
VOLUME 81, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 12 OCTOBER1998

d
the
se
to

d.

3108
Cold Bosonic Atoms in Optical Lattices
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The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be describe
by a Bose-Hubbard model where the system parameters are controlled by laser light. We study
continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator pha
induced by varying the depth of the optical potential, where the Mott insulator phase corresponds
a commensurate filling of the lattice (“optical crystal”). Examples for formation of Mott structures
in optical lattices with a superimposed harmonic trap and in optical superlattices are presente
[S0031-9007(98)07267-6]
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Optical lattices—arrays of microscopic potentials in
duced by the ac Stark effect of interfering laser beams
can be used to confine cold atoms [1–7]. The quantiz
motion of such atoms is described by the vibrational m
tion within an individual well and the tunneling between
neighboring wells, leading to a spectrum describable as
band structure [3]. Near-resonant optical lattices, whe
dissipation associated with optical pumping produce
cooling, have given filling factors of about one atom pe
ten lattice sites [1,6]. Higher filling factors will require
lower temperatures, and hence will also require min
mization of the optical dissipation. This can be achieve
in a far-detuned optical lattice (especially with blue detun
ing), where photon scattering times of many minutes ha
been demonstrated [2]. Thus the lattice then behaves a
conservative potential, which could be loaded with a Bo
condensed atomic vapor [8,9], for which present densiti
would correspond to tens of atoms per lattice site.

In this Letter we will study the dynamics of ultracold
bosonic atoms loaded in an optical lattice. We will sho
that the dynamics of the bosonic atoms on the optic
lattices realizes a Bose-Hubbard model (BHM) [10–16
describing the hopping of bosonic atoms between t
lowest vibrational states of the optical lattice sites, th
unique feature being the full control of the system’
parameters by the laser parameters and configurations.

The BHM predicts phase transition from a superflui
(SF) phase to a Mott insulator (MI) at low temperature
and with increasing ratio of the on site interactionU
(due to repulsion of atoms) to the tunneling matri
element J [10]. In the case of optical lattices this
ratio can be varied by changing the laser intensity: wi
increasing depth of the optical potential the atomic wav
function becomes more and more localized and the
site interaction increases, while at the same time t
tunneling matrix element is reduced. In the MI phase th
density (occupation number per site) is pinned at integ
n ­ 1, 2, . . . , corresponding to a commensurate filling o
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the lattice, and thus represents anoptical crystal with
diagonal long range order with the period imposed by t
laser light. The nature of the MI phase is reflected in t
existence of a finite gapU in the excitation spectrum.

Our starting point is the Hamilton operator for boson
atoms in an external trapping potential

H ­
Z

d3x cysxd

√
2

h̄2

2m
=2 1 V0sxd 1 VT sxd

!
csxd

1
1
2

4pash̄2

m

Z
d3x cysxdcysxdcsxdcsxd , (1)

with csxd a boson field operator for atoms in a give
internal atomic state,V0sxd is the optical lattice poten-
tial, and VT sxd describes an additional (slowly varying
external trapping potential, e.g., a magnetic trap (s
Fig. 1a). In the simplest case, the optical lattice pote
tial has the formV0sxd ­

P3
j­1 Vj0 sin2skxjd with wave

vectors k ­ 2pyl and l the wavelength of the laser
light, corresponding to a lattice perioda ­ ly2. V0 is
proportional to the dynamic atomic polarizability time
the laser intensity. The interaction potential between t

FIG. 1. (a) Realization of the BHM in an optical lattice (se
text). The offset of the bottoms of the wells indicates a trappi
potentialVT . (b) Plot of the scaled on site interactionUyER
multiplied by ayas s¿1d (solid line; axis on left-hand side of
graph) andJyER (dashed line; axis on right-hand side of graph
as a function ofV0yER ; Vx,y,z0yER (3D lattice).
© 1998 The American Physical Society
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atoms is approximated by a short-range pseudopoten
with as the s-wave scattering length andm the mass
of the atoms. For single atoms the energy eigensta
are Bloch wave functions, and an appropriate superp
sition of Bloch states yields a set of Wannier function
which are well localized on the individual lattice sites
We assume the energies involved in the system dyna
ics to be small compared to excitation energies to th
second band. Expanding the field operators in the Wa
nier basis and keeping only the lowest vibrational state
csxd ­

