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We develop an iterative approach, from which exact systematic calculation of the moments of
the probability density of test particles, under a generalized Fickian evolution and in the presence of a
stratifiedrandom velocity field, can be calculated. The type of fractional diffusion-advection equation
studied is useful for transport in anisotropic and heterogeneous media. Our method stresses the rele-
vance of the coupling between anomalous diffusion and convection by stratified random velocity fields.
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Sedimentary ground materials like rocks, soils, andmedia [14] and to studwuperslowdiffusion on fractal
wood products are notoriously anisotropic and heterogestructures [15]. From the mathematical point of viéme
neous. Transport and flow through such porous structurdsactional calculus has been applied in diffusionlike prob-
have important applications in science. Oil extraction fromlems [16,17]. Fractional equations of motion arise also at
rock reservoirs is a clear example of them [1]. Moreoveran equilibriumphase transitions, or whenever a dynamical
anomalous diffusion has been recorded in experiments faystem is restricted to subsets of measure zero of its state
these systems of environmental interest [2]. Thus, the inspace [18]. Recent publications [11,19] have reopened the
terplay between anomalous diffusion and anisotropic transdiscussion on the fractional partial differential equations as
port seems to be of fundamental interest. an alternative way to study anomalosisidiffusion [i.e.,

Numerous applications of the theory of anomalous dif-the mean square displacement of the test particl&))
fusion arise in the context of solid state physics in com-grows more slowly than linearly with time], and to study
posite materials. Different approximations have beeranomalous superdiffusion to model turbulence in fluids
introduced to describe transport in random media [3][20] [i.e., (r?(r)) grows faster than linearly with time]. On
Among these approaches the effective medium approxthe other hand, direct verifications performed on cethyl
mation (introduced by Kirkpatrick [4], Orbacét al.[5],  trimethyl ammonium bromide moleculediving poly-
and Laxet al.[6]) has proved to be a very good tool mers have shown Lévy flightsupediffusion [21], which
to tackle the problem of anomalous diffusion in isotropiccan be modeled through fractional diffusion equations [11].
situations. Nevertheless, little effort has been directed to Diffusion interacts with other transport processes, for
anisotropic random systems [7]. Such an extension is naxample diffusing tracers in confined gradient flows is
trivial and leads to interesting predictions concerning thea well understood model (Taylor dispersion). Diffusion
conductivity and its anisotropy in nonisotropically disor- tracers on stratified flows is also an interesting problem
dered systems [8]. In studying anomalous diffusion takthat has been traditionally studied in the context of ground
ing place in a flowing fluid, the continuous-time randomwater transport in geological aquifers [22,23]. The pio-
walk (CTRW) theory [9] has shown to be a good approxi-neer theoretical model involving a stratified random ve-
mation [10]. A remarkable point is that the CTRW the- locity field was constructed by Matheron and de Marsily
ory can also be mapped factional dynamicg11]. This  [22], who showed the unusual behavior of the longitudi-
fact is very convenient for studying anomalous diffusionnal dispersiox2(r)) ~ 3/2. Nevertheless, up to now all
taking place in aandomlyflowing fluid. Understanding these analyses were done only under the Fickian diffusion
the mechanism of anisotropic transport in heterogeneouspproximation [24,25]. Here we extend this treatment in
media will have fundamental consequences for the futurseveral respects to gain a deeper insight into this problem.
development of the theory of anomalopare diffusion, With this aim we consider a general fractional diffusion
as well as anomalous diffusion taking place ifl@aving  equation in the presence of a stratified quenched random
fluid. A unified framework to tackle this problem is the velocity field (with ashort or long-range velocity corre-
so-called fractional diffusion-advection dynamics. lation). To our knowledge, such an analysis has not yet

