VOLUME 81, NUMBER 15 PHYSICAL REVIEW LETTERS 12 ©TOBER 1998

Relaxed States of a Magnetized Plasma with Minimum Dissipation
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The relaxed state of a slightly resistive and turbulent magnetized plasma is obtained by invoking
the principle of minimum dissipation, which leads ¥oX V X V X B = AB. A solution of this
equation is accomplished using the analytic continuation of the Chandrasekhar-Kendall eigenfunctions
in the complex domain. The new features of this theory show (i) that a single fluid can relax
to an MHD equilibrium which can support a pressure gradient even without a long-term coupling
between mechanical flow and magnetic field, and (ii) field reversal in states that are not force free.
[S0031-9007(98)07284-6]

PACS numbers: 52.30.Bt

In the well-known theory of relaxation of magneto- principle of minimum energy accommodates pressure gra-
plasma, Taylor [1] proposed that the process of relaxatiodients only in the presence of flow. Several attempts [6—8]
is governed by the principle of minimum total magnetic have been made in the past to obtain relaxed states which
energy and invariance of total (global) magnetic helicitycould support finite pressure gradient, a large number of
K = [, A - BdV where the integration is over the entire them making use of the coupling of the flow with mag-
volume, the latter being the most significant invariant innetic field [9—12].
the theory of relaxation. Accordingly, the relaxed state ofa The principle of “minimum rate of entropy production,”
magnetoplasma satisfies the corresponding Euler-Lagrangermulated by Prigogine and others [13], is believed to play
equation, a major role in many problems of irreversible thermody-

. namics. Dissipation, along with nonlinearity, is ubiqui-

V X B = AB, @ . : ;

tous in systems which evolve towards self-organized states.

with constantA, and, consequently, is a force-free state.Another closely related concept, the principle of minimum
Taylor’s theory is quite successful in explaining a numberdissipation rate, was used for the first time by Montgomery

of experimental results, including those of reversed fieldand Phillips [14] in an MHD problem to understand the
pinch (RFP). However, relaxed states as envisaged bsteady state profiles of RFP configuration under the con-
Taylor, have only zero pressure gradient. straint of a constant rate of supply and dissipation of

Extensive numerical works by Sato and his collabora-elicity together with the usual physical boundary condi-
tors have established [2,3] the existence of self-organizetions for a conducting wall. It may be pointed out that the
states with finite pressure, i.e., these states are governed pyinciple of minimum dissipation was also discussed by
the magnetohydrodynamic force balance relation, namelyChandrasekhar and Woltjer [15] in a sequel to the com-
j X B = Vp, rather thanj X B = 0. Recently, it has plete general solution of the force-free equation by Chan-
been demonstrated both by numerical simulation [4] andirasekhar and Kendall [16]. The minimum dissipation rate
by experiments [5] that the counterhelicity merging of hypothesis was later used by a number of authors [17,18]
two spheromaks can produce a field-reversed configuratioio predict the current and magnetic field profiles of driven
(FRC). The FRC has zero toroidal magnetic field, and thelissipative systems.
plasma is confined entirely by poloidal magnetic field. It This paper deals with the question of determining the
has a finite pressure with a relatively high value ®f field configurations assumed by a magnetofluid in a relaxed
It may be concluded that FRC, with its nonzero perpenstate by maintaining that the relaxation is governed by
dicular component of current, is a relaxed state and it is ghe principle of minimum rate of energy dissipation. It is
distinctly non-force-free state. From the point of view of our conjecture that relaxed states could be characterized
plasma relaxation, the formation of FRC through the counas the states of minimum dissipation rather than states
terhelicity merging of two spheromaks is a unique processf minimum energy. The novel feature of our work is
where a non-force-free state emerges from the fusion ab show that it is possible for aingle fluid to relax to
two Taylor states. The conclusion is that there exists @an MHD equilibrium with a magnetic field configuration
general class of relaxed states which are not always forc&hich can support pressure gradient, even without a long-
free, and Taylor's force-free states constitute only a subterm coupling between the flow and the magnetic field. In
class of this wider class. While Taylor states do not supa recent work, Steinhauet al. [12] claimed that single
port any pressure gradient, equilibrium obtained from thdluid MHD theory can admit only a force-free state, and
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one needs to take recourse to a two fluid theory so thathere A is Lagrange’'s undetermined multiplier. The
electromechanical coupling produces pressure gradient anvériation can be shown to lead to the Euler-Lagrange
a non-force-free state. Our work establishes that none @quation
these requirements need be satisfied to obtain a relaxed
state of the desired kind. VXVXVXB=AB, (3)

