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Fractional Dynamics in Random Velocity Fields

Albert Compte*
Departament de Fı´sica, Fı́sica Estadı´stica, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain

Manuel O. Cáceres†

Centro Atómico Bariloche and Instituto, Balseiro, CNEA, Universidad Nacional de Cuyo, 8400, Bariloche, Argen
(Received 29 January 1998; revised manuscript received 24 June 1998)

We develop an iterative approach, from which anexact systematic calculation of the moments of
the probability density of test particles, under a generalized Fickian evolution and in the presence of a
stratified random velocity field, can be calculated. The type of fractional diffusion-advection equation
studied is useful for transport in anisotropic and heterogeneous media. Our method stresses the rele-
vance of the coupling between anomalous diffusion and convection by stratified random velocity fields.
[S0031-9007(98)07342-6]
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Sedimentary ground materials like rocks, soils, an
wood products are notoriously anisotropic and heterog
neous. Transport and flow through such porous structur
have important applications in science. Oil extraction from
rock reservoirs is a clear example of them [1]. Moreove
anomalous diffusion has been recorded in experiments
these systems of environmental interest [2]. Thus, the i
terplay between anomalous diffusion and anisotropic tran
port seems to be of fundamental interest.

Numerous applications of the theory of anomalous di
fusion arise in the context of solid state physics in com
posite materials. Different approximations have bee
introduced to describe transport in random media [3
Among these approaches the effective medium appro
mation (introduced by Kirkpatrick [4], Orbachet al. [5],
and Lax et al. [6]) has proved to be a very good tool
to tackle the problem of anomalous diffusion in isotropi
situations. Nevertheless, little effort has been directed
anisotropic random systems [7]. Such an extension is n
trivial and leads to interesting predictions concerning th
conductivity and its anisotropy in nonisotropically disor
dered systems [8]. In studying anomalous diffusion tak
ing place in a flowing fluid, the continuous-time random
walk (CTRW) theory [9] has shown to be a good approx
mation [10]. A remarkable point is that the CTRW the
ory can also be mapped tofractional dynamics[11]. This
fact is very convenient for studying anomalous diffusio
taking place in arandomlyflowing fluid. Understanding
the mechanism of anisotropic transport in heterogeneo
media will have fundamental consequences for the futu
development of the theory of anomalouspure diffusion,
as well as anomalous diffusion taking place in aflowing
fluid. A unified framework to tackle this problem is the
so-called fractional diffusion-advection dynamics.

Fractional partial differential equations containfrac-
tional rather than integer-order derivatives [12]. The con
cept of fractional differentiation is an old subject [13]
Nevertheless, only recently it has been applied to provid
a theoretical framework for studying transport in porou
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media [14] and to studysuperslowdiffusion on fractal
structures [15]. From the mathematical point of view,time
fractional calculus has been applied in diffusionlike prob
lems [16,17]. Fractional equations of motion arise also
an equilibriumphase transitions, or whenever a dynamica
system is restricted to subsets of measure zero of its st
space [18]. Recent publications [11,19] have reopened t
discussion on the fractional partial differential equations a
an alternative way to study anomaloussubdiffusion [i.e.,
the mean square displacement of the test particlekr2stdl
grows more slowly than linearly with time], and to study
anomalous superdiffusion to model turbulence in fluid
[20] [i.e., kr2stdl grows faster than linearly with time]. On
the other hand, direct verifications performed on ceth
trimethyl ammonium bromide molecules “living poly-
mers” have shown Lévy flightssuperdiffusion [21], which
can be modeled through fractional diffusion equations [11

Diffusion interacts with other transport processes, fo
example diffusing tracers in confined gradient flows i
a well understood model (Taylor dispersion). Diffusion
tracers on stratified flows is also an interesting proble
that has been traditionally studied in the context of groun
water transport in geological aquifers [22,23]. The pio
neer theoretical model involving a stratified random ve
locity field was constructed by Matheron and de Marsil
[22], who showed the unusual behavior of the longitud
nal dispersionkx2stdl , t3y2. Nevertheless, up to now all
these analyses were done only under the Fickian diffusi
approximation [24,25]. Here we extend this treatment
several respects to gain a deeper insight into this proble
With this aim we consider a general fractional diffusion
equation in the presence of a stratified quenched rand
velocity field (with ashort or long-range velocity corre-
lation). To our knowledge, such an analysis has not y
been presented despite its interest for some authors [2
We will be able to consider subdiffusion or superdiffusio
and to study its interplay with the random velocity field.

