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Truncation of a Two-Dimensional Fermi Surface due to Quasiparticle Gap Formation
at the Saddle Points
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We study a two-dimensional Fermi liquid with a Fermi surface containing the saddle pointssp , 0d
and s0, pd. Including Cooper and Peierls channel contributions leads to a one-loop renormalization
group flow to strong coupling for short range repulsive interactions. In a certain parameter range the
characteristics of the fixed point, opening of a spin and charge gap, and dominant pairing correlations
are similar to those of a two-leg ladder at half-filling. We argue that an increase of the electron density
leads to a truncation of the Fermi surface to only four disconnected arcs. [S0031-9007(98)07323-2]
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The origin of the instability of the Landau-Fermi liquid
state as the electron density is increased in overdop
cuprates is one of the most interesting open questio
in the field. Recently, we proposed that the origin lie
in a flow of umklapp scattering to strong coupling [1]
The simpler case with the Fermi surface (FS) extrema
s6py2, 6py2d was considered and not the realistic cas
for hole-doped cuprates where the leading contributi
from umklapp processes comes from scattering at t
saddle pointssp, 0d and s0, pd. In this Letter we report
a one-loop renormalization group (RG) calculation for th
realistic case including contributions from both Coope
and Peierls channels. Reasonable conditions can lea
a strong coupling fixed point whose characteristics a
similar to those of half-filled two-leg ladders. There
strong coupling umklapp processes lead to spin and cha
gaps but only short range spin correlations. A particular
interesting and novel feature is that, although the strong
divergence is in thed-wave pairing channel, the charge
gap causes insulating not superconducting behavior.

There have been a number of previous RG investigatio
for a FS with saddle points. Schulz [2] and Dzyaloshinsk
[3] considered the special case with only nearest neig
bor (nn) hopping so that the saddle points coincide with
square FS and perfect nesting exactly at half-filling, lea
ing to a fixed point with long range antiferromagnetic (AF
order. Ledereret al. [4] and Dzyaloshinskii [5] also con-
sidered the same model as we do. There are two fix
points, one at a strong coupling fixed point withd-wave
pairing found by Ledereret al. [4], and a weak coupling
examined by Dzyaloshinskii [5]. A Hubbard parametriza
tion of the repulsive interactionssUd and moderate interac-
tion strength suffices to stabilize the strong coupling fixe
point. The new feature we wish to stress is that there c
be both spin and charge gaps. The FS is then trunca
through the formation of an insulating spin liquid (ISL
with resonance valence bond (RVB) character. We pr
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pose that as the hole doping decreases these gaps sp
out from the saddle points so the FS consists of a set of a
which progressively shrink as the hole doping decrease

We start with a two-dimensional FS touching the sadd
pointssp, 0d ands0, pd. Such a FS is realized in the cas
of the dispersion relatiońskd ­ 22tscoskx 1 coskyd 2

4t0 coskx cosky with t . 0 st0 , 0d as nn [next-nearest
neighbor (nnn)] hoppings. Throughout this Letter, w
assumet0yt small but nonzero so that we are close to ha
filling. Because of the van Hove singularity, the leadin
singularity arises from electron states in the vicinity of th
saddle points. We consider two FS patches at the sad
points and examine the coupling between them using o
loop RG equations, as illustrated in Fig. 1a.kc is the radius
of the patches.

The susceptibility for the Cooper channel atq ­ 0 has
a log-square behavior of the form

x
pp
0 svd ­ 2h lnsvyE0d lnsvy2tk2

c d . (1)

Here, the sum overk is restricted to the patches.E0 is
the cutoff energy andh ­ s8p2td21 for jt0ytj ø 1. The

FIG. 1. Fermi surface (FS). (a) Two patches of the FS
the saddle points. (b) Truncated FS as electron density
increased.
© 1998 The American Physical Society 3195
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Peierls channel atQ ­ sp , pd diverges as

x
ph
Q svd ­

(
h lnsvyE0d lnsvy2tk2

cd v ¿ jt0j
2h ln jt0ytj lnsvyE0d v ø jt0j

. (2)

The susceptibilities for the Peierls channel atq ­ 0 sxph
0 d

and the Cooper channel atq ­ Q sxpp
Q d also diverges as

x
ph
0 , 2x

pp
Q , 2h lnsE0yvd , (3)

but the coefficients of lnsvd are smaller than that ofx
ph
Q .

