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Critical Behavior of the Metal-Insulator Transition in Laj—,Sr,MnO3

T. Okuda! A. Asamitsu! Y. Tomioka,! T. Kimura,' Y. Taguchi? and Y. Tokur&?
Joint Research Center for Atom Technology (JRCAT), Tsukuba 305-0046, Japan
2Department of Applied Physics, University of Tokyo, Tokyo 113-0033, Japan
(Received 28 April 1998

The critical behavior of the metal-insulator (MI) transition around= 0.16 has been investigated
for single crystals of La,Sr.MnO; by measurements of low-temperature resistivity and specific heat.
The electronic specific heat coefficient,= 3—5 mJ/K? mol, indicates minimal mass-renormalization
even near the MI transition whereas significant increases of the residual valuE’ aswkfficient of
resistivity as well as off® term of specific heat are observed with a decrease tfward x.. The
results indicate the presence of the spin-polarized anomalous metallic phase with strongly lattice- or
orbital-coupled diffuse charge dynamics near [S0031-9007(98)07320-7]

PACS numbers: 71.30.+h, 72.15.Eb, 72.20.My, 75.70.Pa

Change of band filling or so-called carrier-doping quality single crystals with a fine interval af nearx, to
procedure occasionally drives the metal-insulator (Ml)detect any possible anomaly upon the MI transition. In
transition in strongly correlated electron systems likethis paper, we report on the critical behavior around the
perovskite-type transition metal oxides [1]. Among them,MI phase boundary in comparison with the case of other
the carrier-doped manganese oxides with perovskite strudling-control Ml transition systems, such as V505 [11]
ture, R;—,A,MnO; (R and A being trivalent rare-earth and Lg_,Sr,TiO3 [12].
and divalent ions, respectively), show versatile intriguing Crystals of La—,Sr,MnO; were grown by the floating-
features arising from the mutual strong coupling amongzone method. The details of growth conditions as well as
charge, spin, and lattice degrees of freedom [2]. A modstructural and chemical characterizations of the obtained
erately hole-doped compound LaSr.MnO; (x = 0.18)  crystals have been published in previous papers [3,4]. Fig-
is believed to be the most canonical double-exchange ferre 1 shows the temperaturE)(dependence of resistivity
romagnetic metal because of its relatively large bandwidtlfp) of La; -, Sr.MnO; crystals in the region of from 0.15
and the absence of such a long-range orbital ordering &s 0.4. The resistivity withx above 0.18 is approximately
observed in LaMn® (x = 0). Late detailed experimen- proportional toT' at low temperatures( <= 70 K) and its
tal investigations have, however, been revealing novel'>-coefficientA increases with the decreasexofo 0.18
features for the ferromagnetic ground state near the Mi
compositional boundary, = 0.16 [3,4]; for example,

(1) a minimal Drude weight in the optical conductivity

spectrum showing a dominant incoherent background [5], 108
(2) a minimal quasiparticle weight at the Fermi level in

the photoemission valence spectrum [6], (3) a fairly large

T? coefficient of the resistivity [4], (4) a large variation 1
of the residual resistivity witlx and pressure [7,8]. Fur- 10
thermore, in the MI critical regiond(15 = x = 0.18) the
temperature dependence of resistivity shows anomalous
upturn at a lower temperature th@p (Curie temperature)

as shown in Fig. 1, implying the occurrence of some order
in the charge and/or orbital sector [8,9]. These features
all remain to be elucidated in light of the importance of
MI transition in this compound. 10°

To argue the critical behavior of the MI transition in
the ground state, we have investigated the low-temperature
specific heat as well as the transport properties gf La 10°
Sr,MnO; crystals with finely controlled doping levels 0 50 100 150 200 250 300
around the critical composition0(12 = x = 04). Al- T(K)
though the specific heat data were recently reported for Lo
polycrystalline samples of La,Sr,MnO; (x = 0, 0.1, ,'\:/:G(')l' Terrperath“re. depe?]denceh‘)f resés“v!ty ofi L&r,- .
0.2, and 0.3) [10], we have tried to deduce accurate val: no, crystals. T e:'nset SHOWS t:e conductivity (inverse o

. ! - resistivity) for thex = 0.15 and x = 0.16 crystals down to
ues of the electronic, magnetic, and lattice components by¥s mK plotted against'!/2. Straight lines are a guide to the
measurements under magnetic fields (up to 9 T) on higheyes.

