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We introduce a first-principles molecular dynamics method based on the discretized path int
representation of quantum particles. Fermi statistics is automatically generated by an effe
exchange potential. This path-integral molecular dynamics method is able to simulate exch
in electron plasmas at the border of the degenerate regime with a satisfactory level of accu
[S0031-9007(98)07262-7]
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Currentab initio molecular dynamics (MD) methods re-
lying on the density functional theory (DFT) within the
local density approximation (LDA) [1,2] have enjoyed a
great popularity and have been employed to investiga
a very large number of problems [3]. In the LDA, the
exchange-correlation energy of a nonuniform electron g
is calculated from the exchange-correlation energy of th
uniform gas. The calculation of the equation of states
a Fermi one-component plasma (OCP) such as the int
acting electron gas is therefore a problem of fundamen
and practical importance. The zero-temperature perturb
tive expansion of the energy of a uniform electron plasm
in the high density limit (whenrs, the radius of a sphere
which encloses on the average one particle, is much sma
than the Bohr radius,a0) was calculated quite some time
ago [4]. Accurate Monte Carlo variational calculation
have extended theT ­ 0 K equation of states of the de-
generate Fermi OCP to a wide range of lower densitie
rsya0 [ f1500g [5]. The exchange-correlation free en-
ergy has been subsequently calculated to encompass
full range of thermal degeneracy [6–8]. In contrast t
DFT-MD, quantum molecular dynamics simulations usin
the discretized path integral [9] have been limited most
to the simulation of systems containing a small numb
of quantum degrees of freedom such as in the solvati
of a single quantum particle in a classical fluid [10] o
to problems where quantum exchange is not domina
[11]. Progresses in the simulation of fermionic systems b
path-integral Monte Carlo [12–15] have opened the wa
toward the implementation of a path-integral-based finit
temperatureab initio molecular dynamics method (PIMD).
This Letter describes such a molecular dynamics meth
applicable to the simulation of many fermion systems
finite temperatures. It is applied to the description of th
electron plasma at the border of the degenerate regi
where the ratio of the temperature to the Fermi temper
tureTF ø 0.1. The method is based on (a) the discretize
path integral representation of quantum particles as clos
“polymeric” chains of classical particles (beads) couple
through harmonic springs [9], (b) the treatment of quan
0031-9007y98y81(15)y3104(4)$15.00
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tum exchange as crosslinking of the chains [16], (c) th
nonlocality of crosslinking (exchange) along the chains (i
imaginary time) [12], (d) the restricted path integral [13,17
to resolve the problem of negative weights to the partitio
function resulting from the crosslinking of even numbers
of quantum particles.

The partition function of a system ofN quantum par-
ticles expressed in a position representation takes t
form [18]

Z ­
Z

dR1 rsR1, R1; bd

­
Z PY

n­1

dRn

PY
n­1

p
rsRn, Rn11; ´d , (1)

wherer is the density matrix,R ­ hrs1d, . . . , rsNdj stands
for the position of the particles, andb ­ 1ykT. In Eq. (1),
we have used the convolution property of the densit
matrix and introducedsP 2 1d intermediate states. The
spd in the product indicates the cyclic conditionRP11 ­
R1 and ´ ­ byP. Since the wave function of fermions
is antisymmetric, the density matrix can be positive o
negative and convergence is slow. However, the diagon
density matrix can be evaluated by restricting paths t
remain in the region of phase space where their sign
positive [13]. With this restriction, Eq. (1) is exact, but
since one does not know the exact density matrix, it i
necessary to replace it by some reasonable approximatio
The nodes (loci of points where the density matrix is zero
of the approximate density matrix should be as close a
possible to those of the exact density matrix if one hope
to calculate accurate properties. IfP is sufficiently large,
we can use Trotter’s approximation to separate the kinet
and the potential contributions to the density matrix [19]
The kinetic density matrix may then be approximated by
local form of the noninteracting density matrix.

rNIsRn, Rn11; ´d ­

"
m

2p´h̄2

#3Ny2

detfAn,n11g . (2)
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fAn,n11g represents aN 3 N matrix which elements are
expressed as