The purpose of the present communication is to prese
a systematic method that enables one to obtain ex
© 1998 The American Physical Society
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analytical solutions for the moments of the density of te
particles. We emphasize that in the present Letter w
give an exact evaluation of the second moment forany
correlation of the velocity field. The convergence of ou
perturbation method rests on the stratified character of t
velocity field, and on the isotropy and sufficiently fas
decay—in Fourier space—of the non-Gaussian diffusiv
propagator. This convergence is guaranteed for a bro
class of “long-tail” anomalous diffusive motions [those
satisfying Eq. (9) below]. In this Letter we present two
examples where the velocity correlation has an exponen
decay, and one application with a power-law decay
emphasize the relevance of our theory.

In the particular case of a superdiffusive walker in th
presence of anisotropic random (white) velocity field,
a fractional formulation has been proposed in the for
of a Laplacian-like operator [27,28]. There, perturbativ
approximations have been performed to studykr2stdl by
means of a field-theoretic renormalization group analys
However, in ourstratified random velocity model, the
iterative approach itself is made in terms of the non
Gaussian propagator in the absence of flow. This fa
allows us to get an exact evaluation of the second mome
of the tracer for any correlation of the stratified velocit
field.

Anomalous diffusion is a very general concept and h
been analyzed from a variety of standpoints [5,6,29]. He
we will focus on the so-called fractional diffusion models
where the advection-diffusion equations take the form [1

≠%sr, td
≠t

1 A= ?

"
Vsrd

≠12g% sr, td
≠t12g

#
­ D=2

3
≠12g%sr, td

≠t12g
,

(1a)

≠%sr, td
≠t

1 = ? fVsrd% sr, tdg ­ D=2b% sr, td ,

(1b)

whose non-Gaussian propagators [see Eqs. (3) belo
have been shown to be well behaved. Here0 , g , 1,
1
2 , b , 1, andA is a parameter that might be interprete
as a generalized mobility [in which caseVsrd would stand
for a force field], i.e., this macroscopic parameter sets t
right dimensions in the advection term [10]. In (1a) an
(1b) the operators=2b and ≠ay≠ta are defined through
inverse Fourier and Laplace transforms, respectively [11

≠a%sr, td
≠ta

­ L 21hua% sr, udj, a , 1 ,

and

=2b% sr, td ­ F 21h2jkj2b% sk, tdj .

It has been seen that (1a) corresponds to fractal tim
diffusion and (1b) to Lévy flights [10]. In our further
developments we work in the Fourier-Laplace domai
where (1a) and (1b) turn into
st
e

r
he
t
e
ad

tial
to

e

m
e

is.

-
ct
nt

y

as
re
,
0]

w]

d

he
d

]:

e

n,

su 1 Djkj2u12gd%sk, ud ­ 1 2
iAu12g

s2pdd
k

?
Z

dk0 Vsk 2 k0d%sk0, ud ,

(2a)

su 1 Djkj2bd%sk, ud ­ 1 2
i

s2pdd
k

?
Z

dk0 Vsk 2 k0d%sk0, ud .

(2b)

By defining

Ssk, ud ­
ug21

ug 1 Djkj2
, Dsk, ud ­

A
ug 1 Djkj2

(3a)

or

Ssk, ud ­
1

u 1 Djkj2b
, Dsk, ud ­

1
u 1 Djkj2b

,

(3b)

Eqs. (2a) and (2b) can be recast into the unitary form

%sk, ud ­ Ssk, ud 2
i

s2pdd

3
Z

dk0 Gsk, k 2 k0, ud%sk0, ud , (4)

whereGsk, k0, ud ­ Dsk, udk ? Vsk0d. This expression
is our starting point to compute the moments of% sr, td;
note thatSsk, ud is the anomalous propagator. A simila
approach has been used in [10,30] to study anomalo
tracers in linear shear flows and in a Poiseuille flow.

