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Itinerant Ferromagnetism in Disordered Metals: A Mean-Field Theory
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We develop a mean-field approach to interacting disordered systems of itinerant electrons based
on a statistical treatment of disorder enhanced Hartree-Fock interactions. We demonstrate that for
d =2 a disordered system may exhibit a finite temperature partial spin polarization even if its
clean analog is paramagnetic. The disorder and temperature dependent magnetization and spin
susceptibility are calculated. Possible relevance to recent experiments on quantum dots is discussed.
[S0031-9007(98)07325-6]
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The study of thermodynamic and transport propertiesnfrared divergences are cut off either by the system
of disordered systems of interacting electrons has beesize, L, or by the temperaturef’, and lead to diverging
the subject of extensive theoretical and experimental workerturbative corrections to various physical observables.
(see Refs. [1,2] for a review). One of the most interesting-or example, the first order interaction correctidg; to
aspects of the problem, which attracted much attentiothe Pauli spin susceptibilityy,o, for d = 2 is [1]

in the past [3-5], is _the existence and the nature of the 5 xs v min{L, Ly}
itinerant ferromagnetism in such systems. = 5| (2)
In metals the long range part of the Coulomb interaction Xso  ATg !

is screened. Its short range part, however, leads tblere g = 2v,D > 1 is the dimensionless conductance
strong correlations of the electron liquid, and is frequently(in units ¢2/%), D is the diffusion constant, and is
studied within the framework of the Hubbard model the elastic mean-free path [7]. We dendtg = /D /T.
with a short range pulsive interactioié(7 — 7/). In  In d < 2 dimensions Eq. (1) takes the fordy,/xs ~
clean metals that short range part of the interactiorL? ?/y,D. Being perturbative, Eq. (1) cannot be trusted
leads to ferromagnetic (Stoner) instability at sufficientlyonce Vg~ !'InL;/I > 1 and thus does not describe the
large values of the interaction strength (see, for examplesusceptibility at a very low temperature. The renormal-
Ref. [6]). The particular details depend on the bandzation group approach [8] shows the tendency towards a
spectrum. In general, the instability with respect tocreation of a spin-polarized state.
a formation of a spin-polarized state occurs when the Below, we develop a simple mean-field theory which
dimensionless interaction strength = »,U =~ 1 (the  demonstrates that a low dimensional disordered system
Stoner criterion), wherev, is a density of states at may develop a finite temperature spin polarization for
the Fermi level. The physical mechanism behind thesubstantially weaker interaction strength than its clean
instability is analogous to the familiar from atomic counterpart. This implies divergence of the spin suscepti-
physics Hund’s rule. For strong interactions the energility, y,, at a disorder-dependent temperatdrg, below
gain due to the exchange interaction in a spin-polarizegvhich the system is ferromagnetic. The key ingredient
state exceeds the loss in the kinetic energy. The formesf our approach is utilization of the exactly known (apart
is proportional to the interaction matrix element betweerfrom the Anderson localization corrections) statistical
two wave functions close to the Fermi surfaté? =~  properties of the interaction matrix elemerits. Simi-
U [dil¢a(F)*|¢ (7)1, the latter to the mean level Jarly to &y, [Eq. (1)] they contain factorg !InL/I at
spacing,A « »;'. In a clean metal the wave functions d = 2 (or L2~9/v,D atd < 2). However, in the case
are plane waves, which immediately leads to the Stoneof the matrix elements these factors may be trusted even
criterion. if they are not small. This statement originates from the
In disordered metals the interaction matrix elementrelation between the matrix elements and the integrated
between wave functions which are close in energy igeturn probability. The latter may be indeed essentially
enhanced due to the increased return probability anthrge ind = 2 if the waiting time is long enough. Let
may satisfy the instability criterion for a weaker bareus emphasize that we deliberately restrict ourselves to
interaction. This can be interpreted as an effectivea treatment of the finite size systems. Therefore we
increase of the interaction strength due to the fact thatlo not discuss a true thermodynamic phase transition.
the particles spend more time together if their motion isThe limitation stems from the fact that we disregard
diffusive [1,2]. This effect is especially strong in low the onset of the Anderson localization. As a result, the
dimensionsd = 2, since the integrated return probability possible system size is limited by the localization length
diverges in the long time (low frequency) limit. These (in d = 2, this is not actually a strong limitation, if the
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unitary case is considered). We also disregard fluctuatiomalidity of Eqgs. (3) and (4) isnot restricted to the

effects since for the system size, considered here, theyequency range wherg !'InL, /I < 1, but is extended

do not destroy the mean field solution. The role ofevento much smaller frequencies. For a finite size system

localization and fluctuations in establishing the nature othe increase of the matrix elements is eventually saturated

the true thermodynamic low-temperature phase is beyondtw ~ E. = D/L>.

the scope of this paper. Nevertheless, the discussed Based on the above mentioned statistics of the matrix

