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Stochastic Stokes Drift
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Classical Stokes drift is the small time-averaged drift velocity of suspended nondiffusing particles in
a fluid due to the presence of a wave. We consider the effect of adding diffusion to the motion of the
particles and show in particular that a nonzero time-averaged drift velocity exists in general even when
the classical Stokes drift is zero. Our results are obtained from a general procedure for calculating
ensemble-averaged Lagrangian mean velocities for motion that is close to Brownian and are verified by
numerical simulations in the case of sinusoidal forcing. [S0031-9007(98)07364-5]

PACS numbers: 47.55.Kf, 02.50.—r, 05.40.+j, 05.60.+w

A traveling wave in a fluid gives suspended particlesmerical results in one and two space dimensions. It is
a small drift velocity known as Stokes drift [1-3]. possible to arrange the wave motions so that particles of
When there is more than one wave, the drift velocity isdifferent diffusivities have a time-averaged drift velocity
calculated by summing the contributions from each waven different directions, resulting in what we call “fan-out.”
[4,5]. In this Letter we consider the influence of diffusion This may have applications for sorting particles according
on the magnitude and direction of the drift velocity. to their diffusivities. We show numerically that the fan-
As in the classical (diffusionless) case, the amplitudeout can have an angular range of more than°180
of the traveling wave is assumed small compared to its We first develop an expansion scheme for motion that is
wavelength; a nonzero drift velocity appears at secondverdamped and diffusion dominated. Consider a stochas-
order in the amplitude. In the presence of more than onéc processX = (X;);=o taking values inR™ and satisfy-
wave, the classical Stokes drift can sum to zero. Diffusioring the following stochastic differential equation [14,15]:

then produces a nonzero drift velocity whose magnitude dX, = X, \di + dW 0=e <1 1
and direction depends on the diffusivity of the suspended 1 = e/ o ) o o ¢ . @)
particles. The vector X, is the particle position at time. Its

Several mechanisms for the directed motion of smalensemble average, to be denoted below by angled brackets,
particles without a net macroscopic force have been prds the Lagrangian mean position at time W is an
posed in the last ten years [6—10]. Interest in suchn-dimensional Brownian motion, withéWo = 0 and(W; -
“ratchet” effects has been motivated by the search fo®W:) = mo?z,i.e.,W represents a purely diffusive motion,
the mechanisms of biological motors, such as the convewith diffusivity
sion of chemical energy into directed motion by protein D = %02' 2)
molecules, and by possible applications, such as the sepa- . . . o .
ration of particles in solution based on their diffusion co- | N€ rémaining term in (1) is the deterministic forcing, a
efficients. In both these cases small particles are believeynction of Eulerian position and timer:
to follow dynamics that are overdamped (first derivative fiR" X RT — R™ (3)
in time) qnd noise dominated. A drift_velocity dependen'[.l.he real constan satisfies) = e < 1.
on the size of s_uspended p_artlcles in squtlor_1 has.be_en We now expand in powers af. Let
produced experimentally using an asymmetric periodic ) ) o
potential turned on and off periodically [11]. Published X: = Xi" + €X;' + X, + ...,
theore'tica'tl modelg [12,13] co'mbine a periodic asymmetric with initial conditionX, = 0.  (4)
potential in one dimension with nonwhite fluctuations. _ _ _ _

In this Letter we consider motion in arbitrary dimen- The leading terms of the stochastic equation of motion,
sions that is diffusion dominated. There is also a smalFd. (4), are as follows.
deterministic forcing whose amplitude will be used as ane’:
expansion parameter; a drift velocity appears at second dXEO) — dW, 5)
order and depends on the diffusivity. Thus diffusion due ’
to microscopic motions, for example, diffusion of parti- 9/Ving
cles in so!utio_n, can be. exploited using a careful_ly cho- X§0> =W,. (6)
sen combination of forcings to produce a net motion that |
depends on the diffusivity. We illustrate the effect with € - ©

