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Cold Bosonic Atoms in Optical Lattices
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The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described
by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the
continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase
induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to
a commensurate filling of the lattice (“optical crystal”). Examples for formation of Mott structures
in optical lattices with a superimposed harmonic trap and in optical superlattices are presented.
[S0031-9007(98)07267-6]
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Optical lattices—arrays of microscopic potentials in-the lattice, and thus represents aptical crystal with
duced by the ac Stark effect of interfering laser beams—eiagonal long range order with the period imposed by the
can be used to confine cold atoms [1-7]. The quantizethser light. The nature of the MI phase is reflected in the
motion of such atoms is described by the vibrational mo-existence of a finite gap’ in the excitation spectrum.
tion within an individual well and the tunneling between Our starting point is the Hamilton operator for bosonic
neighboring wells, leading to a spectrum describable as atoms in an external trapping potential
band structure [3]. Near-resonant optical lattices, where 52
dissipation associated with optical pumping producesH = jd3x W(x)(——v2 + Vo(x) + VT(x)>¢f(x)
cooling, have given filling factors of about one atom per 2m

ten lattice sites [1,6]. Higher filling factors will require 1 4mash? / 34 +
lower temperatures, and hence will also require mini- * 2 m dx gt R)Y Xy x)y(x). (1)

mization of the optical dissipation. This can be achieved,, #(x) a boson field operator for atoms in a given
in a far-detuned optical lattice (especially with blue detun+ona) atomic stateV,(x) is the optical lattice poten-

ing), where photon scattering times of many minutes havgy| “anq v, (x) describes an additional (slowly varying)
been dem.onstrated'[Z]. Thus the lattice then bghaves aSRternal trapping potential, e.g., a magnetic trap (see
conservative potential, which could be loaded with a Bosq;ig. 1a). In the simplest case, the optical lattice poten-
condensed atomic vapor [8,9], for which present densitieﬁaI has the formVy(x) = > V sird(kx;) with wave
would qorrespond to tens of atoms per Ia_ttice site. vectorsk = 27 /A Oand A tﬁglwg)velengt{l of the laser
In this Letter we will study the dynamics of ultracold light, corresponding to a lattice periad= A/2. V, is
bosonic atoms loaded in an optical lattice. We will show roportional to the dynamic atomic polarizability times

that the dynamics of the bosonic atoms on the optic ; ; ; . ;
lattices realizes a Bose-Hubbard model (BHM) [10-16], he laser intensity. The interaction potential between the

describing the hopping of bosonic atoms between the

lowest vibrational states of the optical lattice sites, the 1

a) b) 10° 10

unique feature being the full control of the system’s A

parameters by the laser parameters and configurations. Ua AN JEg
The BHM predicts phase transition from a superfluid ERaS} > »

(SF) phase to a Mott insulator (M) at low temperatures 10 \\ 10

and with increasing ratio of the on site interactidh

(due to repulsion of atoms) to the tunneling matrix

elementJ [10]. In the case of optical lattices this 10"5 i3 ‘2~510'3

ratio can be varied by changing the laser intensity: with
increasing depth of the optical potential the atomic wave
function becomes more and more localized and the off!G. 1. (a) Realization of the BHM in an optical lattice (see
site interaction increases, while at the same time th xt). The offset of the bottoms of the wells indicates a trapping

. . . otential Vy. (b) Plot of the scaled on site interacti@n/Ex
tunneling matrix element is reduced. In the MI phase th ultiplied by a/a, (>1) (solid line; axis on left-hand side of

density (occupation number per site) is pinned at integegraph) and//Ex (dashed line; axis on right-hand side of graph)
n=1,2,..., corresponding to a commensurate filling of as a function ofVy/Ex = V., .0/Er (3D lattice).

Vo/Eg
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atoms is approximated by a short-range pseudopotentitthe MI-SF transition for the phase = 1 is at the criti-
with a; the s-wave scattering length angk the mass cal valueU/zJ = 5.8 with z = 2d the number of nearest
of the atoms. For single atoms the energy eigenstateseighbors. According to Fig. 1b this parameter regime
are Bloch wave functions, and an appropriate superpds accessible by varyindy in the regime of a few tens
sition of Bloch states yields a set of Wannier functionsof recoil energies. As an example, for sodium [9] we
which are well localized on the individual lattice sites. haveEgr/A = 27 X 8.9 kHz for a red detuned laser with
We assume the energies involved in the system dynam = 985 nm, and the critical values for the first Ml phase
ics to be small compared to excitation energies to then 1D, 2D, and 3D are given by.o = 10.8, V. ,0 = 14.4,
second band. Expanding the field operators in the Wanand V., .o = 16.5E¢, and we assumed in 1DV, =
nier basis and keeping only the lowest vibrational stateQ5E% for the y andz directions in order to suppress tun-
w(x) = >, bjw(x — x;), Eq. (1) reduces to the Bose- neling in these other dimensions, awd, = 25E% for

