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Relaxed States of a Magnetized Plasma with Minimum Dissipation
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The relaxed state of a slightly resistive and turbulent magnetized plasma is obtained by invokin
the principle of minimum dissipation, which leads to= 3 = 3 = 3 B ­ LB. A solution of this
equation is accomplished using the analytic continuation of the Chandrasekhar-Kendall eigenfunctio
in the complex domain. The new features of this theory show (i) that a single fluid can relax
to an MHD equilibrium which can support a pressure gradient even without a long-term coupling
between mechanical flow and magnetic field, and (ii) field reversal in states that are not force free
[S0031-9007(98)07284-6]
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In the well-known theory of relaxation of magneto
plasma, Taylor [1] proposed that the process of relaxati
is governed by the principle of minimum total magneti
energy and invariance of total (global) magnetic helici
K ­

R
V A ? BdV where the integration is over the entire

volume, the latter being the most significant invariant
the theory of relaxation. Accordingly, the relaxed state o
magnetoplasma satisfies the corresponding Euler-Lagra
equation,

= 3 B ­ lB , (1)

with constantl, and, consequently, is a force-free stat
Taylor’s theory is quite successful in explaining a numb
of experimental results, including those of reversed fie
pinch (RFP). However, relaxed states as envisaged
Taylor, have only zero pressure gradient.

Extensive numerical works by Sato and his collabor
tors have established [2,3] the existence of self-organiz
states with finite pressure, i.e., these states are governe
the magnetohydrodynamic force balance relation, name
j 3 B ­ =p, rather thanj 3 B ­ 0. Recently, it has
been demonstrated both by numerical simulation [4] a
by experiments [5] that the counterhelicity merging o
two spheromaks can produce a field-reversed configurat
(FRC). The FRC has zero toroidal magnetic field, and t
plasma is confined entirely by poloidal magnetic field.
has a finite pressure with a relatively high value ofb.
It may be concluded that FRC, with its nonzero perpe
dicular component of current, is a relaxed state and it is
distinctly non-force-free state. From the point of view o
plasma relaxation, the formation of FRC through the cou
terhelicity merging of two spheromaks is a unique proce
where a non-force-free state emerges from the fusion
two Taylor states. The conclusion is that there exists
general class of relaxed states which are not always fo
free, and Taylor’s force-free states constitute only a su
class of this wider class. While Taylor states do not su
port any pressure gradient, equilibrium obtained from t
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principle of minimum energy accommodates pressure gr
dients only in the presence of flow. Several attempts [6–
have been made in the past to obtain relaxed states wh
could support finite pressure gradient, a large number
them making use of the coupling of the flow with mag
netic field [9–12].

The principle of “minimum rate of entropy production,”
formulated by Prigogine and others [13], is believed to pla
a major role in many problems of irreversible thermody
namics. Dissipation, along with nonlinearity, is ubiqui
tous in systems which evolve towards self-organized stat
Another closely related concept, the principle of minimum
dissipation rate, was used for the first time by Montgome
and Phillips [14] in an MHD problem to understand the
steady state profiles of RFP configuration under the co
straint of a constant rate of supply and dissipation o
helicity together with the usual physical boundary cond
tions for a conducting wall. It may be pointed out that th
principle of minimum dissipation was also discussed b
Chandrasekhar and Woltjer [15] in a sequel to the com
plete general solution of the force-free equation by Cha
drasekhar and Kendall [16]. The minimum dissipation ra
hypothesis was later used by a number of authors [17,1
to predict the current and magnetic field profiles of drive
dissipative systems.

This paper deals with the question of determining th
field configurations assumed by a magnetofluid in a relax
state by maintaining that the relaxation is governed b
the principle of minimum rate of energy dissipation. It is
our conjecture that relaxed states could be characteriz
as the states of minimum dissipation rather than stat
of minimum energy. The novel feature of our work is
to show that it is possible for asingle fluid to relax to
an MHD equilibrium with a magnetic field configuration
which can support pressure gradient, even without a lon
term coupling between the flow and the magnetic field. I
a recent work, Steinhaueret al. [12] claimed that single
fluid MHD theory can admit only a force-free state, an
© 1998 The American Physical Society
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one needs to take recourse to a two fluid theory so th
electromechanical coupling produces pressure gradient
a non-force-free state. Our work establishes that none
these requirements need be satisfied to obtain a rela
state of the desired kind.

In what follows we derive the Euler-Lagrange equa
tion from a variational principle with minimum energy
dissipation and conservation of total magnetic helicit
solve the equation in terms of the analytically continue
Chandrasekhar-Kendall (CK) eigenfunctions, discuss t
important role played by the boundary conditions, an
present our results for the flux, field reversal param
ter, pinch parameter, and pressure profile. The results
our theory which predict non-force-free relaxed states a
closer to the experimentally observed [19] RFP configur
tions than Taylor’s theory.