In Fig. 2 we define the interaction verticesgi si ­ 1 ,
4d. Normal and umklapp processes are indistinguisha
since the patches are at the zone edge. We use a W
RG flow, parametrized by a decreasing energy scale
which all degrees of freedom above that energy scale
integrated out. Wilson’s effective action at scaleE0 has
the dual interpretation that (a) it generates the inter
tion vertices, and thus an effective Hamiltonian, for t
particles with energy belowE0 and (b) these vertice
are also the connected correlation functions with the
frared cutoffE0. We consider only the four-point func
tion and include only the one-loop terms. The one-lo
RG was justified as the leading behavior at low energ
and weak coupling for a class of FS in Ref. [6], which i
cludes those with nonzero curvature (t0 fi 0 in our case).
It leads to the flow equations (see also Ledereret al. [4])

Ùg1 ­ 2d1g1sg2 2 g1d 1 2d2g1g4 2 2d3g1g2 , (4)

Ùg2 ­ d1sg2
2 1 g2

3d 1 2d2sg1 2 g2dg4 2 d3sg2
1 1 g2

2d ,
(5)

Ùg3 ­ 22g3g4 1 2d1g3s2g2 2 g1d , (6)

Ùg4 ­ 2sg2
3 1 g2

4d 1 d2sg2
1 1 2g1g2 2 2g2

2 1 g2
4d .

(7)

Here, we introduced the normalizationgi ! hgi , to give
dimensionless couplings, andÙgi ; sdgidysdyd, wherey ;
ln2svyE0d ~ x

pp
0 svd. We define functions which de

FIG. 2. The definitions of vertices for the two-patch mode
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scribe the relative weight ofq ­ 0 Cooper channel contri-
bution and those of other channels,

d1s yd ­ dx
ph
Q ydy , (8)

d2s yd ­ dx
ph
0 ydy , (9)

d3s yd ­ 2dx
pp
Q ydy . (10)

Their asymptotic forms ared1s yd ! 1 at y ø 1 and
d1s yd , ln jtyt0jyp

y asy ! `, while d2s yd , d3s yd ,
1yp

y throughout the region of interest.
The cased1 ­ 1 andd2, d3 ø d1 was studied by Schulz

[2], Dzyaloshinskii [3], and Ledereret al. [4] which arises
att0 ­ 0 as well as in a sufficiently largeU region wheret0

is irrelevant. Spin-density wave (SDW) susceptibility ha
the same exponent asd-wave pairing but is dominant due
to the next leading divergent terms. The fixed point is un
derstood as a Mott insulator with long range AF order. Th
limit d1 ­ d2 ­ d3 ­ 0 was treated by Dzyaloshinskii
[5]. In this case, (6) and (7) combine to giveÙg2 ­ 2g2

2

with g2 ­ g4 2 g3. Dzyaloshinskii considered the weak-
coupling fixed pointg2 ! 0 which arises wheng2 $

0, and discussed the resulting Tomonaga-Luttinger liqu
behavior.

In this Letter we examine the RG equations with0 ,

d1s yd , 1 which enables us to consider nonzero values
the ratiost0yt andUyt. Sinced2, d3 ø d1, we neglectd2
and d3 in RG equations for simplicity. Note the terms
involving d1 act to enhance the basin of attraction fo
the strong coupling fixed point,g2 ! 2` [4]. The one-
loop RG equations are solved numerically. Starting from
a Hubbard-model initial valuegi ­ U si ­ 1 , 4d, the
vertices flow to strong coupling fixed points withg2 !
1`, g3 ! 1`, andg4 ! 2`, with the asymptotic form

gis yd ­ g0
i ys yc 2 yd . (11)

Hereyc , tyU is the critical point of one-loop RG equa-
tions. The divergence ofg1s yd with respect toyc 2 y
is only logarithmic. To analyze this fixed point more
precisely, we substitute the asymptotic form (11) int
Eqs. (4)–(7) and obtain polynomial equations

g0
1 ­ 2d1s ycdg0

1sg0
2 2 g0

1d , (12)

g0
2 ­ d1s ycd fsg0

2d2 1 sg0
3d2g , (13)

g0
3 ­ 22g0

3g0
4 1 2d1s ycdg0

3s2g0
2 2 g0

1d , (14)

g0
4 ­ 2fsg0

3d2 1 sg0
4d2g . (15)

Figure 3 shows the solution of these equationsg0
i for the

initial valuesgi ­ U. The coefficientsg0
i are determined

as a function ofd1s ycd ,
p

Uyt ln jtyt0j, i.e., the critical
behavior of the fixed point is a function ofU.