P
i biwsx 2 xid, Eq. (1) reduces to the Bose-

Hubbard Hamiltonian

H ­ 2J
X
ki,jl

b
y
i bj 1

X
i

ei n̂i 1
1
2

U
X

i

n̂isn̂i 2 1d ,

(2)

where the operatorŝni ­ b
y
i bi count the number of

bosonic atoms at lattice sitei; the annihilation and crea-
tion operatorsbi and b

y
i obey the canonical commu-

tation relations fbi , b
y
j g ­ dij. The parametersU ­

4pash̄2
R

d3 xjwsxdj4ym correspond to the strength of
the on site repulsion of two atoms on the lattice sit
i, J ­

R
d3x wpsx 2 xid f2 h̄2

2m =2 1 V0sxdgwsx 2 xjd is
the hopping matrix element between adjacent sitesi, j,
and ei ­

R
d3x VT sxd jwsx 2 xidj2 ø VT sxid describes

an energy offset of each lattice site.
For a given optical potentialJ and U are readily

evaluated numerically. For the optical potential give
above the Wannier functions can be written as produc
wsxd ­ wsxdwsydwszd which can be determined from
a one-dimensional band structure calculation. Figure
shows U and J as a function ofV0 in units of the
recoil energy ER ­ h̄2k2y2m. Both the next-nearest
neighbor amplitudes and the nearest-neighbor repuls
are typically 2 orders of magnitude smaller and can th
be neglected. Qualitative insight into the dependence
these parameters is obtained in a harmonic approximat
expanding around the minima of the potential wells. Th
oscillation frequencies in the wells arenj ­

p
4ERVj0 yh̄

which gives the separation to the first excited Bloc
band. The oscillator ground state wave function o
size aj0 ­

p
h̄ymnj allows us to obtain an estimate

for the on site interactionU ­ 2h̄n̄sasyā0dy
p

2p with
the bar indicating geometric means. Consistency of o
model requiresas ø aj0 ø ly2 andDEi ­

1
2 Unisni 2

1d ø h̄nj . The first set of inequalities follows from the
pseudopotential approximation and our requirement of
(large) energy separation from the first excited band. T
second inequality expresses the requirement that the
site interaction associated with the presence ofni particles
at sitei, which in our model is calculated in perturbation
theory, must be much smaller than the excitation ener
to the next band. These inequalities are readily satisfi
in practice.

According to mean-field theory (MFT) in the homo-
geneous case [10,11] (see also [14]) the critical value
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the MI-SF transition for the phasen ­ 1 is at the criti-
cal valueUyzJ ø 5.8 with z ­ 2d the number of nearest
neighbors. According to Fig. 1b this parameter regim
is accessible by varyingV0 in the regime of a few tens
of recoil energies. As an example, for sodium [9] we
haveERy" ­ 2p 3 8.9 kHz for a red detuned laser with
l ­ 985 nm, and the critical values for the first MI phase
in 1D, 2D, and 3D are given byVx0 ­ 10.8, Vx,y0 ­ 14.4,
and Vx,y,z0 ­ 16.5ER , and we assumed in 1DVy,z0 ­
25ER for the y andz directions in order to suppress tun-
neling in these other dimensions, andVz0 ­ 25ER for
2D. For V0 ­ 15 we haveU ­ 0.15 and J ­ 0.07 in
units of ER . For a blue detuning [9]l ­ 514 nm we
find ERy" ­ 2p 3 32 kHz and the corresponding values
are Vx0 ­ 8.4, Vx,y0 ­ 11.9, and V0 ­ 14.1; U ­ 0.2,
J ­ 0.02 for V0 ­ 10 in units ofER . ForV0 ø 10ER the
single particle density at the center of the optical potenti
wells will be of the order of1ya3

0 ø 1015 cm23. Thus we
must discuss the role of collisions between ground sta
atoms (in the presence of a laser field) as a loss and d
coherence mechanism [17]. This question is directly re
lated to the problem of collisional loss of Bose-Einstein
condensates in optical traps as studied in [9]. We emph
size that in the Mott phase with a single particle per sit
(n ­ 1) two and more particle loss channels are absen
For a MI phase withn ­ 2 there will be two particle
losses: if we take as an order of magnitude the numbe
published in Ref. [18] we estimate the corresponding life
time to be.10 s. For n ­ 3 the lifetime due to three
atom losses [18] will be of the order of1y10 s.