LML B N L Lt I B LA

4 ey 20

x=0.15
— b

3 | m—

'g x=0.16

OS2t ]

2]

b

0 [X¢) T 0

0 0.20.40.60.8 1 1.2
T2 (K172

-
(%]

(wo/s . 0L) 2

-
o

(%]

pod @l vl el vl e

o (Qcm)

107

o
N

©O0o
INRIN

URLLLL BSURLLL BRLLL I UL LR BRLRLL. Ll
Wnnn

0031-900798/81(15)/3203(4)$15.00 © 1998 The American Physical Society 3203



VOLUME 81, NUMBER 15 PHYSICAL REVIEW LETTERS 12 ©TOBER 1998

(vide infra,and see also the top panel of Fig. 3). Asthe Ml 0.2 ——m————r+———r——rrr
transition is approached with decreaserpthe upturn of I gg s

the resistivity shows up fd@.15 = x = (.18 at lower tem- 30}

peratures thad, as mentioned above. THe-dependent 0.15L o ]

15¢
10
5,

conductivity - = p~ ') of thex = 0.15 and 0.16 crystals
was measured down to 35 mK with use oftde-*He di-
lution refrigerator and is shown in the inset to Fig. 1. The
o values of both crystals are approximately proportional
to +/T (solid lines), which suggests the Anderson localiza-
tion effect, being typical of the interacting electron system I
[13]. The estimated conductivity at the absolute zero tem- 0.05
perature §) is finite forx = 0.16 and zero forx = 0.15, I
signaling that the Ml transition occurs.ain between 0.15
and 0.16. [ A T S B P B

Measurements of the specific he&f) (vere done in the
same crystals as used in the transport measurements by
using the relaxation method from 0.5 to 20 K under various
magnetic fields up to 9 T. In this paper we confine the
arguments to the data above 3 K, in which contribution
of the nucleus Schottky component [10] is negligible.
Without the magnetic field and spin-wave gap, the specific «~
heat in the ferromagnetic region in the temperature region
from 3 to 10 K is then expressed as

C = yT + BT + BT/>. (1)

v in the first term is the electronic specific heat coefficient,
and the constan® in the second term relates to the Debye
temperaturé®,, (< B8~'/3). The third term expresses the
contribution of spin wave. In Fig. 2(a) we show the results
for thex = 0.15 crystal in magnetic fields above 3 K. The
specific heat shows a distinct decrease as the magnetic O- A
field increases. This reduction can be attributed to the
suppression of the thermal excitation of the spin wave by a 0 20 40 60 80 100
magnetic field. Then, under a magnetic fielf)) the third T2 (K)
term of Eq. (1) is modified as follows:

AC (mJ/K mole)
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FIG. 2. (a) Specific heat@) for x = 0.15 under magnetic
kg/2T3/2 <H ) fields. The inset shows reduction 6f upon application of a

Cspin = field of 9 T forx = 0.15, and (b)C/T vs T? plot for x = 0.15,

42D/ T 2 0.2, and 0.3 where the spin-wave contribution is subtracted.
H o w2ex gupH (2) Several symbols stand for the quantities under various magnetic
F<_> = j _*° |y - &EBY 4 fields (09 T).
T gupH (e" - 1)2 kBT

In this equation the spin wave excitation at zero field iscontributions. The data under several magnetic fields up

assumed to show no gap and follow the relatorn=  to 9 T seem to fall on a single line within a small error

Dq?, where D stands for the spin stiffness constant asfor eachx, indicating that the above estimate of the spin-

determined from neutron scattering experiments [14]. Invave component is fairly accurate. Thus estimated values

the inset to Fig. 2(a) is shown the reduction ©fupon of y and®p are plotted against in Fig. 3 together with

application of afield of 9 TAC = C(0 T) — C(9 T), for  the inverse ) of the residual resistivity 4), the T7>-

x = 0.15, which is compared with the calculated result (acoefficientA of p (= po + AT?), and the Hall coefficient

solid line) based on Eq. (2). The field-induced reductionky at 4.2 K [16] in these compounds.

of specific heat can therefore be explained in terms of the The Debye temperatur®, is 360—440 K and signifi-

suppressed contribution of the spin wave [15]. In this waycantly increases with the increasexofrom 0.12 to 0.3,

we estimated the magnetic contribution to the specific heabut appears to saturate above= 0.3. The @p values
The specific heat data, which were subtracted by thare comparable to those often found in perovskite oxides

spin-wave components;, by the above procedure, are [17], but are smaller than the previous results, 430—-490 K

plotted asC/T versusT? for the x = 0.15, 0.2, and [10,18], while the tendency of the large increase@yj