Although one cannot solve for the strong coupling fixe
point using only one-loop RG equations, a qualitativ
description comes from the susceptibilities. Using thes
coefficientsg0

i , exponents for various susceptibilities are
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FIG. 3. The fixed point values forg0
i .

calculated as follows. The one-loop RG equation for t
d-wave pairing is

Ù̄xdP ­ 2sg4 2 g3d , (16)

where x̄dP ­ s≠xdPy≠vdys≠x
pp
0 y≠vd. From Eq. (11),

we obtain a divergencexdP ~ s yc 2 yda with exponent
a ­ adP ­ 2sg0

4 2 g0
3d. Similarly, exponents fors-wave

pairing, charge density waves (CDW), SDW, as well
uniform spin, charge compressibilities, and finite mome
tum p pairing, are given by

asP ­ 2sg0
3 1 g0

4d , (17)

aCDW ­ s2g0
1 2 g0

2 1 g0
3dd1s ycd , (18)

aSDW ­ 22sg0
2 1 g0

3dd1s ycd , (19)

as ­ 22sg0
1 1 g0

4dd2s ycd , (20)

ak ­ s2g0
1 1 2g0

2 1 g0
4dd2s ycd , (21)

ap ­ 2s2g0
1 1 g0

2dd3s ycd , (22)

respectively. For weak coupling, we haved2s ycd ,
d3s ycd ,

p
Uyt. Uniform susceptibilities are calculated

in the limit v, q ! 0 with qyv held fixed.
In Fig. 4 we show the exponents ford-wave pairing,

SDW, uniform spin, and charge compressibility. Compa
son of the values of the exponents shows us that the m
divergent susceptibility isd-wave pairing throughout the
parameter region of0 , d1s ycd , 1 [4]. The SDW sus-
ceptibility shows a weaker divergence, and the expon
vanishes in the limitd1s ycd ! 0 or Uyt ! 0. The expo-
nents for uniform spin as well ass-wave pairing, CDW,
andp pairing are always positive; i.e., these susceptibi
ties are suppressed at low frequency.

The exponent for the charge compressibility chang
sign at d1s ycd , 0.6. Namely, there exists a critica
interaction strengthUc such that forU . Uc the charge
compressibility is suppressed to zero. The critical val
Uc is determined byt0 in the form Ucyt ~ ln22 jtyt0j.
This implies a transition from a superconducting phase
U , Uc with its origin in enhanced Cooper pairing du
to the van Hove singularity, to a charge-gapped phase
he
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FIG. 4. Exponents for various susceptibilities. For uniform
spin and charge susceptibilities, exponents are scaled byd2yd1.

U . Uc which can be regarded as a precursor of the Mo
transition. The fixed point atU . Uc resembles that of the
half-filled two-leg ladder which has spin and charge gap
but the most divergent susceptibility isd-wave pairing.
This fixed point (C0S0 in the Balents-Fisher [7] notation
is well understood as an ISL of short range RVB form
The close similarity between the fixed points leads us
assign them to the same universality class.

The fixed point for0 , d1 , 1 with d-wave pairing
as the leading divergence differs from the cased1 ; 1,
where SDW correlation is dominant when the next leadin
term is included [2], and from the weak-coupling fixed
point for d1 ; 0 [5]. The contribution of the particle-
particle channel of the part of the Fermi surface awa
from the saddle points was not discussed here for brevi
one can show that it gives a non-negative contribution
Ùg2 and thus even enhances the asymmetry that drives
flow to strong couplingg2 ! 2`. The present result for
the saddle point model witht0 , 0 is in good accordance
with the caset0 . 0 (or t0 , 0 with electron doping)
previously studied by the authors [1]. There, four patche
at the zone diagonals were considered. For interacti
U larger than a critical value determined by the infrare
cutoff due to finite curvature, the charge compressibilit
renormalizes to zero due to the umklapp scattering.

