synchro-
same physical picture is also applicable to the coupledization appeared [17]. Their model, a modified Rossler
Lorentz system. The different scaling rules @f near  system driven by a periodic forcing, also shows the pres-
and away from the PS transition are found and theence of2# phase jumps. The scaling rule of exponen-
continuous transition a¢; is identified for the first time tially rare phase jumps is reported and viewed as the
and discussed in connection with the dynamicskaf unstable-unstable pair bifurcation crisis.
The PS phenomenon demonstrated in the coupled Lorentz
system is significant, since the system retains some degree
of phase noncoherence.
We conclude our study by listing several important is-
sues left for futu_re inve;tigation. First, a general frame- "Electronic address: genpace@qopt.korea.ac.kr
work based on different time scales would be developed for[l] Waves and Patterns in Chemical and Biological Media,

the reduction of the original systems to the type of EQ. (2). " * ggited by H.L. Swinney and V.I. Krinsky (MIT, Cam-
Second, the PS phenomenon would be extended to alarger prigge, MA, 1992).
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