0.3 crystals in Fig. 2(b) to see the electronic and latticewith the increase ok from 0.1 to 0.3 is observed in the
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FIG. 3. Doping level £) dependence of’? term coefficient
A of resistivity, zero-temperature conductivity, (inverse of
residual resistivity), Hall coefficien®y, electronic specific heat
coefficienty, and Debye temperatu®p, for La;_,Sr.MnOs

abovex = 0.3 implies that the orbital “moment” and the
accompanying Jahn-Teller distortion becomes smaller in
such an overdoped region with good metallicity.

The x variation of y, whose relatively small error
(0.5 mJ/K? mole) comes mainly from the estimate of
the spin-wave contribution [15], is also shown in Fig. 3.
The effective massn{*), derived from they and the
band filingn (= 1 — x), is a few times larger than the
bare mass#) in the ferromagnetic metallic state, e.g.,
m*/mg ~ 2.5 atx = 0.3, and does not critically increase
around the Ml critical pointx.). This is in contrast with
the conspicuous mass renormalization effect as observed
for the other hole-doped transition metal oxides [1], e.g.,
V,0; [11], and LaTiQ [12]. Figure 4 compares thede-
pendence of with that of La - Sr, TiO3 (or LaTiOs+,/2),
in which the filling » of the conduction bandz{,-state
band) is1 — x just as in the case of La,Sr,MnOs;. A
vertical hatching for this compound represents the antifer-
romagnetic (AF) metallia region which is sandwiched by
the AF insulating £ = 0.05) and paramagnetic metallic
state ¢ = 0.08). Toward this magnetic instability point
with a decrease of, or as the Mott insulatorx(= 0) is
approached, the of La, -, Sr, TiO3 (or LaTiOs+,2) is ob-
served to critically increase, which indicates a canonical
behavior of the Mott transition, namely the critical mass
enhancement near the MI phase boundary [1,12]. xFar
0.4 being far from the MI boundaryy of La;_,Sr.MnO;
is somewhat smaller than that of LaSr, TiO3, which is
simply thought to correspond to the difference of the band-
width between Mre, and Tir,, bands in the nearly iden-
tical perovskite structure. Near the MI phase boundary,
however, it is obvious that the increaseqofs much less
in La;—,Sr,MnO; than in La_,Sr, TiO3. Thus, the Ml
transition in La—,Sr,MnO; is not a prototypical filling-
control Ml transition in correlated electron systems.

crystals. A hatched vertical bar indicates the metal-insulator We might argue that the half-metallic nature with full
transitional region, where the resistivity upturn is observed at &pin polarization in this compound is responsible for such

lower temperature thafic (Curie temperature).

both experiments [18]. Since the change in the density

is small (less than 5%) with the variation effrom 0.1
to 0.3, thex dependence o®p, should be minimal as

20 [T

7
7

—
4]
T

indicated by a dashed line in the bottom panel of Fig. 3.
The change i) indicates that an anomalous softening
of the lattice or increase df3-term in the specific heat
occurs with the decrease efin a fairly wide x region
(0.1 = x = 0.3), but is not apparently relevant to the
crystal structural (rhombohedral-orthorhombic) transition
[19]. One of the possible accounts for this anomalous
dependent change @i, is to ascribe this lattice anomaly
to the subsisting dynamic Jahn-Teller distortion down to
low or zero temperature: In the region of= 0.1-0.3

; R ; i i IG. 4. Doping level £) dependence of for La,—,Sr,MnO;
the collective Jahn-Teller distortion is quantum melted by(:ompared with that for La,SrTiOs (LaTiOss./).  For &

hole motior_1 as evidenped k_)y the structural study [Zo]hatched vertical bar for La,SrTiO; (or LaTiOs4,/2), see
and accordingly the lattice stiffness may be much reduceghe text. For the hatched region for Lg_,Sr,MnO;, see the

as observed. The disappearance of the lattice anomabaption of Fig. 3.
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o
ANNANNRNNN,

0]

3205



VOLUME 81, NUMBER 15 PHYSICAL REVIEW LETTERS 12 ©TOBER 1998
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more, as far as the metallic regiom £ 0.18) without

resistivity upturn is concerned®y (midpanel of Fig. 3)
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