Next we consider increasing the electron density. On
possibility is to follow the noninteracting FS which ex-
pands beyond the saddle points. But the flow to stron
coupling and the opening of a charge and spin gap le
us to consider a second possibility, namely, that the F
is pinned by umklapp processes and does not expand
yond the saddle points. This proposal was put forward
Ref. [1] after an examination of eight FS patches locate
on the umklapp surface (US) which is defined by lines join
ing saddle points. The leading contribution from umklap
processes comes from scattering between points on t
US. Support for this proposal comes from the lightly
doped three-leg ladder [8,9], where in strong coupling
C1S1 phase occurs with an ISL with exactly half-filling
in the even parity channels and an open FS only in th
3197
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odd parity channel. This contrasts with the one-loop R
results which gives a C2S1 phase [7] with holes imm
diately entering both odd and even parity channels. O
proposal, sketched in Fig. 1b, is based on a lateral spr
of the spin and charge gaps along the US leading to f
open FS segments consisting of arcs centered at the p
s6py2, 6py2d. Such behavior can be viewed as a s
of phase separation in$k space in that in some direction
an ISL forms but others remain metallic. Note that t
area enclosed by the surface defined by the US and th
four arcs contains the full electron density, consistent w
a generalized form of Luttinger’s theorem.

Note that, since the ISL is not characterized by a
simple broken symmetry or order parameter, the result
state cannot be described by a simple mean field or Hart
Fock factorization. Our proposal of a FS consisting of fo
disconnected arcs has strong parallels to recent gauge
ory calculations for the lightly doped strong couplingt-J
model by Lee and Wen [10]. Signs of such behavior a
also evident in a recent analysis of the momentum dis
bution using a high temperature series by Putikkaet al.
[11]. Note that models which include only nn hopping
st0 ­ 0d are a special limit from the present point of view

The development of ISL near the saddle points is rela
to the gap formation of the high-Tc cuprates. In the norma
state of the underdoped cuprates, the ARPES experim
[12,13] show a single particle gap opening and a loss
quasiparticle weight in the vicinity of the saddle poin
below the pseudogap temperature. Tunneling experim
[14] also shows a quasiparticle gap formation aboveTc.
These results are quite similar to those we propose
Fig. 1b. Systematics of the loss of quasiparticle weights
electron- and hole-doped cuprates [15] are also consis
with our results for four-patch and two-patch models.

The proposal that an ISL truncates the FS along the
in the vicinity of the saddle points has very interestin
consequences. There will be a coupling to the op
segments in the Cooper channel through the scatterin
electron pairs out of the ISL to the open FS segmen
This process is reminiscent of the coupling of fermions
bosonic preformed pairs in the Geshkenbein-Ioffe-Lark
model [16]. They argued for an infinite mass for such pa
to suppress their contribution to transport properties. S
scattering processes will be an efficient mechanism ford-
wave pairing on the open FS segments.

We also see a close similarity to a phenomenologi
model by Ioffe and Millis [17], to explain the anomalou
transport properties in the normal state. They assumed
the FS segments have the usual quasiparticle prope
without spin-charge separation but the scattering rate
vary strongly along the FS arcs. They justified the mo
by comparison to ARPES and tunneling experiments [1
14]. In our case, the scattering rate varies strongly due
the strong umklapp scattering at the end of the FS a
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where they meet the ISL region. Lastly, we refer th
reader to the recent paper by Balents, Fisher, and Nay
[18] which introduces the concept of a nodal liquid with
properties similar to the ISL discussed above.

In conclusion, we have shown that, when the Ferm
surface approaches the saddle points, umklapp scatter
drives the system into a strong coupling fixed point whic
can cause a breakdown of the Landau Fermi liquid sta
The Fermi surfaces near the saddle pointssp, 0d and
s0, pd are truncated by the formation of a pinned an
insulating condensate, while the zone diagonal regio
arounds6py2, 6py2d remain metallic. We have given
arguments that the spin properties are those of an insulat
spin liquid. This microscopic model has a lot in commo
with the results of ARPES experiments and some rece
phenomenological models so that we believe it can for
the basis for a theory of the cuprates.
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