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Gas-Kinetic-Based Traffic Model Explaining Observed Hysteretic Phase Transition
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Recently, hysteretic transitions to “synchronized traffic” with high values of both density and traffic
flow were observed on German freeways [B. S. Kerner and H. Rehborn, Phys. Rev. Lett.79, 4030
(1997)]. We propose a macroscopic traffic model based on a gas-kinetic approach that can expla
this phase transition. The results suggest a general mechanism for the formation of probably the mo
common form of congested traffic. [S0031-9007(98)07202-0]

PACS numbers: 89.40.+k, 05.60.+w, 05.70.Fh, 47.55.– t
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To physicists, nonequilibrium phase transitions are ve
fascinating phenomena. Prominent examples are patte
forming transitions in hydrodynamic systems driven fa
from equilibrium, like thermal convection of a fluid heate
from below or transitions to a state of spatiotemporal cha
[1]. Recently, physicists have become interested in t
spatiotemporal, collective patterns of motion formed
social or biological systems of so-called “motorized” o
“self-driven” particles [2]. A particularly strong physica
activity has developed in the rapidly growing field of traffi
dynamics [3–16], not only because of the large potent
for industrial applications.

On a macroscopic scale, many aspects of traffic flo
are similar to those of aggregated physical system
In particular, if one abstracts from the motion of th
single vehicles, traffic can be modeled as a continuu
compressible fluid [4,5] (see Ref. [6] for an overview
Existing macroscopic traffic models have been able
explain various empirically observed properties of traffi
dynamics, including the transition of slightly disturbe
traffic to traffic jams (“local cluster effect”) [7].

Recently, Kerner and Rehborn presented experimen
data indicating a first-order transition to “synchronized
traffic (ST) [8]. Traffic data from several freeways in
Germany [8,9] and the Netherlands [6,10] indicate th
ST is the most common form of congested traffic. S
typically occurs at on-ramps when vehicles are added
already busy “freeways” and has the following propertie
(i) The dynamics of the average velocities on all lanes
highly correlated (synchronized). (ii) ST is characterize
by a low average velocity, but, in contrast to traffi
jams, the associated traffic flow is rather high. (iii) Th
transition to ST is usually caused by a localized and sh
perturbation of traffic flow that starts downstream of th
on-ramp and propagates upstream with a velocity of abo
210 kmyh. (iv) As soon as the perturbation passes th
on-ramp, it triggers ST which spreads upstream in t
course of time. (v) Downstream, ST eventually relaxe
to free traffic. (vi) ST often persists over several hour
(vii) The transition from ST to free traffic occurs at a
lower density and higher average velocity than the inver
transition (hysteresis effect).
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Property (i) is related to lane changing and requires
multilane model for its description, e.g., [11]. In order to
explain the other characteristic properties of ST, we wi
propose a macroscopic, effective one-lane model that w
derived from a gas-kinetic level of description and treats a
lanes in an overall manner. The model is also in agreeme
with other empirical findings [9,12] like the existence
of metastable states, the typical propagation velocity
upstream jam fronts (between210 and220 kmyh), and
the characteristic outflowQout from traffic jams of 1600 up
to 2100 vehicles per hour and lane (depending on the ro
and weather conditions, but not on the initial conditions o
the surrounding traffic density) [13].

Our model is based on a kinetic equation for the phas
space densitỹrsx, y, td, which corresponds to the spatia
vehicle densityrsx, td times the distributionPsy; x, td of
vehicle velocitiesy at positionx and timet [5]. (For an in-
troduction to gas-kinetic traffic models see Ref. [14].) Th
kinetic equation has some similarities to the gas-kinet
Boltzmann equation for one-dimensional dense gases w
the vehicles playing the role of molecules. However, the
are also some features specific to traffic. Drivers want
accelerate to their respective desired velocities giving ri
to a relaxation term that violates conservation of mome
tum and kinetic energy. Moreover, when approaching
slower car that cannot be immediately overtaken, one h
to decelerate while the car in front remains unaffecte
This leads to an anisotropic interaction. Finally, the re
action of the drivers depends on the traffic situation ahe
of them, making the interaction nonlocal.