In what follows we derive the Euler-Lagrange equa- _ _
tion from a variational principle with minimum energy WhereA = A/7 is a constant. The surface terms in the
dissipation and conservation of total magnetic helicity,equation vanish if we consider the boundary condition
solve the equation in terms of the analytically continueddA X n = 0 as well asj X n = 0, which is the physical
Chandrasekhar-Kendall (CK) eigenfunctions, discuss th&oundary condition we will impose in the problem.
important role played by the boundary conditions, and VWe emphasize that Eq. (3) is a general equation which
present our results for the flux, field reversal parameembraces the Woltjer-Taylor equation [i.e., Eq. (1)] as a
ter, pinch parameter, and pressure profile. The results @Pecial case. The solution of Eq. (3) can be constructed
our theory which predict non-force-free relaxed states ar&ising the CK eigenfunctions. The CK solution [16] of
closer to the experimentally observed [19] RFP configurathe equationV X B = AB can be written in cylindrical
tions than Taylor's theory. coordinates as

We consider a closed system of an incompressible,
resistive magnetofluid, without any mean flow velocity, B(u,m, k) = AV® X Vz + VX (VO X Vz), (4)
described by the standard MHD equations in the presence _ _ . s o
of a small but finite resistivityy. In the absence of any vvzhere ¢ = J,,,(_,ur)exp[z(m? f+ kz)] W't? Ad_ M +d
externally imposed electric fields, the Ohmic dissipationkh' H(Iare, J’%’ IS a Eesse unction % or e_m,darfw
rate R is itself a time varying quantity. However, it is the value of . In t_'e argument IS etgrmlne rom
possible to find constraints that are better preserved th e boundary condition at = a, which is given as

.. . . .. 'n'B)r=a=O-
the rate of energy dissipation. In this case, helicity still The actual physical significance of Eq. (3) could be

serves to hold as a good constraint as it decays at abtained by exploring such solutions which et at
time scale much slower in comparison to the decay tim . . ; .
b Y he same time solutions of the Woltjer-Taylor equation,

scale of the rate of energy dissipation as is evident fro . :

the simulation works of Zhet al. [3]. It can be easily the latter always Ie.adlng to a restricted cl'ass of .relaxed

shown that the decay rate of dissipatidb) is 0(1) at states, namel_y, which are force free. _Thls requires the

scale lengths for whichk ~ S'/2. But, at these scale general solutions to the former equation which we are

lengths, helicity dissipationd) iS- only ’O(Sfl/z) <1 able tfo construct rk])y tak|r|1g a linear (I:omlblnan;n( odeK
s ; - e % ' eigenfunctions with complex. For real values oh (an

where S is the ratio of resistive diffusion time to Alfven ence ofu andk), the operatofVx) has been proved to

i, Thu, e may cxpectht it resence o el Siaciom. bt no 5. h lrger space spanned b
' 9y P the analytically continued CK solutions.

decays at a faster rate than helicity. .

We therefore minimize the ohmic dissipatiaR = We introduce the complex parameters
[nj>av subject to the constraints of helicity A - = [(u? + K2 expldnmi/3) — k2172, n=1.2
B dV. The variational equation is given by (5)

22 Y —
5/(’73 + AA - B)dV =0, () | so thatu? + k? = A2w?", ® = exp2wi/3), and define

B, = B(u,m,k) = A\VO X Vz + V X (VO X Vz),
B, = B(uy,m, k) = AoaVd; X Vz + V X (V®; X Vz), (6)
B; = B(ua, m, k) = A0?*V®, X Vz + V X (Vd, X Vz).

In the last two expressions abovk; and®, are obtained! A reasonable boundary condition is to assume a per-
from ® by replacingu by u; and u,, respectively. fectly conducting wall, so that
A solution of Eg. (3) can now be obtained as a linear o . _ _
combination ofB,, B,, Bs: B:-n=0, iXn=0 atr=a. (8)
B = a;B, + wsB, + a3B;, @) The boundary conditions given by Eq. (8) suffice to fix the

. arbitrary constants
wherea; are constants, with at least two of them nonzero.

