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Classical Stokes drift is the small time-averaged drift velocity of suspended nondiffusing particles i
a fluid due to the presence of a wave. We consider the effect of adding diffusion to the motion of th
particles and show in particular that a nonzero time-averaged drift velocity exists in general even wh
the classical Stokes drift is zero. Our results are obtained from a general procedure for calculati
ensemble-averaged Lagrangian mean velocities for motion that is close to Brownian and are verified
numerical simulations in the case of sinusoidal forcing. [S0031-9007(98)07364-5]
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A traveling wave in a fluid gives suspended particle
a small drift velocity known as Stokes drift [1–3]
When there is more than one wave, the drift velocity
calculated by summing the contributions from each wa
[4,5]. In this Letter we consider the influence of diffusio
on the magnitude and direction of the drift velocity
As in the classical (diffusionless) case, the amplitu
of the traveling wave is assumed small compared to
wavelength; a nonzero drift velocity appears at seco
order in the amplitude. In the presence of more than o
wave, the classical Stokes drift can sum to zero. Diffusi
then produces a nonzero drift velocity whose magnitu
and direction depends on the diffusivity of the suspend
particles.

Several mechanisms for the directed motion of sm
particles without a net macroscopic force have been p
posed in the last ten years [6–10]. Interest in su
“ratchet” effects has been motivated by the search
the mechanisms of biological motors, such as the conv
sion of chemical energy into directed motion by prote
molecules, and by possible applications, such as the se
ration of particles in solution based on their diffusion co
efficients. In both these cases small particles are belie
to follow dynamics that are overdamped (first derivativ
in time) and noise dominated. A drift velocity depende
on the size of suspended particles in solution has be
produced experimentally using an asymmetric period
potential turned on and off periodically [11]. Publishe
theoretical models [12,13] combine a periodic asymmet
potential in one dimension with nonwhite fluctuations.

In this Letter we consider motion in arbitrary dimen
sions that is diffusion dominated. There is also a sm
deterministic forcing whose amplitude will be used as
expansion parameter; a drift velocity appears at seco
order and depends on the diffusivity. Thus diffusion du
to microscopic motions, for example, diffusion of part
cles in solution, can be exploited using a carefully ch
sen combination of forcings to produce a net motion th
depends on the diffusivity. We illustrate the effect wit
sinusoidal forcing and compare our calculations with n
0031-9007y98y81(15)y3136(4)$15.00
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merical results in one and two space dimensions. It i
possible to arrange the wave motions so that particles o
different diffusivities have a time-averaged drift velocity
in different directions, resulting in what we call “fan-out.”
This may have applications for sorting particles according
to their diffusivities. We show numerically that the fan-
out can have an angular range of more than 180±.

We first develop an expansion scheme for motion that i
overdamped and diffusion dominated. Consider a stocha
tic processX ; sXtdt$0 taking values inRm and satisfy-
ing the following stochastic differential equation [14,15]:

dXt ­ efsXt , tddt 1 dWt , 0 # e ø 1 . (1)

The vector Xt is the particle position at timet. Its
ensemble average, to be denoted below by angled bracke
is the Lagrangian mean position at timet. W is an
m-dimensional Brownian motion, withW0 ­ 0 andkWt ?

Wtl ­ ms2t, i.e.,W represents a purely diffusive motion,
with diffusivity

D ­ 1
2 s2. (2)

The remaining term in (1) is the deterministic forcing, a
function of Eulerian positionx and timet:

f: Rm 3 R1 ! Rm. (3)

The real constante satisfies0 # e ø 1.
We now expand in powers ofe. Let

Xt ­ X
s0d
t 1 eX

s1d
t 1 e2X

s2d
t 1 . . . ,

with initial conditionX0 ­ 0 . (4)

The leading terms of the stochastic equation of motion
Eq. (4), are as follows.
e0:

dX
s0d
t ­ dWt , (5)

giving

X
s0d
t ­ Wt . (6)

e1:

dX
s1d
t ­ fsXs0d

t , tddt , (7)
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X
s1d
t ­

Z t

0
fsWs, sd ds . (8)

e2:

dX
s2d
t ­ sXs1d

t ? =dfsXs0d
t , tddt , (9)

giving the second-order drift velocity as

d
dt

X
s2d
t ­

Z t

0
f fsWs, sd ? =g fsWt , td ds , (10)

where=f is the spatial gradient off.
In the classical derivation of Stokes drift there is n

motion at zeroth order [1,2]. Here the motion at zero
order is purely diffusive, withkXs0d

t l ­ 0 for any positive
time. Whenfsx, td is a sum of functions that are periodic
in t at any fixedx, the drift velocity also vanishes at first
order ine. That is

lim
t!`

1
t

kXs1d
t l ­ 0 . (11)