Fractional partial differential equations contairac-  been presented despite its interest for some authors [26].
tional rather than integer-order derivatives [12]. The con-We will be able to consider subdiffusion or superdiffusion
cept of fractional differentiation is an old subject [13]. and to study its interplay with the random velocity field.
Nevertheless, only recently it has been applied to provide The purpose of the present communication is to present
a theoretical framework for studying transport in porousa systematic method that enables one to obtain exact
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analytical solutions for the moments of the density of tes
particles. We emphasize that in the present Letter w
give an exact evaluation of the second momentdoy
correlation of the velocity field. The convergence of our . f dk' V(k — k"o (k',u),
perturbation method rests on the stratified character of the

velocity field, and on the isotropy and sufficiently fast (2a)
decay—in Fourier space—of the non-Gaussian diffusive 2 . i

propagator. This convergence is guaranteed for a broad(” + DIk*)e(k,u) =1 — 2m)d k

class of “long-tail” anomalous diffusive motions [those

satisfying Eq. (9) below]. In this Letter we present two . / dk'V(k — K)ok, u).
examples where the velocity correlation has an exponential

decay, and one application with a power-law decay to (2b)
emphasize the relevance of our theory. By defining

In the particular case of a superdiffusive walker in the -1
presence of arsotropic random (white) velocity field, s ,) = —%° Ak, u) = 4
a fractional formulation has been proposed in the form ’ u? + DIk|*’ ’ u? + DIk|?
of a Laplacian-like operator [27,28]. There, perturbative (3a)
approximations have been performed to stel(z)) by
means of a field-theoretic renormalization group analysis(.)r
However, in ourstratified random velocity model, the 1 1
iterative approach itself is made in terms of the non- 2(k,u) = u + DIk|?B’ A(k,u) = u + DIK|>B’
Gaussian propagator in the absence of flow. This fact (3b)
allows us to get an exact evaluation of the second moment
of the tracer for any correlation of the stratified velocity Egs. (2a) and (2b) can be recast into the unitary form
field.

Anomalous diffusion is a very general concept and has o(k,u) = 3(k,u) —
been analyzed from a variety of standpoints [5,6,29]. Here
we will focus on the so-called fractional diffusion models,
where the advection-diffusion equations take the form [10]

ao(r,1) AV [V(r) 3" 7o(r,1) } _ pW2 whereG(k,k’,u) = A(k,u)k - V(k/). This expression

@ + DIk*u! ")k, u) =1 — k

i
(2mr)4

% f dk'G(k.k — k'.u)o(k'.u), (4)

at atl—v is our starting point to compute the momentsadt, 7);
'=7o(r, 1) note thats(k, u) is the anomalous propagator. A similar
“a—r approach has been used in [10,30] to study anomalous
tracers in linear shear flows and in a Poiseuille flow.
(1) We will focus on astratified random medium, i.e., the
dp(r,1) velocity field is everywhere directed along the same di-
o TV [Vmel.n] = DV*¥e(r,1), rection, say axis, and it varies only along the transversal
(1b) direction, i.e., axiy: V(r) = [V(y),0]. We imagine that
we release a tracer at a point in our environment and we

whose non-Gaussian propagators [see Eqgs. (3) below}ydy what its dispersion is if we consider all the statisti-
haVe been ShOWﬂ to be We” behaved Heéere Y < 1, Ca| rea"zations Of the disorder:

% < B < 1, andA is a parameter that might be interpreted

as a generalized mobility [in which ca¥dr) would stand (Viyn =0,

fpr a fqrce figld], i..e., this macr_oscopic parameter sets they (y/)... v(y™)) = g, f,(y' — y") -+ fo(y"7 D — )
right dimensions in the advection term [10]. In (1a) and o ) )

(1b) the operator®2# and 9 /at® are defined through Jf(y) characterizing the stationary-point moment of

inverse Fourier and Laplace transforms, respectively [11]the field. _
%0 (r.1) Short or long range correlations can be handled by

y L Yuerw)}, a<l, using convenienf,(y). In Fourier space:
1 7 r
<V(k/) . V(k(il))> _ 0',,(27T)n+1fn(_k)l,l) .. .fn(_k}()n))

VzBQ(I',l‘) — fﬁl{—|k|2'BQ(k,t)}. X 5(]()’6) .. 5(]()(6'1))

! (n)
It has been seen that (1a) corresponds to fractal time X lky + - KT, ®)
diffusion and (1b) to Lévy flights [10]. In our further  For each configuration of the velocity field, we are in-
developments we work in the Fourier-Laplace domainterested in two longitudinal quantities: the mean position
where (1a) and (1b) turn into and the spread of the tracer, so we need

and

3141



VOLUME 81, NUMBER 15

PHYSICAL REVIEW LETTERS

12 ©OTOBER 1998

c0e(k,1)