It can be easily demonstrated that the expressionBfor a 0*(B19pB>, — BB1.)|,—a

given in (7) is a solution of Eq. (3) with = 3. ai (BB, — BoyBo)i—a ©)
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as = a; . (10) The details of any relaxed state are determined by two
.. physically meaningful parameters, the toroidal flux and the
If we relax the boundary conditiof X n = 0, the con- s secondgVs) of the discharge. The toroidal flux as

stantsa, and a3 become free, and Taylor states can beyefinaq earlier serves to determine the field amplitude, and

accommodated as solutions of Eq. (3). However, for nong,e \o1ts-seconds describes the helidyof the relaxed
trivial values of the constants;, the magr_letlc fleI(_js at the state through the relation’s = K/®2. We therefore
boundaryr = a have to obey the following relation: calculate the helicity integral (global helicity) from our
2B1, Im(ByB3,) — 2B1g IM(w?By,Bj,) + solution for them = 0,k = 0 state using
2B, Im(w?By,Bs,) = 0. (11)

From Eqg. (6), it is evident thaB, and B; are complex
conjugates of each other. This, together with the relations Eqr the minimum value ofa = 3.11, the critical value
obtained in Eq. (10), shows that the magnetic field giveryf ys — 12.8 R/a. For values of volts-seconds less than
by Eq. (7) is areal field. We also listthe following expres-tnis critical value, a lower value ofa is obtained from
sions for them = 0,k = 0 state (cylindrically symmetric  solving the equation fok /®2 so that the cylindically

K = 477-2Rf (ApBy + A.B.)rdr. (15)
0

state) obtained from Egs. (4)—(7): symmetric state is the relaxed state for minimum energy
B, =0 dissipation. For values of volts-seconds greater than the
critical value the system relaxes to the helically distorted
a2 state withAa = 3.11 which is obtained as a mixture of
By = A* [J)\ +2Re<— 2J1(A )} )
o ai| Ji(Ar) ) @ h(er) them = 0,k = 0 and them = 1,k # 0 states as in the

o case of Taylor’s theory.
B, = /\261’]|:J()()lr) + 2Re<—2 wzjo()twr)ﬂ. The values of botlF¥ and® at the boundary = a are
a1 evaluated, and’ is plotted against pinch rati® (Fig. 1).

For a given value ofr andka, the value ofiq can be It is observed thatF reverses at a value o® = 2.4
obtained from the boundary condition given by Eq. (11).(Aa = 2.95), whereas for the Taylor state the reversal is
It is to be noted that for the cylindrically symmetric state achieved a®® = 1.2. However, this field reversed state
the boundary condition is trivially satisfied and hence doe§upports pressure gradient, in constrast to the Taylor state.
not determinela. It can be easily proved that the state of The pressure profile can be obtained from the relation
minimum dissipation is equivalent to the state of minimumij X B = Vp. For them = 0,k = 0 state, the only non-
value of A. To get the numerical value of for m # 0,  vanishing component of the pressure gradient exists in the

we solve Eq. (11) numerically and obtaia = 3.11 and  radial direction. The pressure profile is shown in Fig. 2 for
ka = 1.23 as the minimum values ofa andka for the them = k = O state withAa = 3.0 which is the minimum

m = 1 state. energy dissipation, field-reversed state. Also, an increas-
The only undetermined constant in Eq. (7) is the valudng trend of plasma beta (ratio of volume averaged plasma
of a; (the value of the field amplitude) which can be pressure to the volume averaged magnetic pressure) with

determined by specifying the toroidal flék,. Them =  the pinch ratio has been observed. S
k = 0 state is responsible for nonzero values of toroidal In conclusion, the principle of minimum dissipation
flux which is obtained as is utilized together with the constraints of constant

magnetic helicity to determine the relaxed states of a
o, = 27Ta1)\a|:J1()ta) + ZRE<2 a)Jl(/\a)a)ﬂ. (12)
aj

1.0

A couple of dimensionless quantities that have proved use- m:_O
ful in describing laboratory experiments are the field re- ka=0
versal parametef = B,(a)/(B,) and the pinch parameter 0.5r
® = By(a)/{B,), where(- - -) represents a volume average.
After substituting the expressions Bt (a), etc., we get F 0.0 - 55 20

F _ A Jo(a) + 2R (/@) h(Owa)] o - |

2 Ji(Aa) + 2Rd(@/anwli(Awa)] ’ 0.5
+ 2
0 — Aa Ji(Aa) + 2R (ay/a))w*Ji(Awa)] (14) Lol

2 Ji(da) + 2R(az/a))wi(Awa)]

. . . . FIG. 1. The field reversal parametéf against the pinch
The pinch ratio® is related to the ratio of the current 5.2 oter@ | the field reversal occurring @ — 2.4. The

and flux, and is a physically controllable quantity. For thedotted curve represents the plot for the minimum energy state
Taylor state® = Aa/2. of Taylor.
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FIG. 2. The pressure profile vs r for Aa = 3.0.
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