At second-order the drift velocity is in general nonzero.
o
th

It

is given by the following ensemble average:

U ; e2 lim
t!`

1
t

kXs2d
t l (12)

­ e2 lim
T!`

√
1
T

Z T

0

*Z t

0
f fsWs, sd ? =g

3 fsWt , td ds

+
dt

!
. (13)

In one space dimension the expression (13) reduces to

U ; e2 lim
T!`

√
1
T

Z T

0

*
f 0sWt , td

Z t

0
fsWs, sd ds

+
dt

!
,

(14)

wheref 0sx, td ­ s≠y≠xdfsx, td.
We now consider the case where the determinist

forcing is a sum of sinusoids:

fsx, td ­
nX

,­1

A,k, cossk, ? x 2 v,td , (15)

whereA, andv, are constants. The vectork, defines the
direction of propagation of wavel. The drift velocity (13)
for this case is
U ­ e2
nX

,­1

(
lim
t!`

A2
,jk,j

2k,

Z t

0
ksinf2k, ? sWt 2 Wsd 1 v,st 2 sdgl ds

)

­ 1
2 e2

nX
,­1

"
lim
t!`

A2
,jk,j

2k,

Z t

0
sinfv,st 2 sdge2jk,j

2Dst2sd ds

#
(16)

­ 1
2 e2

nX
,­1

"
A2

,jk,j
2 k,

v,

√
1 1 D2 jk,j

4

v
2
,

!21#
.

n
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Each wave makes a contribution to the drift velocity i
its direction of propagation. ForD ­ 0, the weighting
factor is proportional to the square of the amplitude
This is the classical result obtained by a transformatio
from Eulerian to Lagrangian coordinates [1,2]. In th
case of a surface wave over deep water, the first ord
motion of a suspended particle is a circle with radiu
A,k,yv,; the quantity A2

,jk,j
2k,yv, is proportional to

the time-averaged momentum per unit area [2,3].
the presence of diffusion, the contribution from wav

is reduced by the dimensionless factors1 1 a
2
,d21,

where a, ­ Djk,j
2v

21
, . Diffusion reduces the Stokes

drift due to any one wave by smearing out the distributio
of particles, working against the tendency of particle
to spend longer in regions where the force acts in th
direction of propagation than in those where the force ac
in the opposite direction. The attenuation is strongest f
waves with large wave numbers or small velocities.

Dependence of drift velocity on diffusion can be
exploited as follows: There is in general a nonzero dri
velocity due to diffusion even when the classical Stoke
drift is zero. We write the drift velocity (16) as a sum
of the classical Stokes drift and a diffusion-depende
.
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contribution:

U ­ U0 1 Us , (17)

where

U0 ­ UjD­0 ­ 1
2 e2

nX
,­1

A2
,jk,j

2 k,

v,
(18)

and

Us ­ 2
1
2 e2

nX
,­1

"
A2

,jk,j
2 k,

v,

a
2
,

1 1 a
2
,

#
. (19)

The classical Stokes driftU0 can be made to vanish
by choosing a forcingfsx, td consisting of two wave
trains propagating in opposite directions. For the lat
example, we can work in one space dimension, defined
the direction of propagation of wave, ­ 1:

fsx, td ­ A1k1 cossk1x 2 v1t 1 f1d

1 A2k2 cossk2x 2 v2t 1 f2d , (20)

where Ai, ki , vi, and fi si ­ 1, 2d are constants and
k1k2 , 0. For simplicity, we suppose thatk1 fi 6k2
and v1 fi 6v2; this avoids cross terms in the classic
3137
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Stokes drift. The drift velocity including diffusion is then
given by

U ­ 1
2 e2

"
A2

1
k3

1

v1
s1 1 a2

1d21 1 A2
2

k3
2

v2
s1 1 a2

2d21

#
.

(21)

To set U0 ­ 0 requiresA2
1k3

1yv1 ­ 2A2
2k3

2yv2. Then
U ­ Us where

Us ­ 1
2 e2A2

1
k3

1

v1
fs1 1 a2

1d21 2 s1 1 a2
2d21g . (22)

For large diffusivity the drift velocity tends to zero becaus
the contribution of each wave tends to zero. Thus there
an intermediate value of diffusivity that maximizesUs. If
the forcing frequencies and wave numbers are fixed a
U0 ­ 0, the drift attains its maximum at the value ofD
satisfyinga1a2 ­ 1.