sinusoidal forcing and compare our calculations with nu- dX; o

= f(Xz ,Ndt, (7)
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giving is given by the following ensemble average:
t 1 2
X" =f F(W,,5)ds. (8) U= e lim (X (12)
0
62' 1 T t
' = gim( [ ([ 1w W
axi? = /" - Vpx”, ndr, ©) T
giving the second-order drift velocity as X f(Wy, 1) dS>df> - (13)
a4 x? = [t [ F(W,,s) - V]F(W,,1)ds (10)  Inone space dimension the expression (13) reduces to
dt 0 5o B s T .
R IR
whereV7 is the spatial gradient of. U=e }'ﬂc(T o S (Wi 1) 0 S(Wy,s)ds )dt |,

In the classical derivation of Stokes drift there is no (14)
motion at zeroth order [1,2]. Here the motion at zeroth ,
order is purely diffusive, withX\”) = 0 for any positive  Wheres'(x,1) = (9/9x)f (x,1). o
time. Whenf(x, r) is a sum of functions that are periodic We now con5|de_r the_ case where the deterministic
in 7 at any fixedx, the drift velocity also vanishes at first [0r€iNg is a sum of sinusoids:

orderine. That is Flt) = Z Ak coske - x — wr), (15)
lim 4 (xVy = o (11) !
— ' whereA; andw, are constants. The vectby defines the
tdirection of propagation of wave The drift velocity (13)

At second-order the drift velocity is in general nonzero.,| - .
| “for this case is

U=¢ i[lim A%Ikglzkgfl<sir{—kg - (W, — W) + ot — s))) ds}
=1 0

n t
= lée? Z[ lim Alke|?ke f sifwe(t — 5)Je kd*Pt=s) ds:| (16)
=17 0
L k el*\
1 2 2 2 K¢ 2 IR¢
= 5€ Aglkel —(1+D —) )
3 i "

Each wave makes a contribution to the drift velocity in contribution:
its direction of propagation. Fab = 0, the weighting

factor is proportional to the square of the amplitude.

This is the classical result obtained by a transformatiorwhere

from Eulerian to Lagrangian coordinates [1,2]. In the n k
case of a surface wave over deep water, the first order Uy = Ulp=g = %52 Z A%lk@lz—f (18)
motion of a suspended particle is a circle with radius =1 we

Ack¢/we;, the quantity AZ|k¢|*ke/we is proportional to and

U:U0+Us, (17)

the time-averaged momentum per unit area [2,3]. In " 5
the presence of diffusion, the contribution from wave U, = _%62 Z[Aﬁlkelzﬁ e } (19)
¢ is reduced by the dimensionless factdr + a?)~!, =L w1+ af

_ 2 -1 . .
\(,jvrri]f?rdeugeto aﬁ)llccﬁ\ew\fva;/e?)lffgrsrl]zgrirr? dlcj)ﬁ??h;hgis?rtizﬁ(teiz The classical Stokes driltj can be made to vanish
of particles v)\//orkin a air¥st the te?]denc of articlers)‘Dy choosing a forcing/(x, 1) consisting of wo wave

P ' ing ag y barl trains propagating in opposite directions. For the latter

to spend longer in regions where the force acts in the A : . '

! ) . . example, we can work in one space dimension, defined as
direction of propagation than in those where the force act§.n L ) .
) LA o e direction of propagation of wawe= 1:
in the opposite direction. The attenuation is strongest for
waves with large wave numbers or small velocities. fx,t) = Atk; codkix — wit + ¢y)