Hubbard Hamiltonian 2D. ForVy = 15 we haveU = 0.15 andJ = 0.07 in
1 units of Ex. For a blue detuning [9\ = 514 nm we
t A PN . .
H=—JD>bbj+> en; + 5 U ah — 1), find Ex/#% = 2a X 32 kHz and the corresponding values

(i.j) i are Voo = 84, Voo =119, and Vy = 14.1; U = 0.2,

2 o
(2) J = 0.02 for Vo = 10 in units of Eg. ForV, = 10ER the
where the operatorsi; = bib;, count the number of Single particle density at the center of the optical potential

, S L i 3 -
bosonic atoms at lattice site the annihilation and crea- Wells will be of the order oft /ay ~ 10'> cm™. Thus we
tion operatorsh; and b obey the canonical commu- Must discuss the role of collisions between ground state

atoms (in the presence of a laser field) as a loss and de-
2 [ 13 4 coherence mechanism [17]. This question is directly re-
?hzasoﬁn éifcie xrle::)(j)sli o/rlln o?ot:/(/isgct)gristoortlh?h jtﬁz?t?gg :if[elated to the problem of collisional loss of Bose-Einstein
A . ) condensates in optical traps as studied in [9]. We empha-
i,J = f‘? xw (x = X)) [=5, V7 + Vox)Jw(x — le) IS" sjze that in the Mott phase with a single particle per site
the hopping matrix element between adjacent sitgs  (,, — 1) two and more particle loss channels are absent.
and & = [d’x Vr(x)lw(x — x;)I> = Vr(x;) describes o 4\ phase withn = 2 there will be two particle
an energy offset of each lattice site. _ losses: if we take as an order of magnitude the numbers
For a given optical potential and U are readily , pjished in Ref. [18] we estimate the corresponding life-
evaluated numerically. For the optical potential givenime to be>10s. Forn = 3 the lifetime due to three
above the Wannier functi_ons can be written as productSiom losses [18] will be of the order 6f 10 s.
w(x) = wx)w(y)w(z) which can be determined from \ye have performed mean-field calculations for 1D
a one-dimensional band structure calt_:ulathn. Figure 1B 4 2p configurations, as well as an exact diagonaliza-
shows U and J as a function ofVy in units of the oy of the BH Hamiltonian in 1D to illustrate the for-

i — K212
recoil energy Ex = /i°k*/2m. Both the next-nearest maion of the Mott insulator phase in optical lattices,
neighbor amplitudes and the nearest-neighbor repulsiogp, particular, for the inhomogeneous case. Our mean-

are typically 2 orders of magnitude smaller and can thugje|q calculations are based on a Gutzwiller ansatz for
be neglected. Qualitative insight into the dependence of,o ground state wave functioWyg) = [1; [¢:) with
these parameters is obtained in a harmonic approximatio(/b'> — 3 f(i)ln) where |n); denotes th(le F(l)ck state
expanding around the minima of the potential wells. Th Wi'[lh " atcl)ﬁos ;t sité’ [11]. We lminimize the expectation

oscillation frequencies in the wells arg = 4ErV, /h value of the Hamiltonian,
which gives the separation to the first excited Bloch

band. The oscillator ground state wave function of
size ajo = +/hi/mv; allows us to obtain an estimate
for the on site interactiol/ = 2/ (a,/ag)/+/2 with ‘
the bar indicating geometric means. Consistency of ouwith respect to the coefficients‘r(f). The Lagrange
model requires; < ajo < A/2 andAE; = %Un,-(n,- — multiplier . enforces a given mean particle numbér=
1) < hiv;. The first set of inequalities follows from the > ;(n;). This corresponds to a calculation in the grand
pseudopotential approximation and our requirement of &anonical ensemble with chemical potenfiaht tempera-
(large) energy separation from the first excited band. ThéureT = 0. A MI phase is indicated by solutions in the
second inequality expresses the requirement that the dorm of single Fock states|¢;) — |n;);. A signature
site interaction associated with the presence;qfarticles of a Ml phase is integer occupation number (density)
at site, which in our model is calculated in perturbation p; = (#;) and fluctuationsg? = ((2?) — (A;)?)/{A;) —
theory, must be much smaller than the excitation energ9. Solutions in the form of superposition of Fock
to the next band. These inequalities are readily satisfiedtates result in a mean-field; = (b;) # 0, indicating
in practice. the presence of a SF component. The angular brackets
According to mean-field theory (MFT) in the homo- indicate an average in the mean-field state. In the
geneous case [10,11] (see also [14]) the critical value ofiomogeneous case:;(= 0) the phase diagram in the
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J-p plane consists of a series of lobes [10]. Inside théWith increasingu we first find a Mott structure at the
lobes (i.e., forJ small in comparison with the on site bottom of the superlattice potential, until the atoms are no
repulsion energy/) the system is a Mott phase; outside it longer confined to a particular well of the superlattice but
is superfluid. form bridges connecting the superlattice wells.