We consider a closed system of an incompressib
resistive magnetofluid, without any mean flow velocity
described by the standard MHD equations in the presen
of a small but finite resistivityh. In the absence of any
externally imposed electric fields, the Ohmic dissipatio
rate R is itself a time varying quantity. However, it is
possible to find constraints that are better preserved th
the rate of energy dissipation. In this case, helicity st
serves to hold as a good constraint as it decays a
time scale much slower in comparison to the decay tim
scale of the rate of energy dissipation as is evident fro
the simulation works of Zhuet al. [3]. It can be easily
shown that the decay rate of dissipation (ÙR) is Os1d at
scale lengths for whichk ø S1y2. But, at these scale
lengths, helicity dissipation (ÙK) is only OsS21y2d ø 1,
whereS is the ratio of resistive diffusion time to Alfven
time. Thus, we may expect that, in the presence of sm
scale turbulence withS ¿ 1, the rate of energy dissipation
decays at a faster rate than helicity.

We therefore minimize the ohmic dissipationR ­R
hj2 dV subject to the constraints of helicity

R
A ?

B dV . The variational equation is given by

d
Z

shj2 1 lA ? Bd dV ­ 0 , (2)
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where l is Lagrange’s undetermined multiplier. The
variation can be shown to lead to the Euler-Lagrange
equation

= 3 = 3 = 3 B ­ LB , (3)

whereL ­ lyh is a constant. The surface terms in the
equation vanish if we consider the boundary condition
dA 3 n ­ 0 as well asj 3 n ­ 0, which is the physical
boundary condition we will impose in the problem.

We emphasize that Eq. (3) is a general equation whic
embraces the Woltjer-Taylor equation [i.e., Eq. (1)] as a
special case. The solution of Eq. (3) can be constructe
using the CK eigenfunctions. The CK solution [16] of
the equation= 3 B ­ lB can be written in cylindrical
coordinates as

Bsm, m, kd ­ l=F 3 =z 1 = 3 s=F 3 =zd , (4)

where F ­ Jmsmrd expfismu 1 kzdg with l2 ­ m2 1

k2. Here, Jm is a Bessel function of orderm, and
the value of m in the argument is determined from
the boundary condition atr ­ a, which is given as
sn̂ ? Bdr­a ­ 0.

The actual physical significance of Eq. (3) could be
obtained by exploring such solutions which arenot at
the same time solutions of the Woltjer-Taylor equation,
the latter always leading to a restricted class of relaxe
states, namely, which are force free. This requires th
general solutions to the former equation which we are
able to construct by taking a linear combination of CK
eigenfunctions with complexl. For real values ofl (and
hence ofm andk), the operators=3d has been proved to
be self-adjoint, but not so in the larger space spanned b
the analytically continued CK solutions.

We introduce the complex parameters

mn ­ fsm2 1 k2d exps4npiy3d 2 k2g1y2, n ­ 1, 2
(5)

so thatm2
n 1 k2 ­ l2v2n, v ­ exps2piy3d, and define
B1 ­ Bsm, m, kd ­ l=F 3 =z 1 = 3 s=F 3 =zd ,

B2 ­ Bsm1, m, kd ­ lv=F1 3 =z 1 = 3 s=F1 3 =zd , (6)

B3 ­ Bsm2, m, kd ­ lv2=F2 3 =z 1 = 3 s=F2 3 =zd .
er-

e

In the last two expressions above,F1 andF2 are obtained
from F by replacingm by m1 andm2, respectively.

A solution of Eq. (3) can now be obtained as a line
combination ofB1, B2, B3:

B ­ a1B1 1 a2B2 1 a3B3 , (7)

whereai are constants, with at least two of them nonzer
It can be easily demonstrated that the expression forB
given in (7) is a solution of Eq. (3) withL ­ l3.
ar

o.

A reasonable boundary condition is to assume a p
fectly conducting wall, so that

B ? n ­ 0, j 3 n ­ 0 at r ­ a . (8)

The boundary conditions given by Eq. (8) suffice to fix th
arbitrary constants

a2

a1
­ 2

v2sB1uBp
2z 2 Bp

2uB1zdjr­a

sB2uBp
2z 2 Bp

2uB2zdjr­a
, (9)
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If we relax the boundary conditionj 3 n ­ 0, the con-
stantsa2 and a3 become free, and Taylor states can b
accommodated as solutions of Eq. (3). However, for no
trivial values of the constantsai, the magnetic fields at the
boundaryr ­ a have to obey the following relation:

2B1r ImsB2uBp
2zd 2 2B1u Imsv2B2rBp

2zd 1

2B1z Imsv2B2rBp
2ud ­ 0 . (11)

From Eq. (6), it is evident thatB2 and B3 are complex
conjugates of each other. This, together with the relatio
obtained in Eq. (10), shows that the magnetic field give
by Eq. (7) is a real field. We also list the following expres
sions for them ­ 0, k ­ 0 state (cylindrically symmetric
state) obtained from Eqs. (4)–(7):

Br ­ 0 ,

Bu ­ l2a1

∑
J1slrd 1 2 Re

µ
a2

a1
v2J1slvrd

∂∏
,

Bz ­ l2a1

∑
J0slrd 1 2 Re

µ
a2

a1
v2J0slvrd

∂∏
.

