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Itinerant Ferromagnetism in Disordered Metals: A Mean-Field Theory
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We develop a mean-field approach to interacting disordered systems of itinerant electrons based
on a statistical treatment of disorder enhanced Hartree-Fock interactions. We demonstrate that for
d # 2 a disordered system may exhibit a finite temperature partial spin polarization even if its
clean analog is paramagnetic. The disorder and temperature dependent magnetization and spin
susceptibility are calculated. Possible relevance to recent experiments on quantum dots is discussed.
[S0031-9007(98)07325-6]
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The study of thermodynamic and transport propertie
of disordered systems of interacting electrons has be
the subject of extensive theoretical and experimental wo
(see Refs. [1,2] for a review). One of the most interestin
aspects of the problem, which attracted much attentio
in the past [3–5], is the existence and the nature of th
itinerant ferromagnetism in such systems.

In metals the long range part of the Coulomb interactio
is screened. Its short range part, however, leads
strong correlations of the electron liquid, and is frequent
studied within the framework of the Hubbard mode
with a short range pulsive interactionUds$r 2 $r 0d. In
clean metals that short range part of the interactio
leads to ferromagnetic (Stoner) instability at sufficientl
large values of the interaction strength (see, for examp
Ref. [6]). The particular details depend on the ban
spectrum. In general, the instability with respect t
a formation of a spin-polarized state occurs when th
dimensionless interaction strengthV ­ ndU ø 1 (the
Stoner criterion), wherend is a density of states at
the Fermi level. The physical mechanism behind th
instability is analogous to the familiar from atomic
physics Hund’s rule. For strong interactions the energ
gain due to the exchange interaction in a spin-polarize
state exceeds the loss in the kinetic energy. The form
is proportional to the interaction matrix element betwee
two wave functions close to the Fermi surfaceV ab ø
U

R
d $rjfas$rdj2jfbs$rdj2, the latter to the mean level

spacing,D ~ n
21
d . In a clean metal the wave functions

are plane waves, which immediately leads to the Ston
criterion.

In disordered metals the interaction matrix elemen
between wave functions which are close in energy
enhanced due to the increased return probability a
may satisfy the instability criterion for a weaker bare
interaction. This can be interpreted as an effectiv
increase of the interaction strength due to the fact th
the particles spend more time together if their motion
diffusive [1,2]. This effect is especially strong in low
dimensions,d # 2, since the integrated return probability
diverges in the long time (low frequency) limit. These
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infrared divergences are cut off either by the syste
size, L, or by the temperature,T , and lead to diverging
perturbative corrections to various physical observabl
For example, the first order interaction correctiondxs to
the Pauli spin susceptibility,xs0, for d ­ 2 is [1]

dxs

xs0
­

V
4p2g

ln

√
minhL, LT j

l

!
. (1)

Here g ­ 2n2D . 1 is the dimensionless conductanc
(in units e2yh̄), D is the diffusion constant, andl is
the elastic mean-free path [7]. We denoteLT ­

p
DyT .

In d , 2 dimensions Eq. (1) takes the formdxsyxs ,
L22d

T yndD. Being perturbative, Eq. (1) cannot be truste
once Vg21 ln LT yl . 1 and thus does not describe th
susceptibility at a very low temperature. The renorma
ization group approach [8] shows the tendency towards
creation of a spin-polarized state.

Below, we develop a simple mean-field theory whic
demonstrates that a low dimensional disordered syst
may develop a finite temperature spin polarization f
substantially weaker interaction strength than its cle
counterpart. This implies divergence of the spin suscep
bility, xs, at a disorder-dependent temperature,Tc, below
which the system is ferromagnetic. The key ingredie
of our approach is utilization of the exactly known (apa
from the Anderson localization corrections) statistic
properties of the interaction matrix elements,V ab. Simi-
larly to dxs [Eq. (1)] they contain factorsg21 ln Lyl at
d ­ 2 (or L22dyndD at d , 2). However, in the case
of the matrix elements these factors may be trusted ev
if they are not small. This statement originates from th
relation between the matrix elements and the integra
return probability. The latter may be indeed essentia
large in d # 2 if the waiting time is long enough. Let
us emphasize that we deliberately restrict ourselves
a treatment of the finite size systems. Therefore w
do not discuss a true thermodynamic phase transiti
The limitation stems from the fact that we disregar
the onset of the Anderson localization. As a result, th
possible system size is limited by the localization leng
(in d ­ 2, this is not actually a strong limitation, if the
© 1998 The American Physical Society 3199
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unitary case is considered). We also disregard fluctuati
effects since for the system size, considered here, th
do not destroy the mean field solution. The role o
localization and fluctuations in establishing the nature
the true thermodynamic low-temperature phase is beyo
the scope of this paper. Nevertheless, the discuss
“transition” gives definite predictions for the experi-
mental samples, such as large chaotic quantum dots [9