In Fig. 2a we plot the density(x,y) and the super- In general, specific Mott structures can be designed
fluid component|¢(x,y)|> in an optical lattice with a by an appropriate choice of the laser configurations.
superimposed isotropic harmonic potential at the latticeAn experimental signature to detect the Mott state is
points (x/a,y/a) = (i,j) (i,j = 0,*1,...,). Figure 2a observation of reduced density-density fluctuations [see
shows a MI phase with two atoms per site at the centes(x,y) in Fig. 2]. This can be monitored directly in light
of the trap(p = 2) surrounded by a Mott phase with a scattering. Alternatively, the Ml phase can be detected
single atom(p = 1) and superfluid rings between the MI spectroscopically by observing the gapped particle-hole
phases. For smaller values of the chemical potential onlgxcitations.

a single Mott phase would exist at the trap center. Quali- In 1D and for systems with few atoms per superlattice
tatively, this behavior is readily understood on the basisvell we expect fluctuations to be important, and the
of the phase diagram in the homogeneous case [10] if wapplication of MFT becomes questionable. On the other
note that the offse¢; = Vr(x;) leads to an effective local hand, in this limit it is straightforward to diagonalize the

chemical potentiak — ;. Bose-Hubbard Hamiltonian exactly. Figure 3 is a plot

By use of interfering laser beams at different anglesof the density and the number fluctuations for the exact
[4], one can produce superlattice in which the offset of ground state fov = 5 atoms as a function df,o. With
the optical potential is modulated periodically in space onincreasingV,, the density shows a clear transition to the
a scale larger than the lattice period. Figures 2b and 2Wl phasep = 1, even for this very small sample. The
show the density (x,y) and the scaled density fluctua- number fluctuations are suppressed in the MI phase but
tions o (x,y) of Mott structures formed in a superlattice. remain finite. The phase transition (which according to
MFT in the homogeneous limit is expected fdf =
74Eg) is smeared out, and fluctuations are strongly
suppressed only for larger values Bf,. Qualitatively,
the mean-field theory for the inhomogeneous case agrees
well with the exact calculations, even for these small
systems. Figure 3 can be viewed as an adiabatic transfer
into the MI phase as the laser intensity is varied slowly as
a function of time.

The atomic level scheme of Fig. 1 allows only one
adjustable parameter, the depth of the optical potekitial
To adjust the tunneling matrix elemesitindependently
of the on site interactionU we can employ atomic
configurations with two internal ground state levéds)
and|g»), which are connected by an off-resonant Raman
transition (Fig. 4a).

We assume that the two internal states move in optical
potentials which are shifted relative to each otheniy,
as is the case when they have polarizabilities of opposite
sign. Expanding the bosonic field operators for the two
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FIG.2. (@ MI and SF phases in an optical poten- 91
tial and harmonic trap in 2D. Parameterd/ = 35J, 0
Vr(x,y) = J(x* + y?)/a?, and u = 50J. Density p(x,y) x/a
(left plot) and superfluid density|¢(x,y)]> (right plot).

(b) Superlattice in 2D. Densityp(x,y) (left plot) and FIG. 3. Densityp and fluctuationso for the exact ground
fluctuations o(x,y) (right plot). Parameters:U = 45J, state in 1D for N =5 atoms in a harmonic well as a

Vr(x,y) = 30J [sit(wx/11a) + sit(wy/11a)], and u = function of V,o/Er for seven lattice cells. The parameters
25J. (c) Same as (b) withu = 35J. Four superlattice wells are a,/a = 1.1 1072 (corresponding to Na and = 514 nm,
are shown. Vyo = V.o = 40Eg) andVy(x) = 0.06 Er(x/a)>.
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) T le> treatment [19] will be presented elsewhere. The ability to
manipulate both the lattice and the system parameters in
T our realization of a Bose-Hubbard model brings a new as-
pect to condensed matter physics: models and simplifying
assumptions may be systematically investigated using the
experimental techniques of quantum optics.
The authors thank the members of the BEC98 program
at ITP UCSB for discussions. The work was supported
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FIG. 4. (a) Atomic level scheme (see text). (b) Checkerboard
pattern with a MI phase on one sublattice and a SF on the
other obtained in MFT for the two species BHM, with parame-
ters:u =25J, Uyy = Uy, = 45J, Uy, = 0, 6 = —25J, and
€ = 0.