For a given value ofm andka, the value ofla can be
obtained from the boundary condition given by Eq. (11
It is to be noted that for the cylindrically symmetric stat
the boundary condition is trivially satisfied and hence do
not determinela. It can be easily proved that the state o
minimum dissipation is equivalent to the state of minimum
value ofL. To get the numerical value ofl for m fi 0,
we solve Eq. (11) numerically and obtainla ­ 3.11 and
ka ­ 1.23 as the minimum values ofla and ka for the
m ­ 1 state.

The only undetermined constant in Eq. (7) is the valu
of a1 (the value of the field amplitude) which can be
determined by specifying the toroidal fluxFz. Them ­
k ­ 0 state is responsible for nonzero values of toroid
flux which is obtained as

Fz ­ 2pa1la

∑
J1slad 1 2 Re

µ
a2

a1
vJ1slvad

∂∏
. (12)

A couple of dimensionless quantities that have proved us
ful in describing laboratory experiments are the field re
versal parameterF ­ BzsadykBzl and the pinch parameter
Q ­ BusadykBzl, wherek· · ·l represents a volume average
After substituting the expressions forBzsad, etc., we get

F ­
la
2

J0slad 1 2 Refsa2ya1dv2J0slvadg
J1slad 1 2 Refsa2ya1dvJ1slvadg

, (13)

Q ­
la
2

J1slad 1 2 Refsa2ya1dv2J1slvadg
J1slad 1 2 Refsa2ya1dvJ1slvadg

. (14)

The pinch ratioQ is related to the ratio of the current
and flux, and is a physically controllable quantity. For th
Taylor state,Q ­ lay2.
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The details of any relaxed state are determined by tw
physically meaningful parameters, the toroidal flux and t
volts-secondssVsd of the discharge. The toroidal flux as
defined earlier serves to determine the field amplitude, a
the volts-seconds describes the helicityK of the relaxed
state through the relation:Vs ­ KyF2

z . We therefore
calculate the helicity integral (global helicity) from ou
solution for them ­ 0, k ­ 0 state using

K ­ 4p2R
Z a

0
sAuBu 1 AzBzdr dr . (15)

For the minimum value ofla ­ 3.11, the critical value
of Vs ­ 12.8 Rya. For values of volts-seconds less tha
this critical value, a lower value ofla is obtained from
solving the equation forKyF2

z so that the cylindically
symmetric state is the relaxed state for minimum ener
dissipation. For values of volts-seconds greater than
critical value the system relaxes to the helically distorte
state withla ­ 3.11 which is obtained as a mixture of
the m ­ 0, k ­ 0 and them ­ 1, k fi 0 states as in the
case of Taylor’s theory.

The values of bothF andQ at the boundaryr ­ a are
evaluated, andF is plotted against pinch ratioQ (Fig. 1).
It is observed thatF reverses at a value ofQ ­ 2.4
(la ­ 2.95), whereas for the Taylor state the reversal
achieved atQ ­ 1.2. However, this field reversed state
supports pressure gradient, in constrast to the Taylor st

The pressure profile can be obtained from the relati
j 3 B ­ =p. For them ­ 0, k ­ 0 state, the only non-
vanishing component of the pressure gradient exists in
radial direction. The pressure profile is shown in Fig. 2 fo
them ­ k ­ 0 state withla ­ 3.0 which is the minimum
energy dissipation, field-reversed state. Also, an incre
ing trend of plasma beta (ratio of volume averaged plasm
pressure to the volume averaged magnetic pressure) w
the pinch ratio has been observed.

In conclusion, the principle of minimum dissipation
is utilized together with the constraints of constan
magnetic helicity to determine the relaxed states of

2.0 4.0
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-0.5

0.0

0.5

1.0
m=0
ka=0
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Θ

FIG. 1. The field reversal parameterF against the pinch
parameterQ, the field reversal occurring atQ ­ 2.4. The
dotted curve represents the plot for the minimum energy st
of Taylor.
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FIG. 2. The pressure profilep vs r for la ­ 3.0.

magnetoplasma. The variational principle leads to
remarkable Euler-Lagrange equation, and it is shown th
this equation involving higher order curl operator can b
solved in terms of an analytical continuation of CK func
tions in the complex domain with appropriate boundar
conditions. This relaxed state obtained from single flui
MHD supports pressure gradient. A coupling betwee
magnetic field and flow is not an essential criterion fo
having a nonzero pressure gradient. Further, it is show
that a non-force-free state with field reversal propertie
can exist.

However, we have considered only the Ohmic dis
sipation in our discussion. A more complete theor
of relaxation should probably include other dissipatio
mechanisms, such as thermal transport, and such a the
may do better justice to the problem of plasma relaxatio
based on the principle of minimum dissipation.
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