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Observation of Proximity Resonances in a Parallel-Plate Waveguide

J. S. Hersch1,* and E. J. Heller1,2,†

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138
2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

(Received 22 June 1998)

Experiments with dielectric scatterers in a parallel-plate waveguide have verified for the first time t
existence of proximity resonances in two dimensions. A numerical solution to the scattering probl
supports the analysis of the experimental data. [S0031-9007(98)07360-8]
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It has recently been shown that two resonants-wave
scatterers placed close together produce two resonan
in the spectrum of the combined system [1]. The firs
which remainss wave in character, is shifted down in
energy and broadened with respect to the original sing
scatterer resonance. The second resonance, which ip
wave in character, is shifted up an equal amount in ener
and can have a very narrow width. In fact, the width o
the p-wave resonance vanishes as the scatterers appro
each other. This second resonance has been dubbed
proximity resonance.

Proximity resonances are important in a number
physical contexts, including scattering of sound from sma
identical bubbles in liquids [2,3], and scattering and emi
sion of light from nearby dipole scatterers [4,5], where
proximity resonance effect has long been known under t
name of Dicke superradiance and subradiance. In Ref. [
the effect was discussed for particle scattering from tw
identical atoms (or other identical scatterers) for the fir
time. Here we discuss yet another context, the classi
scattering of electromagnetic waves from dielectric disk
At the same time (however, see the caveat below), the s
tem we describe mimics quantum scattering from two a
jacent potential wells in two dimensions [6,7].

For the purposes of modeling the experiment, w
developed a method of solving the scattering proble
involving cylindrical basis functions centered on eac
disk. It turned out that the point scatterer model [8,9
which was used in the original discussion of proximit
resonances [1], was not sufficient to accurately mod
the experiment. In order for the point scatterer mod
to be applicable, at least two conditions must be me
r ø l and r ø d, where r is the physical radius of
each scatterer,l is the wavelength, andd is the distance
between the scatterers. In our experiments, the fi
condition was always met, but the second was not.

Other work [10] indicates that there may be a sim
lar effect present in the bound state spectrum of tw
nearby dielectric disks in a parallel-plate waveguid
Szmytkowskiet al. [11] have found theoretically a similar
resonance with fixed scattering length point interactions

The picture to keep in mind when thinking about th
proximity resonance is the following: imagine two nearb
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point sources of unit amplitude, situated much close
together than a wavelength. When these sources are
phase, amplitude will add up nearly in phase everywhe
in space, and the amplitude far from the sources w
be appreciable. The far field intensity clearly will bes
wave in character. When the sources are out of phas
amplitude will interfere destructively everywhere, and
the far field intensity will be much reduced compared
to the in-phase case. Now, for a scattering resonanc
the width of the resonance is proportional to the rate
which amplitude escapes from the neighborhood of th
scattering system. This rate is proportional to the rati
jcfarycnear j

2, where cfar is the far field amplitude and
cnear is the amplitude in the near field. This ratio will
remain finite for the in-phase pair of scatterers, and vani
for the out-of-phase pair, as their separation goes to ze
This narrows the proximity resonance as the scatterers a
brought closer together.

The waveguide, shown in Fig. 1, consisted of two
parallel copper plates, 1 m square, separated by a 1
gap. To minimize the effect of waves reflected off the
edges of the waveguide, the perimeter was lined wit
a 11.5 cm thick layer of microwave absorber (C-RAM
LF-79, Cuming Microwave Corp.), designed to provide
20 dB of attenuation in the reflected wave intensity a
frequencies above 600 MHz. Without the absorber, the
would be substantial reflections of both the incident an

1 cm
Cu plates

source

2

1

4

discs

356
7

8

1 m

absorber

FIG. 1. The scattering arena. Source and receiving antenn
were inserted through holes drilled in the top plate. The fiel
could be measured in any of eight locations located on
semicircle 25 cm from the disks. Note that the figure is no
drawn to scale.
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scattered wave off the edges of the waveguide, whi
would produce strong cavity modes and unnecessa
complicate the analysis. The important effect of th
absorber was to allow the waveguide to behave as if
were infinite in extent in the directions parallel to th
plates, and thus support oscillations at all frequencies.

