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Path-Integral Molecular Dynamics Calculations of Electron Plasma
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We introduce a first-principles molecular dynamics method based on the discretized path integral
representation of quantum particles. Fermi statistics is automatically generated by an effective
exchange potential. This path-integral molecular dynamics method is able to simulate exchange
in electron plasmas at the border of the degenerate regime with a satisfactory level of accuracy.
[S0031-9007(98)07262-7]

PACS numbers: 31.15.Qg, 71.10.Ca

Currentab initio molecular dynamics (MD) methods re- tum exchange as crosslinking of the chains [16], (c) the
lying on the density functional theory (DFT) within the nonlocality of crosslinking (exchange) along the chains (in
local density approximation (LDA) [1,2] have enjoyed aimaginary time) [12], (d) the restricted path integral [13,17]
great popularity and have been employed to investigatéo resolve the problem of negative weights to the partition
a very large number of problems [3]. In the LDA, the function resulting from the crosslinking of even numbers
exchange-correlation energy of a nonuniform electron gasf quantum particles.
is calculated from the exchange-correlation energy of the The partition function of a system @& quantum par-
uniform gas. The calculation of the equation of states oticles expressed in a position representation takes the
a Fermi one-component plasma (OCP) such as the inteferm [18]
acting electron gas is therefore a problem of fundamental
e}nd practlcgl importance. The zero-temperature perturba- 7 = f dR, p(R1,Ry; B)
tive expansion of the energy of a uniform electron plasma
in the high density limit (whenr, the radius of a sphere P p
which encloses on the average one patrticle, is much smaller = / l_[ dR, l_[ *p(Rn, Ryi1i€), (1)
than the Bohr radiusgy) was calculated quite some time n=1 n=1
ago [4]. Accurate Monte Carlo variational calculations
have extended th& = 0 K equation of states of the de- wherep is the density matrixR = {r", ..., r™)} stands
generate Fermi OCP to a wide range of lower densitiesfor the position of the particles, amgl = 1/kT. In Eq. (1),
rs/ap € [1500] [5]. The exchange-correlation free en- we have used the convolution property of the density
ergy has been subsequently calculated to encompass theatrix and introducedP — 1) intermediate states. The
full range of thermal degeneracy [6—8]. In contrast to(*) in the product indicates the cyclic conditidtp; =
DFT-MD, quantum molecular dynamics simulations usingR, ande = 8/P. Since the wave function of fermions
the discretized path integral [9] have been limited mostlyis antisymmetric, the density matrix can be positive or
to the simulation of systems containing a small numbenegative and convergence is slow. However, the diagonal
of quantum degrees of freedom such as in the solvatiodensity matrix can be evaluated by restricting paths to
of a single quantum particle in a classical fluid [10] or remain in the region of phase space where their sign is
to problems where quantum exchange is not dominanpositive [13]. With this restriction, Eq. (1) is exact, but
[11]. Progresses in the simulation of fermionic systems bysince one does not know the exact density matrix, it is
path-integral Monte Carlo [12-15] have opened the waynecessary to replace it by some reasonable approximation.
toward the implementation of a path-integral-based finiteThe nodes (loci of points where the density matrix is zero)
temperaturab initio molecular dynamics method (PIMD). of the approximate density matrix should be as close as
This Letter describes such a molecular dynamics methogossible to those of the exact density matrix if one hopes
applicable to the simulation of many fermion systems ato calculate accurate properties. Afis sufficiently large,
finite temperatures. It is applied to the description of thewe can use Trotter's approximation to separate the kinetic
electron plasma at the border of the degenerate regimend the potential contributions to the density matrix [19].
where the ratio of the temperature to the Fermi temperathe kinetic density matrix may then be approximated by a
tureTr = 0.1. The method is based on (a) the discretizedocal form of the noninteracting density matrix.
path integral representation of quantum particles as closed N2
“polymeric” chains of classical particles (beads) coupled Do) — m
through harmonic springs [9], (b) the treatment of quan- N1 (R Ry 13 2) |:277'8ﬁ2:| detAnniil. ()
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[Aq..+1] represents & X N matrix which elements are collapses into a bosonic state. To prevent this undesirable
expressed as behavior, we recast Eq. (3) in a nonlocal form [12]:

O () \2 P
A ex’{ /32,3 w2 U )} de(An,m]—l‘[Amll‘[(detEn,m]W”. (@)
m=1

with the indices and; running over the particles. In the

limit of high temperature, the nodes of the noninteractingWith the restricted path integral, the integrand of the
density matrix approximate reasonably well those of theartition function is positive and can now be rewritten in
exact density matrix [13], although it does not describea classical form usable with a molecular dynamics (MD)
electron correlation. The determinant of the kinetic matrixscheme

in the absence of quantum exchange is factored out of

P
Eq. (2 ) 2= [ 1 ks exi=pVen(Ris. .. R2L, - O
.. n=1
de(An,rHH] = l_[ AZ,nJrl detEn,n+1], (3) i . i
i=1 where the effective potential includes quantum exchange.

where all the exchange effects (including the sign of thdn the case of a nonpolarized fermion system with

density matrlx) are included ifi£] which elements are electrons, a microcanonical ensemble sampling of the
defined ast” ., = AY /Al . . Inthelimitofe — 0, quantum states of the system can now be performed

the matrix E] reduces to the identity matrix and the syste|mby solving for the trajectories generated by the classical

Hamiltonian:
P | Ne—1 Ny P
- 1 ()2 < (—e)(—e/P) - m,P P00y
= Z o )"+ Z Z Z *) o, T Z 72 rivi)

k=1 i=1 i=1 k=1 i=1 4meolr; — ri’|l k=1 i=1

1 le f=1 Zf:1 In detEij]Sei_;s (6)
n P P :
'8 s=1 i=1 Jj=1 '9;;'5'

Here,m" is some arbitrary mass (we chog€ = 1 a.u.) | In order to make the calculation more tractable, at every
used to define an artificial kinetic energy for the quantuntime step, we approximate the matfik, ,,] by a block
states in order to explore the effective potential surfacegiagonal matrix containing two blocks. The first block
Vetr, constituted of the last three terms in Eq. (6). The[F,.]is aN; X N, matrix which elements minimize the
fourth term is an effective exchange potential for the eIecquantltyI(r(’) — 2+ @) - r@)? — (¢ — p)2 —

trons with spin-up(s = 1) and spin-down(s = |). The  (r(/) — r(’))2| among the p055|ble combinations of ex-
function 6;; ensures the path restriction by taking on thechange between a particlein the simulation cell and a
values 1 and 0 for paths with positive and negativéfdet  particle j in any other cell. This procedure identifies the
respectively. In Eg. (6), the second term accounts for th@eading pair exchange terms in [gt,,, ] involving at least
electron/electron Coulomb interactions. The forces deone particle in the simulation cell. The second block which
rived from the exchange potential are calculated as meargeterminant will be denoted contains the contribution of
over the paths with positive determinant. Therefore, arexchange between electrons in the image cells and a mi-
effective force calculation requires a good sample of suchor contribution from exchange processes between elec-
paths. Since the exchange potential offers a barrier trons in the simulation cells and all other cells. With this
paths with negative determinants, it biases the samplingpproximation, d¢€, ,,] = C de{F,,,]. When calculat-
of phase space toward configurations with positive deing the leading contributions to the exchange force on the
terminants. Although configurations with negative deter-electrons inside the simulation cell, as the derivative of the
minants exist and evolve, they do not contribute to theexchange potential of Eq. (6), the quantitydrops out and
exchange forces. does not need to be evaluated. This approximation should
We have tested the PIMD on an unpolarized electrorbe valid at high temperature when the electrons are fairly
plasma composed aW. = 30 electrons § = 15 and  well localized and for systems in which the electrons have
= 15). The simulation cell is a fixed cubic box with a strong repulsive interaction that prevents the close ap-
edge length. = 13.3 A, which corresponds to an elec- proach of more than a very few electrons at a time.
tronic density withr;/ag = 5. This electron density is We solve the equation of motion with a leap frog scheme
near that of some metallic systems. Three temperaturesith a time step oi.35 X 10~ sec with simulations last-
are considered, 1300, 1800, and 2300 K, giving ratiosng at least 16 000 time steps. The time step is small
T/Tg in the interval0.05,0.1]. Periodic boundary condi- enough to resolve the high frequency oscillations of the
tions are used. Under these conditions the maffix,,]  harmonic springs. In the case of systems with laRye
for each spins should be a27N; X 27N,) matrix since the strong harmonic forces in Eq. (6) may lead to noner-
there are 26 periodic image cells and one simulation cellgodic behaviors [20]. This problem can be alleviated by
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rescaling temperature with a chain of Nosé-Hoover ther-
mostats [11,21]. This rescaling would ensure convergence
to the right canonical distribution. We have elected to
rescale the temperature of each chaiPdieads indepen-
dently of each other via a momentum rescaling thermostat
[22]. With this procedure we do not obtain a true canonical
distribution, but most thermal averages will be accurate to
ordersN ! [23]. We have also verified that with this ap-
proach over the length of our simulations the chains would
sample a large region of configuration space and therefore 0.0 ‘ : | |
resolve not only the fast but also the slow dynamical scale. 0 500 1000 1500 2000 2500