Dependence of drift velocity on diffusion can be _
exploited as follows: There is in general a nonzero drift T Azky Cotkox — wot + ¢2),  (20)
velocity due to diffusion even when the classical Stokesvhere A;, k;, w;, and ¢; (i = 1,2) are constants and
drift is zero. We write the drift velocity (16) as a sum kjk, < 0. For simplicity, we suppose that; # *k;
of the classical Stokes drift and a diffusion-dependentind w; # *=w>; this avoids cross terms in the classical
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Stokes drift. The drift velocity including diffusion is then mensions. In (a), the vectotyk, is shown for each of
given by the four waves. The parameters are= 1.0, A, = 0.8,
N5 b K3 b Az = 0.7, Ay =0.7; ki = (1.0,0.0), k; = (2.0, —4.0),
U= Ai— 0 +a) +A—(0+ay) | ks = (—3.0,0.7), andks = (—0.96,4.56). We takew =
@1 @2 vk with v = 1. Figure 3(b) depicts the fan-out in the
(21) directions and magnitudes of the drift velocities for nine
To setUy =0 requiresA%k?/wl = —A%kg’/wz. Then different values of diffusivity. Each arrow &, for one
U = U; where of the following values ofD: D = 0.1 (leftmost arrow),
L, 2k13 . . 0.2,...,0.9 (rightmost arrow). For larger values b, the
Us = 7€ Alw_[(l +ap) —(+a)']. (22)  direction ofU approaches more closely that/f

o . . The fan-out effect shown in Fig. 3 is due to the
For large diffusivity the drift velocity tends to zero becausejitterent rates at which the contributions from waves

the contribution of each wave tends to zero. Thus there igecrease as the diffusivity is increased, destroying the
an intermediate value of diffusivity that maximizs. If o, ot cancellation imposed Bt = 0. More light is shed

the forcing frequencies and wave numbers are fixed angy cqnsidering the small-diffusivity and large-diffusivity
Uy = 0, the drift attains its maximum at the value Df limits of (19).

safisfyingaja, = 1. _ _ _ (i) If Dlkel*/we < 1V I then

Figure 1 shows the drift velocity as a function of diffu- B .
sivity with the forcing a sum of two sinusoids for a choice U= —Le2p2 Z A2 |kel ke + - (23)
of parameters that giveg, = 0. In Fig. 2 the calculated * : = ¢ o} '

drift is compared with numerical results, with the same )
choice of parameters and = 0.125. The solid line in (ii) If Dlkel*/we > 1V [ then

Fig. 2(a) is the mean value &, as a function of time, av- L2 3 5 we
eraged over 10 000 numerical realizations of the stochastic Us =170 > Aew ke + - | (24)
differential equation (1), and the dotted linelis, with U =1

given by (22). In Fig. 2(b) we show, as a function of time,
the difference between the numerically calculated mear
displacement and/:. Figure 2(c) demonstrates that the
motion is close to Brownian; a histogram of valuesXgf

atr = 1000, R(y), is compared with the Gaussian proba-
bility density function with mean/s and varianceo?t
(solid line).

In general the expressions (16) and (19) are vector rele
tions. Thus, in more than one space dimension, the direc
tion as well as the magnitude of the drift velocity depends
on the diffusivity, producing fan-out of the drift veloc-
ity vectors. We illustrate this effect in Fig. 3, constructed
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with the forcing being a sum of four sinusoids in two di- I
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FIG. 1. Stochastic Stokes drift in one dimension. There is y

a nonzero drift velocity due to diffusivity even though the

classical Stokes drift vanishes, due to the different rates aflG. 2. Stochastic Stokes drift: comparison with numerical
which the contributions from waves decrease as the diffusivitysolution for sinusoidal forcing in one dimension. (a) Mean
is increased. The drift velocity, Eq. (22), is given as a functionvalue ofX,. (b) Difference between the numerical mean value
of diffusivity for e = 0.1, A =k = w; = 1, ky = —2.42, and the second-order result (22). (c) Distribution Xf at
andw, = 0.47. t = 1000, o = 0.5.
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a small deterministic forcing. The drift velocity is in gen-
eral nonzero even when the classical Stokes drift vanishes.
For example, several counterpropagating sinusoidal forc-
ings produce a drift velocity that depends on the diffusion
coefficient and the intensities, frequencies, and wave num-
bers of the forcings. Thus, given a collection of particles
with different diffusivities, the deterministic forcings can
be tuned to separate particles of a particular type by opti-
mizing their stochastic Stokes drift.
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