“transition” gives definite predictions for the experi- elements, we shall adopt the following approximations:

mental samples, such as large chaotic quantum dots [9]. we disregard all matrix elements exce‘pjﬁ and ng,
Consider a system of interacting electrons in a randonyhich we shall treat as nonrandom (deterministic) given

disorder potential. One can expand the electron fielghy their mean values [Eq. (3)]. As a result, one obtains
operator in terms of exact single electron eigenfunctionshe following truncated Hamiltonian:

for a given disorder configurationgs, (7), as ¥V, (7) =

>0 dasda(?), hereo =1, | is the electron spin. For

convenience we measure all energies in unita oflf we

neglect the electron-phonon interaction the Hamiltonian 1 o

of such a system may be written as (cf. Ref. [10]) + > Z(Vﬁﬁﬁaﬁﬁ - Vf’BEQEB), (5)
ap

1 ap T
H = Z Eaalg—aaa' + E Zv'yﬁ a:w-aﬁo"ay(r’a&f s
ao

A= (eatta — HSo)
a

which is written inA terms of the chargefi, =
o @ s al auny, and spins, = > . al, Gogaas, Opera-
where the summation in the second term runs over alfors of a stater. The singlet and triplet interaction matrix
repg:‘ated indices. Both the interaction matrix elementsglements are defined a&*? = (V;V[f) — 1/2v5Py and
B _ A= [ 7247V (F — NS (DN D () b (7 . A
Vyo = A7 [didi'VF = P)bo (Fbp(F)dy (P ds(F),  yP — 1/2<V§f), correspondingly. FinallyH° is an
and the single electron energies,, are random. TO gyternal magnetic field (in units of the Bohr magneton
characterize the system one needs to know their statistiC§nes the Lande factor). The truncated Hamiltonian
E_mploying the powerful tools of treating noninteracting [Eq. (5)] fully accounts for the disorder-enhanced inter-
disordered systems, one may demonstrate that the followsetions on the Hartree-Fock level. It is sufficient for
ing statistical properties of the interaction matrix eleme”t%eveloping a mean-field theory of the ferromagnetic
are true [10-12]: (i) Thea%robablllty distribution function ransition. The subsequent calculations do not contain
of the random quantity/, s is sharply peaked near its any essential approximations.
average value. The relative width of the distribution is  To calculate the grand canonical partition function
1/¢ < 1. (ii) The only matrix elements which have z(g, H%) = Trexpi—B(H — uN)} (here Tr denotes
nonzero mean value arefgg and ng. Their mean trace over the Hilbert space of the system, ghds the
(disorder-averaged) values are [11] inverse temperature), one may write it as an imaginary
aB, A B time fermionic path integral [13]. We then decouple
Vap) = V(O) + Vkp)ReTrD(ea — €p). (32) the singlet and triplet interaction terms by means of the
(VZf) = V(kr) + V(O)Re TrD(e, — €5), (3b) Hubbard-Stratonovich transformation introducing the

where V(0) and V(kz) are slow and fast components auxiliary bosor_1 fieldsd)a_ and H,. Thege fields have
of the screened interaction potential, correspondinglyth® clear physical meaning of the effective scalar poten-

We shall assume thav(0) > V(kz). The trace of tial and the exchange magnetic field, correspondingly.
the diffusion propagator represents the classical returfiMming to develop an effective mean-field theory of the

probability and is given by finite temperature transition, we concentrate on the zero
| diq | Matsubara component of these fields only. After this
ReTrD(w) = — Re . transformation the fermionic integrals for different states
TVD 2m)? Dg* — iw a may be performed separately. As a result one obtains
= % InL,/l, (€] 0 - -
T Z(B,H) = fDHDCI) exp{(—S[H, ®]}, (6)

where L, = +/D/|w| [7]. In d < 2 the corresponding
expression isL2 ¢/(v,D). We stress again that the where the effective bosonic action is given by

STHL @] = £ S @, (77) By + Bu(v, )P Hgk - Sl + exp(—Béa)] + N1+ exa—BE. (7)
a,B o

Here the effective quasiparticle energies are introduced as
Eat] = €a — p + g T |Hy + Hyl. ®)
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In what follows we substitute energy summations by inte-Substituting Egs. (9) into Eq. (10) one finally obtains the
gration and neglect fluctuations of the single particle denself-consistency equation for the order parameigi(T):

sity of statesA~!(e) = >, 8(e — €,). This is justified, oo

since all of the important effects take place on a scale 6u — 2H" = f do[V(w) — Vi(w)]

much larger thard. The interaction matrix elements are -

functions of energy differences only, given by Egs. (3) B B

and (4). Since the total charge is a conserved quantity, X [fr(w — 8u) — fr(o + Sp)],

the constant part ofs"* can be omitted. We have thus (12)
introducedV,(e) = V,(*) — V,(e). Then the operators A ; 5

- s SA S : ! ccording to Egs.(3), V. — V, =V(kg)[1/2 +

Vs an?t\g a|[|e Egthdpg?tl\t/ely d.efr:nted, V\f’h'Ch \t/'alldates the ReTrD(w)]. As may be expected, only the fast com-
use ot the Hubbard-stratonovich transformation. ponent of the interaction potential/(kr), is relevant.

