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Truncation of a Two-Dimensional Fermi Surface due to Quasiparticle Gap Formation
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We study a two-dimensional Fermi liquid with a Fermi surface containing the saddle [j@ira$
and (0, 77). Including Cooper and Peierls channel contributions leads to a one-loop renormalization
group flow to strong coupling for short range repulsive interactions. In a certain parameter range the
characteristics of the fixed point, opening of a spin and charge gap, and dominant pairing correlations
are similar to those of a two-leg ladder at half-filling. We argue that an increase of the electron density
leads to a truncation of the Fermi surface to only four disconnected arcs. [S0031-9007(98)07323-2]

PACS numbers: 71.10.Hf, 71.27.+a, 74.72.—h

The origin of the instability of the Landau-Fermi liquid pose that as the hole doping decreases these gaps spread
state as the electron density is increased in overdopeult from the saddle points so the FS consists of a set of arcs,
cuprates is one of the most interesting open questionshich progressively shrink as the hole doping decreases.
in the field. Recently, we proposed that the origin lies We start with a two-dimensional FS touching the saddle
in a flow of umklapp scattering to strong coupling [1]. points(#,0) and(0, 7). Such a FS is realized in the case
The simpler case with the Fermi surface (FS) extrema abf the dispersion relatioa(k) = —2r(cosk, + cosk,) —
(x/2, £ /2) was considered and not the realistic caset:’ cosk, cosk, with + > 0 (+/ < 0) as nn [next-nearest
for hole-doped cuprates where the leading contributiomeighbor (nnn)] hoppings. Throughout this Letter, we
from umklapp processes comes from scattering at thassume’/r small but nonzero so that we are close to half-
saddle pointg7,0) and (0, 7). In this Letter we report filling. Because of the van Hove singularity, the leading
a one-loop renormalization group (RG) calculation for thesingularity arises from electron states in the vicinity of the
realistic case including contributions from both Coopersaddle points. We consider two FS patches at the saddle
and Peierls channels. Reasonable conditions can lead pwints and examine the coupling between them using one-
a strong coupling fixed point whose characteristics aréoop RG equations, as illustrated in Fig. 1&.is the radius
similar to those of half-filled two-leg ladders. There, of the patches.
strong coupling umklapp processes lead to spin and charge The susceptibility for the Cooper channelgat= 0 has
gaps but only short range spin correlations. A particularlya log-square behavior of the form
interesting and novel feature is that, although the strongest pp . 2
divergence is in thel-wave pairing channel, the charge xo (@) = —hIn(w/Eo) In(w /21k;) . (1)
gap causes insulating not superconducting behavior. Here, the sum ovek is restricted to the patchesEy is

There have been a number of previous RG investigationthe cutoff energy and = (87%¢)~! for |¢//t| < 1. The
for a FS with saddle points. Schulz [2] and Dzyaloshinskii
[3] considered the special case with only nearest neigh-
bor (nn) hopping so that the saddle points coincide with a
square FS and perfect nesting exactly at half-filling, lead-
ing to a fixed point with long range antiferromagnetic (AF)
order. Ledereet al. [4] and Dzyaloshinskii [5] also con-
sidered the same model as we do. There are two fixed}.?
points, one at a strong coupling fixed point withwave
pairing found by Ledereet al. [4], and a weak coupling
examined by Dzyaloshinskii [5]. A Hubbard parametriza-
tion of the repulsive interactiori/) and moderate interac-
tion strength suffices to stabilize the strong coupling fixed
point. The new feature we wish to stress is that there can (b)

be both spin and charge gaps. The FS is then truncatqqds 1 Fermi surface (FS). (a) Two patches of the FS at

through the formation of an insulating spin liquid (ISL) the saddle points. (b) Truncated FS as electron density is
with resonance valence bond (RVB) character. We proincreased.

(0,m) (m,m)
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Peierls channel a@ = (#, o) diverges as scribe the relative weight af = 0 Cooper channel contri-
bution and those of other channels,
ph, « | hIn(w/Eo)In(w/2tk?) > |t| _ ,.ph
xo (@) = 2h|n|t’/0t||n(w/E0§ w < | (2) di(y) =dxp /dy, (8)
dr(y) = dxd" /dy, 9
The susceptibilities for the Peierls channefat 0 (Xgh) () Xo /dy ®)
and the Cooper channel at= Q (xg’) also diverges as ds(y) = —dx’/dy . (10)
xoh ~ —xB ~ 20 In(Ey/ ), (3)  Their asymptotic forms are/;,(y) — 1 at y ~ 1 and

~ / — o whi ~ ~
but the coefficients of lfw) are smaller than that quh. il}(\/yy) thr(')nulgtﬁgl,/tﬁea;éion 0]1 i",ﬂglriiz_(y) L)