The calculation of the Coulomb energy is handled by temperature (K)
the usual Ewald method of summation. The Coulomb po-
tential energy of the electron plasma is made convergent
by the introduction of a positive charged background of
density —30e/Q where () is the cell volume. We cal-
culate the kinetic energy with the usual energy estimator
derived froma In Z/98 [10].

Every simulation reported starts with a different initial
configuration obtained from randomly generated bead
position in every electron chain. The initial bead-bead
distance is determined by the temperature. We have
checked that simulations at the same temperature starting -4.0 . : . .
from different initial configurations lead to the same 0 500 1000 1500 2000 2500
equilibration state. The rate at which equilibrium is temperature (K)
reached, however, may vary with the initial configuration..;s 1 kinetic energy (a) and potential energy (b) versus

We have investigated the convergence of the algoremperature. The open circles are the results of Ref. [5] for
rithm with respect to the number of beads at the lowesh correlated electron plasma. The open squares are the free

temperature of 1300 K. The electron plasma exhibitslectron kinetic energy and Hartree-Fock Coulomb contribution

convergence forP = 400. We have choser® = 450 to the energy. The closed circles refer to the fermion plasma
' udied in this paper. The closed squares indicate the kinetic

to ensure convergence at all temperatures greater th%hergy of a system composed of Maxwell-Boltzmann particles.
1300 K. In Figs. 1(a) and 1(b) we report the results of our

calculations for the kinetic and potential energies of the

fermion plasma as a function of temperature as well as ththe potential energy of the plasma. However, the PIMD
kinetic energy of a similar system but obeying Maxwell- energies are lower than the Coulomb contribution to the
Boltzmann statistics [simulated by switching off the Hartree-Fock energy. The deviation from the correlated
exchange potential in Eq. (6)]. In addition to our results,potential energy may be imputed to the fact that the PIMD
we present the 0 K kinetic energy of the correlated fermiorpresented here does not include explicitly correlation.
plasma of Ref. [5] as well as the free electron kineticlncorporation of correlation via a correlated density matrix
energy and the Coulomb contribution of the Hartree-FocK24], including some appropriate repulsive long-range
energy. The effectiveness of our exchange potential at afjlseudopotential [5], should keep the electrons farther
temperatures studied is clearly seen in the magnitude of thepart thus reducing their potential energy. The agreement
fermion kinetic energies. The calculated fermion kineticbetween the kinetic energy of the PIMD fermion system
energy exceeds the Maxwell-Boltzmann energy by morend that of the correlated electron plasma [5] suggests that
than 1 eV. This increase in kinetic energy is indicative ofthe nonlocal form of the effective potential in Eq. (6) may
a significant localization when the quantum particles obeyalso include some correlation between the electrons in an
Fermi statistics. The calculated kinetic energy for theimplicit form [12].

high density fermion system does not show a significant The computing time for the calculation of the exchange
temperature dependency as would be expected for plasmpstential scales agzNﬁl. This scaling at present limits

at the border of the degenerate regime [7]. In contrasthe applicability of the method to systems with a reason-
the Maxwell-Boltzmann particles do show a significantably small number of fermions. However, one may ex-
temperature dependency for their kinetic energy. Theploit the natural parallelizability of the exchange effective
fermion kinetic energies calculated with the PIMD are inpotential over the number of beads to reduce the cost to a
very good agreement with Ceperley’s results (Ref. [5])linear scaling with respect t8 [25]. Access to supercom-

at 0 K although somewhat smaller by approximatelyputers can make possible the simulation of larger systems
0.05 eV/electron. Our model appears to overestimateat lower temperatures. For larger fermion systems, one
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