Consider a system of interacting electrons in a rando
disorder potential. One can expand the electron fie
operator in terms of exact single electron eigenfunctio
for a given disorder configurations,fas$rd, as Css$rd ­P

a aasfas$rd, here s ­ ", # is the electron spin. For
convenience we measure all energies in units ofD. If we
neglect the electron-phonon interaction the Hamiltonia
of such a system may be written as (cf. Ref. [10])

H ­
X
as

eaay
asaas 1

1
2

X
V

ab

gd ay
asa

y
bs0ags0ads ,

(2)

where the summation in the second term runs over
repeated indices. Both the interaction matrix elemen
V

ab

gd ­ D21
R

d $rd $r 0V s$r 2 $r 0dfp
as$rdfp

bs$r 0dfgs$r 0dfds$rd,
and the single electron energies,ea , are random. To
characterize the system one needs to know their statist
Employing the powerful tools of treating noninteracting
disordered systems, one may demonstrate that the follo
ing statistical properties of the interaction matrix elemen
are true [10–12]: (i) The probability distribution function
of the random quantityV

ab

gd is sharply peaked near its
average value. The relative width of the distribution i
1yg ø 1. (ii) The only matrix elements which have
nonzero mean value areV

ab
ab and V

ab
ba . Their mean

(disorder-averaged) values are [11]

kV ab
ab l ­ V s0d 1 V skFdRe TrD̂sea 2 ebd , (3a)

kV ab
ba l ­ V skFd 1 V s0dRe TrD̂sea 2 ebd , (3b)

where V s0d and V skFd are slow and fast components
of the screened interaction potential, corresponding
We shall assume thatV s0d . V skFd. The trace of
the diffusion propagator represents the classical retu
probability and is given by

Re TrD̂svd ­
1

pnD
Re

Z ddq
s2pdd

1
Dq2 2 iv

­
1

p2g
ln Lvyl , (4)

where Lv ­
p

Dyjvj [7]. In d , 2 the corresponding
expression isL22d

v ysndDd. We stress again that the
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validity of Eqs. (3) and (4) isnot restricted to the
frequency range whereg21 ln Lvyl , 1, but is extended
even to much smaller frequencies. For a finite size syste
the increase of the matrix elements is eventually saturat
at v ø Ec ­ DyL2.

Based on the above mentioned statistics of the matr
elements, we shall adopt the following approximations
we disregard all matrix elements exceptV

ab
ab and V

ab
ba ,

which we shall treat as nonrandom (deterministic) give
by their mean values [Eq. (3)]. As a result, one obtain
the following truncated Hamiltonian:

H̃ ­
X
a

sea n̂a 2 $H0 $̂sad

1
1
2

X
ab

sV ab
s n̂an̂b 2 V

ab
t $̂sa $̂sbd , (5)

which is written in terms of the charge,̂na ­P
s ay

asaas, and spin,$̂sa ­
P

ss0 ay
as $sss0aas0 , opera-

tors of a statea. The singlet and triplet interaction matrix
elements are defined asV

ab
s ­ kV ab

ab l 2 1y2kV ab
ba l and

V
ab
t ­ 1y2kV ab

ba l, correspondingly. Finally,$H0 is an
external magnetic field (in units of the Bohr magneton
times the Lande factor). The truncated Hamiltonian
[Eq. (5)] fully accounts for the disorder-enhanced inter
actions on the Hartree-Fock level. It is sufficient for
developing a mean-field theory of the ferromagneti
transition. The subsequent calculations do not conta
any essential approximations.