X = and
X i ok

k=0
To computer andx? we first iterate indefinitely (4) to get

x2 =

_0%e(k,1)
ak2

k=0

o(k,u) = S(k,u) + i(ﬁ) /dk’ f dk™ G(k,k — K/, u)

n=1
X Gk, k' — K" u)---G(k" D k"D — k™ y)3(k™, ), (6)
we differentiate (6) with respect to. and substitut&k = 0. This results in
X =iAk =0,u) Z((z_l)d> [ dk' - - [ dk™ K A, u)- "ki"_l)A(k("_l), u)z(k("), i)
n=1 T
X V(=K)V(K' — K")---v(k"D — k"), (7)
and in short notation§ (k) = F L [A(x,t)], etc.].
— 9°3 i f avV(—k') E (=i f f aV(—k')
2=-——= —— Ak = k' ———=3(k/) + 2A(k = — kK - [ dk™ ——=
* oz | _, (k=0) | ak' = %K) ( O)n; ) ) d ok!
X G(k',k' — k")---G(k" "V k"V — k™)3(k™). (8)
Equations (6)—(8) must be seen as formal expressions
since V(r) is in general a stochastic nondifferentiable (x2) = 2Dt + 4oy 32 and
function. Only after taking disorder averages we expect 3V7D
to obtain finite computable quantities. dor (12)
Eventually, we want to average over all the configura- G = (V2 — 1) —===13/2
37D

tions of the velocity field and use (5), whence we need to
remove every differentiation over the velocities in (8). Toin accordance with [22,25].

Moreover, our approach

this aim we successively integrate (8) by parts observings more general since it can also describe nonwhite

that
[E(k’ u)]k:joo =0

and [kxA(K, u) k== = 0
%)

for the cases that we consider in (3).

velocity correlations and non-Fickian diffusion in an exact
formulation.

Now we present the results for non-Fickian diffusion in
the presence of a short-range velocity field in two different
cases: fractal time diffusion, given by (3a), and Lévy

We remark that taking the average over the field, WithflightsN, as in (3b). To model short-range correlations we

the help of (5),(x), and many terms in x2) vanish
because of the stratification and the symmetrg.0k, u)
andA(k, u).

The resultingexactformula for the tracer dispersion is

— B _aZE(k,u) o B B
(x2)(u) = 7&1@% + - Ak =0,u)2(k = 0,u)

e}

X Lc dky A(ky = 0.ky, u)f2(—ky).  (10)

Similarly, from (7) we compute the average over the (3?) ~

velocity field of the quantityr®

@0 =2 [k Fuk)

X [L YAk = 0,u)S(ky = 0,ky, u)}]*.
(11)

take f,(k) = exp(—L2k?). In the first case, substitution
of (3a) in (10) and (11) leads, through the suitable inverse
Laplace formulas and for times longer thdrt/D)!/7, to

the asymptotic results

— 2D A%o,
Iy~ — 2 g 372 (13
(x2) T+ y) JDT(1 + 3y/2) (13)
and
Aoy 3y/2 ” 2 2 Aoy 3y/2
7Ty Brae(sas s g,

(14)

E, 1+y(x) being the generalized Mittag-Leffler function.
Since y € [0, 1] the resulting dispersion is slower than
for Fickian diffusion in the same situation, though it
becomes superdiffusive f<§r< vy <1

The results (10) and (11) are exact and compare beau- In the case of Lévy flights, some additional caution

tifully to the results of Matheron and de Marsily [22]
and Bouchauet al. [25] for the case of Fickian diffusion
and white correlation. Indeed, let us take (3b) pr= 1
(Fickian diffusion), f2(y) = é(y), and let us calculate
(x?) and(x?). The results are
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is necessary since the second moment is known to di-
verge. This divergence also occurs in our case when one
substitutes (3b) into the first term in (10), which is the
term arising in diffusion in a resting background, but the
correction [second summand in (10)] remains finite. Here,
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