A
ij
n,n11 ­ exp

"
2b

m
2b´h̄2 sr sid

n 2 r
s jd
n11d2

#
with the indicesi andj running over the particles. In the
limit of high temperature, the nodes of the noninteractin
density matrix approximate reasonably well those of th
exact density matrix [13], although it does not describ
electron correlation. The determinant of the kinetic matr
in the absence of quantum exchange is factored out
Eq. (2)

detfAn,n11g ­
NY

i­1

Aii
n,n11 detfEn,n11g , (3)

where all the exchange effects (including the sign of th
density matrix) are included infEg which elements are
defined asE

ij
n,n11 ­ A

ij
n,n11yAii

n,n11. In the limit of´ ! 0,
the matrixfEg reduces to the identity matrix and the syste
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collapses into a bosonic state. To prevent this undesira
behavior, we recast Eq. (3) in a nonlocal form [12]:

detfAn,n11g ­
NY

i­1

Aii
n,n11

PY
m­1

sdetfEn,mgd1yP . (4)

With the restricted path integral, the integrand of th
partition function is positive andZ can now be rewritten in
a classical form usable with a molecular dynamics (MD
scheme

Z ­
Z PY

n­1

dRn expf2bVeffsR1, . . . , RPdg , (5)

where the effective potential includes quantum exchan
In the case of a nonpolarized fermion system withNel
electrons, a microcanonical ensemble sampling of t
quantum states of the system can now be perform
by solving for the trajectories generated by the classi
Hamiltonian:
H ­
NelX

k­1

PX
i­1

1
2

mpsÙr
skd
i d2 1

PX
i­1

NelX
k.1

Nel21X
l­1

s2ed s2eyPd

4p´0jr
skd
i 2 r

sld
i j

1

NelX
k­1

PX
i­1

p meP
2h̄2b2 sr skd

i 2 r
skd
i11d2

2
1
b

#X
s­"

PP
i­1

PP
j­1 ln detfEijgsu

1
ijsPP

i­1

PP
j­1 u

1
ijs

. (6)
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Here,mp is some arbitrary mass (we chosemp ­ 1 a.u.)
used to define an artificial kinetic energy for the quantu
states in order to explore the effective potential surfac
Veff, constituted of the last three terms in Eq. (6). Th
fourth term is an effective exchange potential for the ele
trons with spin-upss ­ "d and spin-downss ­ #d. The
function u

1
ij ensures the path restriction by taking on th

values 1 and 0 for paths with positive and negative detfEg,
respectively. In Eq. (6), the second term accounts for t
electron/electron Coulomb interactions. The forces d
rived from the exchange potential are calculated as me
over the paths with positive determinant. Therefore,
effective force calculation requires a good sample of su
paths. Since the exchange potential offers a barrier
paths with negative determinants, it biases the sampl
of phase space toward configurations with positive d
terminants. Although configurations with negative dete
minants exist and evolve, they do not contribute to t
exchange forces.

We have tested the PIMD on an unpolarized electr
plasma composed ofNel ­ 30 electrons (N" ­ 15 and
N# ­ 15). The simulation cell is a fixed cubic box with
edge lengthL ­ 13.3 Å, which corresponds to an elec
tronic density withrsya0 ­ 5. This electron density is
near that of some metallic systems. Three temperatu
are considered, 1300, 1800, and 2300 K, giving rati
TyTF in the intervalf0.05, 0.1g. Periodic boundary condi-
tions are used. Under these conditions the matrixfEn,mg
for each spins should be as27Ns 3 27Nsd matrix since
there are 26 periodic image cells and one simulation c
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In order to make the calculation more tractable, at eve
time step, we approximate the matrixfEn,mg by a block
diagonal matrix containing two blocks. The first block
fFn,mg is a Ns 3 Ns matrix which elements minimize the
quantity jsrsid

n 2 rs jd
m d2 1 srs jd

n 2 rsid
m d2 2 srsid

n 2 rsid
m d2 2

srs jd
n 2 rs jd

m d2j among the possible combinations of ex
change between a particlei in the simulation cell and a
particlej in any other cell. This procedure identifies the
leading pair exchange terms in detfEn,mg involving at least
one particle in the simulation cell. The second block whic
determinant will be denotedC contains the contribution of
exchange between electrons in the image cells and a m
nor contribution from exchange processes between ele
trons in the simulation cells and all other cells. With thi
approximation, detfEn,mg ø C detfFn,mg. When calculat-
ing the leading contributions to the exchange force on th
electrons inside the simulation cell, as the derivative of th
exchange potential of Eq. (6), the quantityC drops out and
does not need to be evaluated. This approximation shou
be valid at high temperature when the electrons are fair
well localized and for systems in which the electrons hav
a strong repulsive interaction that prevents the close a
proach of more than a very few electrons at a time.