The scatterers were cylindrical in shape (radius: 2 m
height: 1 cm) and had a measured dielectric consta
of e ­ 77 6 1. Each disk had an individuals-wave
scattering resonance at 2.3 GHz with a 1.1 GHz widt
They were illuminated with microwaves from a poin
source located 25 cm away from the midpoint of the tw
scatterers. The field in the waveguide could be measu
at eight points located on a circle of 25 cm radius center
at the midpoint between the scatterers.

Antennas were inserted perpendicular to the plat
to launch the incident wave and measure the fie
Such antennas couple to an electric field perpendicu
to the plates. For a plate separation of 1 cm a
frequencies below 15 GHz (the experiment operat
between 1–3 GHz),only the transverse electromagneti
TEM mode propagates in the waveguide, and all othe
are evanescent. As an example, we calculate the de
constant,k ­

p
k2

z 2 svycd2, for the mode with one
oscillation transverse to the plates at 3 GHz. Withkz ­
pyL and L ­ 1 cm, we findk . 3 cm21. This means
that this mode has decayed by a factore275 over a
distance of 25 cm, the distance between the source
the scatterers. Thus we may safely ignore all modes
the TEM mode for the purpose of this work.

For the TEM mode, both$E and $H are transverse to
the direction of propagation, just as for a plane wave
free space. In fact, a useful visualization of this mode
the waveguide is just a section of an infinite plane wav
$E0ei $k?$r , with wave vector$k parallel and electric field$E0
normal to the plates. Furthermore, the TEM mode h
no variationof the fields in the direction perpendicular to
the plates and is thus truly two dimensional [12]. In fac
the entire field structureh $Esx, yd, $Hsx, ydj can be derived
from the knowledge ofEzsx, yd alone [13], wherez is
understood to be the direction perpendicular to the plat
Furthermore, for the TEM mode, the boundary condition
on Ez at the dielectric surface are identical to those
a quantum mechanical square well:Ez and its normal
derivative,≠nEz , must be continuous across the interfac
Thus the componentEz in the waveguide plays the role
of c in a two-dimensional quantum mechanical system
Henceforth we will refer toEz asc.

However, there remains one important difference b
tween dielectrics and quantum mechanical square we
In quantum mechanics, the ratio of wave numbers insi
and outside the well is

kin

kout
­

q
sE 2 V dyE ,
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whereV is the well depth andE is the energy. Note that
this ratio depends onE, and diverges at low energy. In
the electromagnetic case, this ratio is a constant and
equal to the index of refraction:

kin

kout
­

p
e .

This means that a system of quantum square wells
be compared only with an equivalent system of dielect
disks at a particular energy. If the energy is changede

must also be changed to retain correspondence.
The measured signal was compared to the source

nal in both amplitude and phase with a HP 8714C n
work analyzer. Because both amplitude and phase co
be measured, it was possible to extract the (complex) sc
tered wave,cs from the full signal,c ­ c0 1 cs, where
c0 is the incident wave. This was done by removing th
scatterers from the waveguide and repeating the meas
ment, yieldingc0. This result was then subtracted from
the full wave to yield the scattered wave signal.

The full solution to the scattering problem of a sing
dielectric disk in a parallel plate waveguide can b
found analytically [14]. The two disk problem, howeve
becomes difficult because of the lack of cylindrica
symmetry. We address this difficulty by using a bas
which reflects the broken symmetry of the problem: tw
sets of Bessel functions, each centered on one of
disks. This method is similar in spirit to that of Goe
[15]. Referring to Fig. 2, we have in regions I, II, and III
respectively,

cI ­
lmaxX

l­2lmax

AlJlskr1deilu1 ,

cII ­
lmaxX

l­2lmax

BlJlskr2deilu2 ,

and

cIII ­ c0 1

lmaxX
l­2lmax

fClH
s1d
l skr1deilu1

1 DlH
s1d
l skr2deilu2g ,

whereJlsxd andH
s1d
l sxd are Bessel functions and Hanke

functions of the first kind,c0 is a TEM incident wave,
k ­

p
e k, and lmax determines the size of the basis se

θ

r
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r
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FIG. 2. A coordinate system for two disk scattering.
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Note that the variablez does not appear in the above
equations, because for the TEM mode there is noz
dependence of the fields. An exact solution would requ
that lmax ! `. However, we find very good solutions for
lmax as small as 5. The complex constantsAl , Bl , Cl , Dl

are to be determined by matchingc and its normal
derivative≠nc along the perimeter of each disk.