To calculate the grand canonical partition function
Zsb, H0d ­ Tr exph2bsH̃ 2 mN̂dj (here Tr denotes
trace over the Hilbert space of the system, andb is the
inverse temperature), one may write it as an imaginar
time fermionic path integral [13]. We then decouple
the singlet and triplet interaction terms by means of th
Hubbard-Stratonovich transformation introducing the
auxiliary boson fieldsFa and $Ha . These fields have
the clear physical meaning of the effective scalar poten
tial and the exchange magnetic field, correspondingly
Aiming to develop an effective mean-field theory of the
finite temperature transition, we concentrate on the ze
Matsubara component of these fields only. After thi
transformation the fermionic integrals for different state
a may be performed separately. As a result one obtain

Zsb, H0d ­
Z

D $HDF exph2Sf $H, Fgj , (6)

where the effective bosonic action is given by
Sf $H, Fg ­
b

2

X
a,b

hFasṼ 21
s dabFb 1 $HasV 21

t dab $Hbj 2
X
a

hlnf1 1 exps2bja"dg 1 lnf1 1 exps2bja#dgj . (7)

Here the effective quasiparticle energies are introduced as

ja",# ; ea 2 m 1 Fa 7 j $H0 1 $Haj . (8)
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In what follows we substitute energy summations by inte
gration and neglect fluctuations of the single particle de
sity of states,D21sed ­

P
a dse 2 ead. This is justified,

since all of the important effects take place on a sca
much larger thanD. The interaction matrix elements are
functions of energy differences only, given by Eqs. (3
and (4). Since the total charge is a conserved quanti
the constant part ofV

ab
s can be omitted. We have thus

introducedṼssed ; Vss`d 2 Vssed. Then the operators
Ṽs andVt are both positively defined, which validates th
use of the Hubbard-Stratonovich transformation.

The long range (in the energy direction) couplin
of the bosonicF and $H fields allows us to evaluate
the functional integral in Eq. (6), by a saddle poin
approximation. Expanding the second term on the righ
hand side (r.h.s.) of Eq. (7) up to the second order
the bosonic fields, one finds that the resulting quadra
form in $Ha has negative eigenvalues at sufficiently low
temperatures [14]. Thus, the trivial extremum,Fa ­
$Ha ­ 0, is unstable and one should search for anoth

minimum. We look for the minimum of the action
[Eq. (7)] of the formHa,x ­ Ha,y ­ 0; Ha,z , Fa fi 0.
The saddle point equations read as

Fsed ­ 2
Z `

2`

de0Ṽsse 2 e0d f fT sssj"se0dddd 1 fT sssj#se0ddddg ,

(9a)

Hzsed ­
Z `

2`

de0Vtse 2 e0d f fT sssj"se0dddd 2 fT sssj#se0ddddg .

(9b)

Here fT szd ­ f1 1 expsbzdg21 is the Fermi function.
For the ground state solution of Eqs. (8) and (9),j"y#sed
are monotonically increasing functions of energy. We d
note the points where quasiparticle energies cross z
as m"y#; correspondingly,j"y#sm"y#d ­ 0. These quanti-
ties play the role of Fermi energies of spin up and dow
electrons, correspondingly. The difference between the
dm ; m" 2 m#, is the width of the magnetized energy
strip, which plays a role of the order parameter. Em
ploying Eq. (8) one obtains the following self-consistenc
conditions:

dm 1 Fsm"d 2 Fsm#d ­ 2H0 1 Hzsm"d 1 Hzsm#d .

(10)

A further simplication stems from the fact that the
Fermi function at low temperatures rapidly changes fro
zero to unity in the narrow region ofj"y# around zero.
Therefore in the region of interest one can approxima
j"y#sed ø se 2 m"y#d≠j"y#y≠ejm"y#

leading to

fT sssj"y#sedddd ø fT pse 2 m"y#d , (11)

where the effective temperature,Tp [15], is defined
as TyTp ; ≠j"y#y≠ejm"y#

, and is to be determined self-
consistently from Eqs. (8), (9), and (11). The effectiv
temperature accounts for the interaction induced increa
of the mean level spacing near the Fermi surface [1,2
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Substituting Eqs. (9) into Eq. (10) one finally obtains th
self-consistency equation for the order parameter,dmsTd:

dm 2 2H0 ­
Z `

2`

dvfVtsvd 2 Ṽssvdg

3 f fT p sv 2 dmd 2 fT p sv 1 dmdg ,

(12)

According to Eqs. (3), Vt 2 Ṽs ­ V skFd f1y2 1

Re TrD̂svdg. As may be expected, only the fast com
ponent of the interaction potential,V skFd, is relevant.
Employing Eq. (4) [7], one finds for zero temperatur
(and zero external field) magnetization ind ­ 2

dmsT ­ 0d ­ eF exph2p2gfV 21skFd 2 1gj . (13)

This result means that even below the Stoner crit
rion, V skFd , 1, the ground state is spin polarized
The condition dmsT ­ 0d . Ec dictates the minimum
system size to have this effect. Ford , 2 one ob-
tains dmsT ­ 0d ø Djf1yV skFd 2 1g2ysd22d, where
Dj ­ sndjdd21 andj22d ­ ndD.