Figure 1 shows the drift velocity as a function of diffu
sivity with the forcing a sum of two sinusoids for a choic
of parameters that givesU0 ­ 0. In Fig. 2 the calculated
drift is compared with numerical results, with the sam
choice of parameters andD ­ 0.125. The solid line in
Fig. 2(a) is the mean value ofXt as a function of time, av-
eraged over 10 000 numerical realizations of the stocha
differential equation (1), and the dotted line isUt, with U
given by (22). In Fig. 2(b) we show, as a function of time
the difference between the numerically calculated me
displacement andUt. Figure 2(c) demonstrates that th
motion is close to Brownian; a histogram of values ofXt

at t ­ 1000, Rs yd, is compared with the Gaussian proba
bility density function with meanUt and variances2t
(solid line).

In general the expressions (16) and (19) are vector re
tions. Thus, in more than one space dimension, the dir
tion as well as the magnitude of the drift velocity depen
on the diffusivity, producing fan-out of the drift veloc-
ity vectors. We illustrate this effect in Fig. 3, constructe
with the forcing being a sum of four sinusoids in two d

FIG. 1. Stochastic Stokes drift in one dimension. There
a nonzero drift velocity due to diffusivity even though th
classical Stokes drift vanishes, due to the different rates
which the contributions from waves decrease as the diffusiv
is increased. The drift velocity, Eq. (22), is given as a functio
of diffusivity for e ­ 0.1, A1 ­ k1 ­ v1 ­ 1, k2 ­ 22.42,
andv2 ­ 0.47.
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mensions. In (a), the vectorA,k, is shown for each of
the four waves. The parameters areA1 ­ 1.0, A2 ­ 0.8,
A3 ­ 0.7, A4 ­ 0.7; k1 ­ s1.0, 0.0d, k2 ­ s2.0, 24.0d,
k3 ­ s23.0, 0.7d, andk4 ­ s20.96, 4.56d. We takev ­
yk with y ­ 1. Figure 3(b) depicts the fan-out in the
directions and magnitudes of the drift velocities for nin
different values of diffusivity. Each arrow isUs for one
of the following values ofD: D ­ 0.1 (leftmost arrow),
0.2, . . . , 0.9 (rightmost arrow). For larger values ofD, the
direction ofU approaches more closely that ofk1.

The fan-out effect shown in Fig. 3 is due to the
different rates at which the contributions from wave
decrease as the diffusivity is increased, destroying t
exact cancellation imposed atD ­ 0. More light is shed
by considering the small-diffusivity and large-diffusivity
limits of (19).

(i) If Djk,j
2yv, ø 1 ; l then

Us ­ 2
1
2 e2D2

nX
,­1

"
A2

,
jk,j

6

v
3
,

k, 1 · · ·

#
. (23)

(ii) If Djk,j
2yv, ¿ 1 ; l then

Us ­ 1
2

e2

D2

nX
,­1

"
A2

,
v,

jk,j2
k, 1 · · ·

#
. (24)

FIG. 2. Stochastic Stokes drift: comparison with numerica
solution for sinusoidal forcing in one dimension. (a) Mean
value ofXt . (b) Difference between the numerical mean valu
and the second-order result (22). (c) Distribution ofXt at
t ­ 1000, s ­ 0.5.
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FIG. 3. Stochastic Stokes drift in two dimensions. (a) Direc
tions and magnitudes of the four sinusoidal forcings. The cla
sical Stokes drift [Eq. (18)] is zero. (b) Resulting stochast
Stokes drift as a function of diffusivity. HereD ­ 0.1, . . . , 0.9
(largestD on the right). In the axis labels, the subscripts ind
cate vector components. Note the fan-out of more than 180±.

In the limit of small diffusivity (i) the drift velocity is
proportional to D2 and the direction is approximately
opposite to that of the wave with the largest value o
A2jkj6v23. In the opposite limit (ii) the drift velocity is
proportional toD22 and the direction is approximately
parallel to that of the wave with the largest value o
A2vjkj22.

In summary, we derive a general expression for the dr
velocity of diffusing particles from a stochastic asymp
totic expansion scheme for motion that is Brownian plu
-
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-
s

a small deterministic forcing. The drift velocity is in gen-
eral nonzero even when the classical Stokes drift vanishe
For example, several counterpropagating sinusoidal for
ings produce a drift velocity that depends on the diffusio
coefficient and the intensities, frequencies, and wave num
bers of the forcings. Thus, given a collection of particle
with different diffusivities, the deterministic forcings can
be tuned to separate particles of a particular type by op
mizing their stochastic Stokes drift.
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