J

[1] G. Raithel et al., Phys. Rev. Lett.78 630 (1997);
T. Miller-Seydlitz et al., ibid. 78, 1038 (1997); S.E.
internal states we obtain a two-species Bose-Hubbard Hamannet al., ibid. 80, 4149 (1998), and references

Hamiltonian therein.
[2] S. Friebelet al., Phys. Rev. A57, R20 (1998).
H=— (JZa;rbj + H.c.) + Zeia;rai [3] M. Raizen, C. Salomon, and Q. Niu, Phys. Tod&§,
{i.j) i No. 7, 30 (1997).

" U 2 [4] L. Guidoni and P. Verkerk, Phys. Rev. A7, R1501
+ Z(EJ — 8)bjb; + 2‘” Za,- a? (1998), and references therein.
J i [5] L. Guidoni et al., Phys. Rev. Lett79, 3363 (1997).
Upp ) [6] K.I. Petsas, A.B. Coates, and G. Grynberg, Phys. Rev. A
+ Uw 2 alaibb; + =" 3 bI°b7. (@) 50, 5173 (1994).
(.j) J [7] I.H. Deutsch and P.S. Jessen, Phys. Rev5A 1972

with a; and b; bosonic destruction operators referring to o l(v}gzg)d. | Science269 198 (1995 K_B. Daui
atoms in the internal statdg,) and |g»), respectively. [ ot aln ;LSZ"%:V" LSE% 3369 (1595). )C G Bra?j\;:es
The first term in the Hamiltonian describes the Raman o PIYS. ' o e y

. . . . . et al., Phys. Rev. Lett.75 1687 (1995); see the BEC
induced hopping between adjacent cells with coupling homepage http://amo.phy.gasou.edu/bec.htm|

J =5 [d*X wa(x)" Qerr(X)wy (x — A/4), where Qe IS [9] D.M. Stamper-Kumet al., Phys. Rev. Lett.80, 2027
the effective two-photon Rabi frequency (including a (1998); S. Inouyeet al., Nature (London392, 151 (1998).
possible phase). Direct tunneling has been neglected. TH&0] M. P. A. Fisheret al., Phys. Rev. B40, 546 (1989).

second and third term contain offsets due to a trappin§ll] W. Krauth, M. Caffarel, and J.-P. Bouchard, Phys. Rev. B
potential, and, in addition, a Raman detuning terid for 45, 3137 (1992); K. Sheshadett al., Europhys. Lett22,
atoms in the statlg,). The second and third lines contain 257 (1993). o

on site interactions of atoms and » described byt,,  [12] '(A‘l-gzgsampf and G.T. Zimanyi, Phys. Rev. &7, 279
and U,,, and a nearest-neighbor interactiéfy, whose : : i

value depends on the overlap of the Wannier functionélg] C. Bruder, R. Fazio, and G. Schon, Phys. Revi £ 342

. . . 1993); A. van Otterloet al., Phys. Rev. B52, 16176
betweera andb. A Raman detuning shifts the chemical 21995;_ v y Y

potential of specie$ relative toa. We can adjust the [14] j K. Freericks and H. Monien, Europhys. Le26, 545
value of this detuning to generate checkerboard patterns, ~ (1994).

e.g., a Ml phase of speci@sand a Mott phase of species [15] W. Krauth, N. Trivedi, and D. Ceperley, Phys. Rev. Lett.
b can coexist with different site occupation numbers. As 67, 2307 (1991); N.V. Prokofev, B. V. Svistunov, and I. S.

an example, Fig. 4b plots the densityx, y) for a specific Tupitsyn, Phys. Lett. 238 253 (1998).
2D homogeneous situation where a Ml phhgg coexists  [16] For other experimental realizations such as granular
with a superfluid component ifz»). superconductors, Josephson junction arrays, and helium

While the present discussion has emphasized periodic_. flms, see references cited in [10,13]. .
(ordered) Bose systems, adding a further optical poterLﬂ] For a discussion of various aspects of }nelastlc processes
tial with incommensurate lattice spacing allows the real- in the presence of light, see P.O. Fedicretval., Phys.

S . . Rev. Lett.77, 2913 (1996); K.-A. Suominest al., Phys.
ization of a (pseudo)random potential [5] which leads to Rev. A57 3724 (19(98)_ ) y

the study of disordered Bose systems and appearancegig] For decay rates of a Rb condensate in a magnetic trap, see
a Bose glass phase [10,15]. A study of the growth an E.A. Burtet al., Phys. Rev. Lett79, 337 (1997).

fluctuations of the MI phase due to coupling to a finite[19] C.W. Gardiner and P. Zoller, Phys. Rev. 38, 536
temperature particle reservoir based on a master equation (1998).

3111