We will focus on astratified random medium, i.e., the
velocity field is everywhere directed along the same d
rection, say axisx, and it varies only along the transversa
direction, i.e., axisy: Vsrd ­ fV syd, 0g. We imagine that
we release a tracer at a point in our environment and
study what its dispersion is if we consider all the statis
cal realizations of the disorder:

kV sydl ­ 0 ,

kV sy0d · · · V sysnddl ­ snfnsy0 2 y00d · · · fnsysn21d 2 ysndd ,

fnsyd characterizing the stationaryn-point moment of
the field.

Short or long range correlations can be handled
using convenientfnsyd. In Fourier space:

kV sk0d · · · V sksnddl ­ sns2pdn11ffns2k00
y d · · · ffns2ksnd

y d
3 dsk0

xd · · · dsksnd
x d

3 dsk0
y 1 · · · 1 ksnd

y d . (5)

For each configuration of the velocity field, we are in
terested in two longitudinal quantities: the mean positio
and the spread of the tracer, so we need
3141
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x ­ i
≠% sk, td

≠kx

É
k­0

and x2 ­ 2
≠2% sk, td

≠k2
x

É
k­0

.

To computex andx2 we first iterate indefinitely (4) to get

%sk, ud ­ Ssk, ud 1
X̀
n­1

√
2i

s2pdd

!n Z
dk0 · · ·

Z
dksnd Gsk, k 2 k0, ud

3 Gsk0, k0 2 k00, ud · · · Gsksn21d, ksn21d 2 ksnd, udSsksnd, ud , (6)

we differentiate (6) with respect tokx and substitutek ­ 0. This results in

x ­ iDsk ­ 0, ud
X̀
n­1

√
2i

s2pdd

!n Z
dk0 · · ·

Z
dksnd k0

xDsk0, ud · · · ksn21d
x Dsksn21d, udSsksnd, ud

3 V s2k0dV sk0 2 k00d · · · V sksn21d 2 ksndd , (7)

and in short notation [Dskd ; F L fDsx,tdg, etc.].

x2 ­ 2
≠2S

≠k2
x

É
k­0

2
i
p

Dsk ­ 0d
Z

dk0 ≠V s2k0d
≠k0

x
Ssk0d 1 2Dsk 50d

X̀
n­2

√
2i
2p

!n Z
dk0 · · ·

Z
dksnd ≠V s2k0d

≠k0
x

3 Gsk0, k0 2 k00d · · · Gsksn21d, ksn21d 2 ksnddSsksndd . (8)
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Equations (6)–(8) must be seen as formal expressio
since V srd is in general a stochastic nondifferentiabl
function. Only after taking disorder averages we expe
to obtain finite computable quantities.

Eventually, we want to average over all the configura
tions of the velocity field and use (5), whence we need
remove every differentiation over the velocities in (8). T
this aim we successively integrate (8) by parts observi
that

fSsk, udgk­6` ­ 0 and fkxDsk, udgk­6` ­ 0
(9)

for the cases that we consider in (3).
We remark that taking the average over the field, wi

the help of (5),k x l, and many terms ink x2 l vanish
because of the stratification and the symmetry ofSsk, ud
andDsk, ud.

The resultingexactformula for the tracer dispersion is

k x2 l sud ­ 2
≠2Ssk, ud

≠k2
x

1
s2

p
Dsk ­ 0, udSsk ­ 0, ud

3
Z `

2`

dky Dskx ­ 0, ky , ud ef2s2kyd . (10)

Similarly, from (7) we compute the average over th
velocity field of the quantityx2

kx2l std ­
s2

2p

Z `

2`

dky
ef2s2kyd

3 fL 21hDsk ­ 0, udSskx ­ 0, ky , udjg2 .
(11)

The results (10) and (11) are exact and compare be
tifully to the results of Matheron and de Marsily [22]
and Bouchaudet al. [25] for the case of Fickian diffusion
and white correlation. Indeed, let us take (3b) forb ­ 1
(Fickian diffusion), f2syd ­ dsyd, and let us calculate
k x2 l andkx2l. The results are
3142
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k x2 l ­ 2Dt 1
4s2

3
p

pD
t3y2 and

kx2l ­ s
p

2 2 1d
4s2

3
p

pD
t3y2

(12)

in accordance with [22,25]. Moreover, our approac
is more general since it can also describe nonwhi
velocity correlations and non-Fickian diffusion in an exac
formulation.