We solve the equation of motion with a leap frog schem
with a time step of1.35 3 10216 sec with simulations last-
ing at least 16 000 time steps. The time step is sma
enough to resolve the high frequency oscillations of th
harmonic springs. In the case of systems with largeP,
the strong harmonic forces in Eq. (6) may lead to none
godic behaviors [20]. This problem can be alleviated b
3105
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rescaling temperature with a chain of Nosé-Hoover the
mostats [11,21]. This rescaling would ensure convergen
to the right canonical distribution. We have elected
rescale the temperature of each chain ofP beads indepen-
dently of each other via a momentum rescaling thermos
[22]. With this procedure we do not obtain a true canonic
distribution, but most thermal averages will be accurate
ordersN21 [23]. We have also verified that with this ap
proach over the length of our simulations the chains wou
sample a large region of configuration space and theref
resolve not only the fast but also the slow dynamical sca

The calculation of the Coulomb energy is handled b
the usual Ewald method of summation. The Coulomb p
tential energy of the electron plasma is made converg
by the introduction of a positive charged background
density230eyV whereV is the cell volume. We cal-
culate the kinetic energy with the usual energy estima
derived from≠ ln Zy≠b [10].

Every simulation reported starts with a different initia
configuration obtained from randomly generated be
position in every electron chain. The initial bead-bea
distance is determined by the temperature. We ha
checked that simulations at the same temperature star
from different initial configurations lead to the sam
equilibration state. The rate at which equilibrium i
reached, however, may vary with the initial configuratio

We have investigated the convergence of the alg
rithm with respect to the number of beads at the lowe
temperature of 1300 K. The electron plasma exhib
convergence forP $ 400. We have chosenP ­ 450
to ensure convergence at all temperatures greater t
1300 K. In Figs. 1(a) and 1(b) we report the results of o
calculations for the kinetic and potential energies of th
fermion plasma as a function of temperature as well as
kinetic energy of a similar system but obeying Maxwel
Boltzmann statistics [simulated by switching off th
exchange potential in Eq. (6)]. In addition to our result
we present the 0 K kinetic energy of the correlated fermio
plasma of Ref. [5] as well as the free electron kinet
energy and the Coulomb contribution of the Hartree-Fo
energy. The effectiveness of our exchange potential at
temperatures studied is clearly seen in the magnitude of
fermion kinetic energies. The calculated fermion kinet
energy exceeds the Maxwell-Boltzmann energy by mo
than 1 eV. This increase in kinetic energy is indicative
a significant localization when the quantum particles ob
Fermi statistics. The calculated kinetic energy for th
high density fermion system does not show a significa
temperature dependency as would be expected for plas
at the border of the degenerate regime [7]. In contra
the Maxwell-Boltzmann particles do show a significan
temperature dependency for their kinetic energy. T
fermion kinetic energies calculated with the PIMD are i
very good agreement with Ceperley’s results (Ref. [5
at 0 K although somewhat smaller by approximate
0.05 eVyelectron. Our model appears to overestima
3106
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FIG. 1. Kinetic energy (a) and potential energy (b) vers
temperature. The open circles are the results of Ref. [5]
a correlated electron plasma. The open squares are the
electron kinetic energy and Hartree-Fock Coulomb contributi
to the energy. The closed circles refer to the fermion plas
studied in this paper. The closed squares indicate the kin
energy of a system composed of Maxwell-Boltzmann particle

the potential energy of the plasma. However, the PIM
energies are lower than the Coulomb contribution to t
Hartree-Fock energy. The deviation from the correlat
potential energy may be imputed to the fact that the PIM
presented here does not include explicitly correlatio
Incorporation of correlation via a correlated density mat
[24], including some appropriate repulsive long-ran
pseudopotential [5], should keep the electrons farth
apart thus reducing their potential energy. The agreem
between the kinetic energy of the PIMD fermion syste
and that of the correlated electron plasma [5] suggests
the nonlocal form of the effective potential in Eq. (6) ma
also include some correlation between the electrons in
implicit form [12].

The computing time for the calculation of the exchan
potential scales asP2N3

",#. This scaling at present limits
the applicability of the method to systems with a reaso
ably small number of fermions. However, one may e
ploit the natural parallelizability of the exchange effectiv
potential over the number of beads to reduce the cost
linear scaling with respect toP [25]. Access to supercom-
puters can make possible the simulation of larger syste
at lower temperatures. For larger fermion systems, o
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may be able to optimize the calculation by using the sho
spatial extent of exchange [26] and dividing the simula
tion cell into smaller and more tractable subcells. Exten
sion of the restricted-PIMD method to include classica
ionic degrees of freedom is straightforward provided th
electrons interact with the ions via local pseudopotentia
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