The exact solution would require matchinghc , ≠ncj at
all points along the boundary of each disk. In practic
one can only match at a finite number of points. Fro
each matching point, one obtains two equations relati
the constantsAl , Bl , Cl , Dl. The entire collection of
matching equations can be expressed in matrix for
Mx ­ b, where the number of rows and columns o
M is determined by the number of matching points an
basis functions, respectively. The vectorx is built up
of the coefficientsAl , Bl , Cl , Dl , andb is determined by
the incident wavec0. In general, one chooses mor
matching points than basis functions, so that the solutionx
minimizes the lengthr ­ jMx 2 bj. This minimization
is efficiently carried out by finding the singular value
decomposition of the matrixM [16]. The residualr
provides an indication of the accuracy of the solution. F
this work, typical values orr were 10210 per matching
point. This is to be compared with values ofjcj and
j≠ncj of order unity on the perimeters of the disks.

In Fig. 3 we plot the scattered amplitude
jcsj ­ jc 2 c0j measured at position 7 (see Fig. 1
The theoretical result agrees very well, apart from a we
0.3 GHz modulation of the experimental signal due
reflections off the absorbing walls of the waveguid
The numerical data was generated usinglmax ­ 5 and
matching at ten equally spaced locations around ea
disk. The broad feature centered at about 2.0 GHz
the s-wave (in-phase) resonance. A strong proximi
resonance is apparent at about 2.8 GHz. The wid
of this peak is smaller by a factor of 7 than the sing
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FIG. 3. Here we plot the scattered amplitude at position
versus frequency. Comparison between theoretical (solid lin
and experimental data (crosses). Disk separation: 1.0 cm. T
single disk resonance is also shown (dashed line).
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scatterers-wave resonance width. We also checked tha
this peak was indeedp wave in character by measuring
the angular dependence of the scattered wave in t
vicinity of 2.8 GHz. Notably, the peak was absent whe
the measuring antenna was placed on the line equidista
from each disk, which defines a nodal line of the scattere
wave for ap-wave resonance.

In Figs. 4 and 5 we plot the peak position and width
respectively, of the proximity resonance as a function o
disk separation. Again the numerical predictions are i
good agreement with the data. For comparison, we al
include the predictions of the cruder point scatterer mode
using as input parameters a single scatterer resonan
frequency f0 ­ 2.3 GHz and width of G0 ­ 1.1 GHz.
It can be shown that, within this model, the proximity
resonance peak positionf and widthG obey the following
formulas:

f ­ f0 2
G0

2
Y0sk0dd, G ­ G0f1 2 J0sk0ddg ,

whereJ0 is a zeroth order Bessel function,Y0 is a zeroth
order Neumann function,k0 is the on-resonance wave
number of a single scatterer, andd is the distance between
the scatterers. The point scatterer model does a good
of tracking the peak positions, but the resonance width
are not described well by the model.

In summary, we have, for the first time, observed prox
imity resonances in a two-dimensional system. The anal
sis of the experimental data seems to be well supported
a numerical solution to the scattering problem. Immedia
extensions of the ideas presented here include increas
the number of scatterers to look for even narrower res
nances, which would be associated with higher angul
momentum scattered waves (d waves, for example). The
spectrum of a dense (compared to a wavelength), order
array of s-wave resonant scatterers is also an interestin
system as it relates to band structure formation.
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FIG. 4. Here we plot the position of the proximity resonanc
peak versus disk separation. The theoretical curve (sol
line) tracks the experimental values well (crosses). The poi
scatterer model prediction is also shown (dashed line).
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FIG. 5. Here we plot the width of the proximity resonanc
versus disk separation. As above, the theoretical curve (so
line) models the experimental data (crosses) well. The po
scatterer model prediction is also shown (dashed line).
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