Now we present the results for non-Fickian diffusion in
the presence of a short-range velocity field in two differen
cases: fractal time diffusion, given by (3a), and Lév
flights, as in (3b). To model short-range correlations w
take ef2skd ­ exps2L2k2d. In the first case, substitution
of (3a) in (10) and (11) leads, through the suitable invers
Laplace formulas and for times longer thansL2yDd1yg , to
the asymptotic results

k x2 l .
2D

Gs1 1 gd
tg 1

A2s2p
D Gs1 1 3gy2d

t3gy2 (13)

and

kx2l .
A2s2

p
p

D
t3gy2

Z `

0
E2

g,11gs2ß2ddß ~
A2s2p

D
t3gy2 ,

(14)

Eg,11gsxd being the generalized Mittag-Leffler function.
Since g [ f0, 1g the resulting dispersion is slower than
for Fickian diffusion in the same situation, though i
becomes superdiffusive for23 , g , 1.

In the case of Lévy flights, some additional cautio
is necessary since the second moment is known to
verge. This divergence also occurs in our case when o
substitutes (3b) into the first term in (10), which is the
term arising in diffusion in a resting background, but th
correction [second summand in (10)] remains finite. Her
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we follow the scaling arguments presented in [27] to avo
the divergence by restricting our integration to a box o
width L, whereL scales in a prescribed way with time
We thus consider the quantityx2

L ­
RL

0 x2rsx, td dx and
let L grow with time asL ­ AsDtd1y2b . The first term in
(6) is thus seen to contribute finitely tok x2 lL and the sec-
ond term yields its asymptotic finite contribution asL ! `

provided its typical scaling forx grows slower thanL for
growing times. Such a scaling forL also ensures that at
any time we are including the same number of particles
our box. So, asymptotically

k x2 lL . gbsAd sDtd1yb 1
1
p

2bGs1y2bd
s4b 2 1d s2b 2 1d

3
s2

D1y2b
t221y2b , (15)

wheregbsAd is a certain function of the parameterA, and
the parameterb must be further restricted to12 , b ,

3
4

in order to fulfill the conditions that we discussed for th
scaling ofL.

Thus, the correction due to the random velocity fiel
is remarkably smaller than for Fickian diffusion [compar
with (12)]. We see that the intrinsic superdiffusion of th
Lévy flights, ,t1yb, dominates the correction due to the
random velocity environment,t221y2b.

On the other hand, when12 , b , 1, the variance of
the mean is finite and reads

kx2l .
s2

pD1y2b
t221y2b

Z `

0

"
1 2 exps2ß2bd

ß2b

#2

dß

~
s2

D1y2b
t221y2b . (16)

We point out that when the velocity field is parallel to
the stratification, the analysis of sample-to-sample fluct
ations, and the influence of long-range velocity correl
tions can also be madein an exact way. For instance,
consider a Brownian walker in a correlated long-rang
velocity field such thatf2syd ­ l21ys1 1 jyjyldm with
0 , m , 1, then Eq. (10) yields for the leading term o
the tracer dispersion, ast ! `,

k x2 l .
2s2

Dmy2l12m

Gs1 2 md
Gs3 2

m

2 d
t22my2. (17)

Thus, the longitudinal dispersion of a Brownian particle i
astratifiedpower-law correlated field will strongly depend
on the long tail of the long-range correlation. For a long
range correlation withm ­ 1 the asymptotic behavior goes
like ,t3y2 lnstd; only for m . 1 we obtain a longitudinal
dispersion,t3y2 as in [22]. The interesting interplay
between anomalous diffusion (non-Fickian case) and lon
range velocity correlation will be reported elsewhere.

As a final remark we comment that the isotropic cas
when the velocity field isnonstratified, can also be handled
in an exact wayif the velocity correlation is white.
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