To determine the susceptibility above the critical tem
perature we expand the Fermi functions on the r.h.s.
Eq. (12) to the first order indm to obtain a linear depen-
dence of the order parameterdm on H0, dm ­ xssTpdH0

with

xssTpd ­ 2

µ
1 2 V skFd 2

V skFd
p2g

ln
ẽF

Tp

∂21

, (14)

where ẽF ­ eF2eCyp, C is the Euler constant. One
thus obtains the mean-field exponent:xs , sTp 2 Tp

c d21,
where the critical temperature,Tp

c ø 1.13 3 dmsT ­ 0d.
At high temperature,T ¿ Tc, one can expand Eq. (14) to
the first order in1yg to obtain the well-known logarithmic
correction to the Pauli susceptibility [cf. Eq. (1)]. Below
Tc the system develops a spontaneous magnetizati
Expanding the r.h.s. of Eq. (12) to the third order indm,
one obtains, forTc 2 T ø Tc,

dmsTp , Tp
c d ­

q
12p2Tp

c sTp
c 2 Tpdyf7z s3dg . (15)

Finally, using Eqs. (8), (9), and (11) one can find th
relation betweenTp andT . This expression in the vicinity
of the critical temperature and at low temperature can
written in a unified way as

T ­ Tp

µ
1 1

V s0d 2 aV skFd
4p2g

ln
ẽF

pTp

∂
, (16)

wherea ­ 1 for T ø Tc anda ­ 2 for T $ Tc.
In summary, we have presented a mean-field theo

of the ferromagnetic instability in disordered low di-
mensionalsd # 2d metals. Our approach is based on
the statistical treatment of interaction matrix elemen
between disordered wave functions. The Stoner instab
ity for a disordered metal develops at a finite temper
ture even if the clean counterpart remains paramagne
This tendency towards the formation of the ferromagnet
3201
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FIG. 1. Schematic drawing of electron energy levelsei in a
dot as a function of magnetic field or gate voltage. For clarity
only the lowest unoccupied (solid line) and singly occupie
(dashed line) states are drawn fully. Inset: Addition energie
dEsxd for spin up and spin down electrons (the position of th
Coulomb blockade peak always corresponds to the lower of t
two energies).

state originates from the effective enhancement of inte
actions due to diffusive dynamics of electrons. Let u
emphasize that the electrons contributing to the spin p
larization are described by typical metallic wave function
which are extended throughout the sample. This shou
be contrasted with the Griffiths instability scenario [4], in
which local moments are attributed to electrons in loca
ized states, and the global magnetization is formed b
cause of interactions between them. The treatment
spin-wave and quantum fluctuations requires the analys
of the neglected off-diagonal interaction matrix element
and is beyond the scope of this paper. We want to poi
out, however, that for a finite system fluctuations shoul
not invalidate the mean-field results as in the case of th
Mermin-Wagner theorem, and our approach is a usef
starting point. If the spin-orbit interaction promotes an
easy axis ferromagnetic state, then the Goldstone mod
acquire a finite gap, and their influence on thermodynam
quantities is further diminished.

The predicted effect may have implications for the ex
periments on the Coulomb blockade in large chaotic qua
tum dots [9]. Depending on the proximity to the Stone
criterion and the size of the dot, the ground state may ha
a certain stripsdm $ Ecd of spin-polarized states (Fig. 1).
In that case the addition spectrum of the dot is forme
by two practically uncorrelated (sincedm ¿ D) Wigner-
Dyson sequences of levels. In particular, one should n
expect to observe any spin degeneracy (bimodal distrib
tion of Coulomb peak spacings) in the addition spectra—
in agreement with the experiment [9]. Indeed, subseque
electrons tunneling into the dot with up and down spi
are to occupy distinct states separated bydm. Since the
lowest available states for up and down electrons are e
sentially distinct, they exhibit different dependences o
an external parameter (e.g., flux). Thus, the actual traje
tory of the Coulomb peak appears to be composed of tw
or more intersecting single-particle states (see the inset
3202
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Fig. 1). As a result, two subsequent Coulomb peaks, up
subtraction of the charging energy (Ref. [9]) are expecte
to have actual (not avoided) crossings in approximate
half of the events. This also modifies the peak positio
correlation function in a qualitative agreement with ex
periment [9]. The direct measurement of the dot magn
tization may verify our suggestion. The proposed effe
could be also observed in thin films or wires of materia
which are incipient Stoner ferromagnets in the clean cas
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