We have performed mean-field calculations for 1D
and 2D configurations, as well as an exact diagonaliz
tion of the BH Hamiltonian in 1D to illustrate the for-
mation of the Mott insulator phase in optical lattices
in particular, for the inhomogeneous case. Our mea
field calculations are based on a Gutzwiller ansatz fo
the ground state wave functionjCMFl ­

Q
i jfil with

jfil ­
P`

n­0 f
sid
n jnli, where jnli denotes the Fock state

with n atoms at sitei [11]. We minimize the expectation
value of the Hamiltonian,

kCMF jHjCMFl 2 mkCMF j
X

i

n̂ijCMFl ! min, (3)

with respect to the coefficientsf
sid
n . The Lagrange

multiplier m enforces a given mean particle numberN ­P
iknil. This corresponds to a calculation in the gran

canonical ensemble with chemical potentialm at tempera-
ture T ­ 0. A MI phase is indicated by solutions in the
form of single Fock states,jfil ! jnili. A signature
of a MI phase is integer occupation number (density
ri ­ kn̂il and fluctuations,s2

i ­ skn̂2
i l 2 kn̂il2dykn̂il !

0. Solutions in the form of superposition of Fock
states result in a mean-fieldfi ­ kbil fi 0, indicating
the presence of a SF component. The angular brack
indicate an average in the mean-field state. In th
homogeneous case (ei ­ 0) the phase diagram in the
3109
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J-m plane consists of a series of lobes [10]. Inside th
lobes (i.e., forJ small in comparison with the on site
repulsion energyU) the system is a Mott phase; outside i
is superfluid.

In Fig. 2a we plot the densityrsx, yd and the super-
fluid componentjfsx, ydj2 in an optical lattice with a
superimposed isotropic harmonic potential at the lattic
points sxya, yyad ­ si, jd (i, j ­ 0, 61, . . . ,). Figure 2a
shows a MI phase with two atoms per site at the cent
of the trapsr ­ 2d surrounded by a Mott phase with a
single atomsr ­ 1d and superfluid rings between the MI
phases. For smaller values of the chemical potential on
a single Mott phase would exist at the trap center. Qua
tatively, this behavior is readily understood on the bas
of the phase diagram in the homogeneous case [10] if w
note that the offsetei ­ VT sxid leads to an effective local
chemical potentialm 2 ei.

By use of interfering laser beams at different angle
[4], one can produce asuperlattice, in which the offset of
the optical potential is modulated periodically in space o
a scale larger than the lattice period. Figures 2b and
show the densityrsx, yd and the scaled density fluctua-
tions ssx, yd of Mott structures formed in a superlattice

FIG. 2. (a) MI and SF phases in an optical poten
tial and harmonic trap in 2D. Parameters:U ­ 35J,
VT sx, yd ­ Jsx2 1 y2dya2, and m ­ 50J. Density rsx, yd
(left plot) and superfluid densityjfsx, ydj2 (right plot).
(b) Superlattice in 2D. Densityrsx, yd (left plot) and
fluctuations ssx, yd (right plot). Parameters:U ­ 45J,
VT sx, yd ­ 30J fsin2spxy11ad 1 sin2spyy11adg, and m ­
25J. (c) Same as (b) withm ­ 35J. Four superlattice wells
are shown.
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With increasingm we first find a Mott structure at the
bottom of the superlattice potential, until the atoms are n
longer confined to a particular well of the superlattice bu
form bridges connecting the superlattice wells.

In general, specific Mott structures can be designe
by an appropriate choice of the laser configuration
An experimental signature to detect the Mott state
observation of reduced density-density fluctuations [se
ssx, yd in Fig. 2]. This can be monitored directly in light
scattering. Alternatively, the MI phase can be detecte
spectroscopically by observing the gapped particle-ho
excitations.