The long range (in _the energy direction) coupling gy 1oving Eq. (4) [7], one finds for zero temperature
of the bosonic®d and H fields allows us to evaluate (and zero external field) magnetizationdn— 2

the functional integral in Eq. (6), by a saddle point o

approximation. Expanding the second term on the right- Su(T = 0) = epexp{—mg[V™ (kr) — 1}. (13)
hand S'de. (r._h.s.) of Eq._ (7) up to the sec_ond order Prhis result means that even below the Stoner crite-
the bosonic fields, one finds that the resulting quadratl(‘:ion V(kg) < 1, the ground state is spin polarized.
form in H, has negative eigenvalues at sufficiently low o condition&l,u(T —0) > E, dictates the minimum
temperatures [14]. Thus, the trivial extremus, =  gystem size to have this effect. Far< 2 one ob-
H, = 0, is unstable and one should search for anothefains 54 (17 = 0) ~ A[1/V(kp) — 1P/, where
minimum. We look for the minimum of the action As = (gD and €2 = vyD.

[Eq. (7)] of the formHo .« = Hay = 0; Hazy Po # 0. To determine the susceptibility above the critical tem-
The saddle point equations read as perature we expand the Fermi functions on the r.h.s. of
o . Eq. (12) to the first order i u to obtain a linear depen-
D(e) = —f de'Vi(e — €) [ fr(&1(€)) + fr(éi(e))].  dence of the order paramet@r on H, 5 = x,(T*)H°
_J: (9a) with
o0 ®Y V(kF) 6F>
H) = [ devie - e - a0 o1-vien - ) a9

(9b)  where &z = €z2¢¢/7, C is the Euler constant. One
Here fr(z) = [1 + exp(Bz)]"! is the Fermi function. thus obtains the mean-field exEone)a;.:~ (T* — 1571,
For the ground state solution of Egs. (8) and (@),(e) Whelre the critical temperaturé,’ =~ 1.13 X s u(T = 0).
are monotonically increasing functions of energy. We de/\t high temperature]’ > T., one can expand Eq. (14) to
note the points where quasiparticle energies cross zef§e firstorder ini/g to obtain the well-known logarithmic
as uyy; correspondingly.£/ (1) = 0. These quanti- correction to the Pauli susceptibility [cf. Eq. (1)]. Bglovy
ties play the role of Fermi energies of spin up and dowrlc the system develops a spontaneous magnetization.
electrons, correspondingly. The difference between thenfXPanding the r.h.s. of Eq. (12) to the third orderdip,
S = u — uy, is the width of the magnetized energy ON€ obtains, fof, — 7" < T,
strip, which plays a role of the order parameter. Em- . o P,
ploying Eq. (8) one obtains the following self-consistency ST <T.) = \/12772T°‘ (Iz = T/17¢G)). - (15)
conditions: Finally, using Egs. (8), (9), and (11) one can find the
_ — »pyO0 relation betwee™ and7. This expression in the vicinity
Op + D) = D) = 207+ Helpy) + Hlu). of the critical temperature and at low temperature can be
(10)  written in a unified way as

A further simplication stems from the fact that the i V() — aV(kp), &r
Fermi function at low temperatures rapidly changes from T=T1\1+ amlg | )
zero to unity in the narrow region of;, around zero.

Therefore in the region of interest one can approximatevherea = 1for7 < 7. anda = 2for7 =T,..
&yi(€) = (e — wy)aéy/del,,, leading to In summary, we have presented a mean-field theory

of the ferromagnetic instability in disordered low di-

fr(&ip(e)) = fr-(e = ), (11) mensional(d = 2) metals. Our approach is based on

where the effective temperaturd;® [15], is defined the statistical treatment of interaction matrix elements
asT/T" = a&y/0€l,,,, and is to be determined self- between disordered wave functions. The Stoner instabil-
consistently from Egs. (8), (9), and (11). The effectiveity for a disordered metal develops at a finite tempera-
temperature accounts for the interaction induced increadere even if the clean counterpart remains paramagnetic.
of the mean level spacing near the Fermi surface [1,2]This tendency towards the formation of the ferromagnetic

3201

(16)



VOLUME 81, NUMBER 15 PHYSICAL REV

IEW LETTERS 12 ©TOBER 1998

My

<Y

FIG. 1. Schematic drawing of electron energy levelsin a

Fig. 1). As aresult, two subsequent Coulomb peaks, upon
subtraction of the charging energy (Ref. [9]) are expected
to have actual (not avoided) crossings in approximately
half of the events. This also modifies the peak position
correlation function in a qualitative agreement with ex-
periment [9]. The direct measurement of the dot magne-
tization may verify our suggestion. The proposed effect
could be also observed in thin films or wires of materials
which are incipient Stoner ferromagnets in the clean case.
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