In Fig. 2 we define the interaction vertices(i = 1 ~ The casel, = 1 andds, d; < d, was studied by Schulz
4). Normal and umklapp processes are indistinguishabl?z], Dzyaloshinskii [3], and Lederest al. [4] which arises
since the patches are at the zone edge. We use a Wils@g;’ — 0 as well as in a sufficiently largé region where’

RG flow, parametrized by a decreasing energy scale, iy jrrelevant. Spin-density wave (SDW) susceptibility has
which all degrees of freedom above that energy scale affe same exponent aswave pairing but is dominant due
integrated out. Wilson’s effective action at scdlg has g the next leading divergent terms. The fixed point is un-

the dual interpretation that (a) it generates the interacgerstood as a Mott insulator with long range AF order. The
tion vertices, and thus an effective Hamiltonian, for the|jmit di = d, = d; = 0 was treated by Dzyaloshinskii

particles with energy belowt, and (b) these vertices [5]. In this case, (6) and (7) combine to gige = —g>
are also the connected correlation functions with the inyith o = ¢, — ¢;. Dzyaloshinskii considered the weak-
frared cutoffE,. We consider only the four-point func- coupling fixed pointg_ — 0 which arises wherg_ =

tion and include only the one-loop terms. The one-loom, and discussed the resulting Tomonaga-Luttinger liquid
RG was justified as the leading behavior at low energiegenavior.

and weak coupling for a class of FS in Ref. [6], which in- | this Letter we examine the RG equations with<
cludes those with nonzero curvature ¢ 0 in our case). g, (y) < 1 which enables us to consider nonzero values of
It leads to the flow equations (see also Ledeteal. [4]) the ratiost’/t andU /t. Sinced,, d; < d, we neglectl,
&1 = 2d1g1(g2 — g1) + 2dagigs — 2d3g12>, (4) @andds in RG equations for simplicity. Note the terms
involving d; act to enhance the basin of attraction for
o =di(g2 + gD + 2dx(g1 — g2)gs — da(g2 + g2). the strong coupllng fixed poing- — —® [4]. The one-
loop RG equations are solved numerically. Starting from

) a Hubbard-model initial valug; = U (i = 1 ~ 4), the

S _ vertices flow to strong coupling fixed points wigh —

83 = ~28384 + 2d183(282 — 1), ©® L g3 — +, andgs, — —oo, with the asymptotic form

g4 = —(g% + gi) + dz(g% + 2g182 — Zg% + gi). gi(y) = g?/()’c - ). (11)

(7)  Herey. ~ t/U is the critical point of one-loop RG equa-

tions. The divergence of;(y) with respect toy. — y

is only logarithmic. To analyze this fixed point more
precisely, we substitute the asymptotic form (11) into
Egs. (4)—(7) and obtain polynomial equations

g = 2d(y.)gl(g5 — &), (12)
\ g = di(yo) [ + (D], (13)
gy 2 gY = —28%0 + 2d1(yo)g3(2¢d — g)),  (14)

g8 = —[(&d)* + (&1 (15)

Figure 3 shows the solution of these equatighdor the

O O initial valuesg; = U. The coefficientg! are determined
\ as a function ofd,(y.) ~ U/t In|t/¢'|, i.e., the critical

) ) Q behavior of the fixed point is a function &f.

83 &4 Although one cannot solve for the strong coupling fixed

point using only one-loop RG equations, a qualitative

description comes from the susceptibilities. Using these

FIG. 2. The definitions of vertices for the two-patch model. coefficientsg’, exponents for various susceptibilities are

Here, we introduced the normalizatigpn— hg;, to give
dimensionless couplings, agd = (dg;)/(dy), wherey =
In2(w/Ep) = x4 (w). We define functions which de-
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FIG. 3. The fixed point values faf;. FIG. 4. Exponents for various susceptibilities. For uniform

spin and charge susceptibilities, exponents are scalet hi .

calculated as follows. The one-loop RG equation for the
d-wave pairing is .
. U > U, which can be regarded as a precursor of the Mott
Xap = 2(g4 — 83), (16)  transition. The fixed pointdf > U, resembles that of the
where yap = (9 xap/d@)/(0x5" /ow). From Eq. (11), half-filled two-leg ladder which has spin and charge gaps
we obtain a divergencgqp = (y. — y)® with exponent but the most divergent susceptibility i&wave pairing.
a = agp = Z(gg — gg) S|m||a|'|y’ exponents for-wave This fixed pOint (COSO in the Balents-Fisher [7] nOtation)
pairin91 Charge density waves (CDW), SDW, as well agls well understood as an ISL of short range RVB form.
uniform spin, charge compressibilities, and finite momen-The close similarity between the fixed points leads us to

tum 7 pairing, are given by assign them to the same universalit_y class. N
— (o0 4 O 17 The fixed point for0 < d; < 1 with d-wave pairing
asp = 2(83 + 84), (17) " as the leading divergence differs from the case= 1,