In 1D and for systems with few atoms per superlattic
well we expect fluctuations to be important, and th
application of MFT becomes questionable. On the othe
hand, in this limit it is straightforward to diagonalize the
Bose-Hubbard Hamiltonian exactly. Figure 3 is a plo
of the density and the number fluctuations for the exa
ground state forN ­ 5 atoms as a function ofVx0. With
increasingVx0 the density shows a clear transition to the
MI phaser ­ 1, even for this very small sample. The
number fluctuations are suppressed in the MI phase b
remain finite. The phase transition (which according t
MFT in the homogeneous limit is expected forV0 ­
7.4ER) is smeared out, and fluctuations are strongl
suppressed only for larger values ofVx0. Qualitatively,
the mean-field theory for the inhomogeneous case agre
well with the exact calculations, even for these sma
systems. Figure 3 can be viewed as an adiabatic trans
into the MI phase as the laser intensity is varied slowly a
a function of time.

The atomic level scheme of Fig. 1 allows only one
adjustable parameter, the depth of the optical potentialV0.
To adjust the tunneling matrix elementJ independently
of the on site interactionU we can employ atomic
configurations with two internal ground state levelsjg1l
and jg2l, which are connected by an off-resonant Rama
transition (Fig. 4a).

We assume that the two internal states move in optic
potentials which are shifted relative to each other byly4,
as is the case when they have polarizabilities of oppos
sign. Expanding the bosonic field operators for the tw
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FIG. 3. Densityr and fluctuationss for the exact ground
state in 1D for N ­ 5 atoms in a harmonic well as a
function of Vx0yER for seven lattice cells. The parameters
are asya ­ 1.1 1022 (corresponding to Na andl ­ 514 nm,
Vy0 ­ Vz0 ­ 40ER) andVT sxd ­ 0.06 ERsxyad2.
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FIG. 4. (a) Atomic level scheme (see text). (b) Checkerboa
pattern with a MI phase on one sublattice and a SF on t
other obtained in MFT for the two species BHM, with parame
ters: m ­ 25J, Uaa ­ Ubb ­ 45J, Uab ­ 0, d ­ 225J, and
ei ­ 0.

internal states we obtain a two-species Bose-Hubba
Hamiltonian

H ­ 2

√
J

X
ki,jl

a
y
i bj 1 H.c.

!
1

X
i

eia
y
i ai

1
X

j

sej 2 ddby
j bj 1

Uaa

2

X
i

a
y2
i a2

i

1 Uab

X
ki,jl

a
y
i aib

y
j bj 1

Ubb

2

X
j

b
y2
j b2

j , (4)

with ai and bi bosonic destruction operators referring to
atoms in the internal statesjg1l and jg2l, respectively.
The first term in the Hamiltonian describes the Rama
induced hopping between adjacent cells with couplin
J ­

1
2

R
d3x wasxdpVeffsxdwbsx 2 ly4d, whereVeff is

the effective two-photon Rabi frequency (including a
possible phase). Direct tunneling has been neglected. T
second and third term contain offsets due to a trappin
potential, and, in addition, a Raman detuning term2d for
atoms in the statejg2l. The second and third lines contain
on site interactions of atomsa and b described byUaa

and Ubb , and a nearest-neighbor interactionUab whose
value depends on the overlap of the Wannier function
betweena andb. A Raman detuningd shifts the chemical
potential of speciesb relative to a. We can adjust the
value of this detuning to generate checkerboard patter
e.g., a MI phase of speciesa and a Mott phase of species
b can coexist with different site occupation numbers. A
an example, Fig. 4b plots the densityrsx, yd for a specific
2D homogeneous situation where a MI phasejg1l coexists
with a superfluid component injg2l.

While the present discussion has emphasized perio
(ordered) Bose systems, adding a further optical pote
tial with incommensurate lattice spacing allows the rea
ization of a (pseudo)random potential [5] which leads t
the study of disordered Bose systems and appearance
a Bose glass phase [10,15]. A study of the growth an
fluctuations of the MI phase due to coupling to a finit
temperature particle reservoir based on a master equat
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treatment [19] will be presented elsewhere. The ability t
manipulate both the lattice and the system parameters
our realization of a Bose-Hubbard model brings a new a
pect to condensed matter physics: models and simplifyin
assumptions may be systematically investigated using t
experimental techniques of quantum optics.
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