(18) where SDW correlation is dominant when the next leading

= (28} — g3 + g)di(ye).
acow = Qg1 = &2 + g1 (3e) term is included [2], and from the weak-coupling fixed

aspw = —2(g3 + g9di(y.), (19) point for d; = 0 [5]. The contribution of the particle-
particle channel of the part of the Fermi surface away
as = —2(g% + gDda(y.), (20)  from the saddle points was not discussed here for brevity;
0 0 0 one can show that it gives a non-negative contribution to
a, = (—g) + 28 + gyda(ye), (21) 5 and thus even enhances the asymmetry that drives the
flow to strong coupling;— — —o. The present result for
ay = 2=g] + g)ds(ye), (22)  the saddle point model witH < 0 is in good accordance
respectively. For weak coupling, we havé(y.) ~  with the caset’ > 0 (or # < 0 with electron doping)
d;(y.) ~ 4/U/t. Uniform susceptibilities are calculated previously studied by the authors [1]. There, four patches
in the limit w, ¢ — 0 with ¢/ w held fixed. at the zone diagonals were considered. For interaction

In Fig. 4 we show the exponents fdrwave pairing, U larger than a critical value determined by the infrared
SDW, uniform spin, and charge compressibility. Compari-cutoff due to finite curvature, the charge compressibility
son of the values of the exponents shows us that the mostnormalizes to zero due to the umklapp scattering.
divergent susceptibility ig/-wave pairing throughout the Next we consider increasing the electron density. One
parameter region d < d;(y.) < 1 [4]. The SDW sus- possibility is to follow the noninteracting FS which ex-
ceptibility shows a weaker divergence, and the exponerands beyond the saddle points. But the flow to strong
vanishes in the limit/;(y.) — 0 or U/t — 0. The expo- coupling and the opening of a charge and spin gap lead
nents for uniform spin as well aswave pairing, CDW, us to consider a second possibility, namely, that the FS
and 7 pairing are always positive; i.e., these susceptibili-is pinned by umklapp processes and does not expand be-
ties are suppressed at low frequency. yond the saddle points. This proposal was put forward in

The exponent for the charge compressibility change®ef. [1] after an examination of eight FS patches located
sign atd;(y.) ~ 0.6. Namely, there exists a critical onthe umklapp surface (US) which is defined by lines join-
interaction strengtlV. such that forU > U, the charge ing saddle points. The leading contribution from umklapp
compressibility is suppressed to zero. The critical valugrocesses comes from scattering between points on this
U. is determined byt' in the form U./t « In"2|t/¢/|.  US. Support for this proposal comes from the lightly
This implies a transition from a superconducting phase atloped three-leg ladder [8,9], where in strong coupling a
U < U, with its origin in enhanced Cooper pairing due C1S1 phase occurs with an ISL with exactly half-filling
to the van Hove singularity, to a charge-gapped phase &b the even parity channels and an open FS only in the
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odd parity channel. This contrasts with the one-loop RGvhere they meet the ISL region. Lastly, we refer the
results which gives a C2S1 phase [7] with holes imme+eader to the recent paper by Balents, Fisher, and Nayak
diately entering both odd and even parity channels. Ouf18] which introduces the concept of a nodal liquid with
proposal, sketched in Fig. 1b, is based on a lateral spregatoperties similar to the ISL discussed above.
of the spin and charge gaps along the US leading to four In conclusion, we have shown that, when the Fermi
open FS segments consisting of arcs centered at the poirgarface approaches the saddle points, umklapp scattering
(x7/2,+m/2). Such behavior can be viewed as a sortdrives the system into a strong coupling fixed point which
of phase separation ik space in that in some directions can cause a breakdown of the Landau Fermi liquid state.
an ISL forms but others remain metallic. Note that theThe Fermi surfaces near the saddle poitis0) and
area enclosed by the surface defined by the US and the§@ 7) are truncated by the formation of a pinned and
four arcs contains the full electron density, consistent witinsulating condensate, while the zone diagonal regions
a generalized form of Luttinger’s theorem. around(*/2, =7 /2) remain metallic. We have given
Note that, since the ISL is not characterized by anyarguments that the spin properties are those of an insulating
simple broken symmetry or order parameter, the resultingpin liquid. This microscopic model has a lot in common
state cannot be described by a simple mean field or Hartregith the results of ARPES experiments and some recent
Fock factorization. Our proposal of a FS consisting of fourphenomenological models so that we believe it can form
disconnected arcs has strong parallels to recent gauge thbe basis for a theory of the cuprates.
ory calculations for the lightly doped strong coupling We thank S. Haas, D. Khveshchenko, M. Sigrist,
model by Lee and Wen [10]. Signs of such behavior arée. Trubowitz, F. C. Zhang, and R. Hlubina for stimulating
also evident in a recent analysis of the momentum districonversations. We acknowledge D. Poilblanc for discus-
bution using a high temperature series by Putikkaal.  sion and for pointing out Ref. [4]. N.F. is supported by a
[11]. Note that models which include only nn hoppings Monbusho Grant for overseas research.
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