The model equations for the lane-averaged vehicle de
sity rsx, td ­

R
dy r̃sx, y, td and the average velocity

V sx, td ­ r21
R

dy yr̃sx, y, td are

≠r

≠t
1

≠srV d
≠x

­
Qrmp

nL
, (1)µ

≠

≠t
1 V

≠

≠x

∂
V ­ 2

1
r

≠srud
≠x

1
V0 2 V

t

2
V0Asrd sraTV d2

tAsrmaxd s1 2 rayrmaxd2 BsdV d ,

(2)
© 1998 The American Physical Society



VOLUME 81, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 5 OCTOBER1998

.,

e,

ro-
,

ts
t

at
ve-
l,

n
e

-
or

of

le;
r-

h-

p
w
um

-
,
o
-

nd

ing
where we use the notationfasx, td ; fsxa, td with f [
hr, V , uj and an advanced “interaction point”xa specified
later. Without on- or off-ramps, the density equation (1
is just a one-dimensional continuity equation reflectin
the conservation of the number of vehicles. Thus, t
temporal change≠ry≠t of the vehicles density is just given
by the negative gradient2≠Qy≠x of the lane-averaged
traffic flow Q ­ rV . Along on-ramps (or off-ramps), the
source termQrmpysnLd is given by the actually observed
inflow Qrmp . 0 from (or outflowQrmp , 0 to) the ramp,
divided by the merging lengthL and by the numbern of
lanes. The inflow has an upper limit that depends on t
downstream flow on the main road [15].

The velocity equation (2) contains the velocity varianc
usx, td ­ r21

R
dyfy 2 V sx, tdg2r̃sx, y, td. Instead of

deriving a dynamic equation foru from the kinetic
equations, we use the constitutive relationu ­ AsrdV 2

with [13]

Asrd ­ A0 1 DA tanh

√
r 2 rc

Dr

!
, (3)

where A0 ­ 0.008, DA ­ 0.015, rc ­ 0.28rmax, and
Dr ­ 0.1rmax. These coefficients can be obtained from
single-vehicle data. Unfortunately, no such data we
available for the motorway considered in [8], but simila
values were obtained for another motorway [16].

The first term on the right-hand side (rhs) of Eq. (2
is the gradient of the “traffic pressure”ru. It describes
the kinematic dispersion of the macroscopic velocity
inhomogeneous traffic as a consequence of the fin
velocity variance. For example, the macroscopic veloc
in front of a small vehicle cluster will increaseeven if
no individual vehicle accelerates,because the faster cars
will leave the cluster behind. The second term denot
the acceleration towards the (traffic-independent) avera
desired velocityV0 of the drivers with a relaxation time
t [ f10 s, 50 sg. Individual variations of the desired
velocity are accounted for by a finite velocity variance
The third term of the rhs of Eq. (2) models braking i
response to the traffic situation at the advanced interact
point xa ­ x 1 gs1yrmax 1 TV d. In dense traffic, where
most drivers maintain the safety distanceTV , this point is
about g vehicle positions in front of the actual vehicle
position x. The average safe time headwayT is of the
order of one second. For the “anticipation factor”g,
we assume values between one and two. The brak
deceleration increases coulomblike with decreasing g
s1yra 2 1yrmaxd to the car in front (1yra being the
average distance between successive vehicle positio
1yrmax the average vehicle length, andrmax the maximum
density). In homogeneous dense traffic, the accelerat
and braking terms compensate for each other at ab
the safe distance. In general, the deceleration tende
depends also on the velocity difference to the traffic at t
interaction point. A gas-kinetic derivation leads to th
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“Boltzmann factor” [13]

BsdV d ­ 2

"
dV

e2d
2
V y2

p
2p

1 s1 1 d2
V d

Z dV

2`

dy
e2y2y2
p

2p

#
,

(4)

where dV ­ sV 2 Vady
p

u 1 ua is the dimensionless
velocity difference between the actual locationx and the
interaction pointxa. In homogeneous traffic, we have
Bs0d ­ 1. If the preceding cars are much slower (i.e
dV ¿ 0), it follows that BsdV d ­ 2d

2
V . In the opposite

case (i.e.,dV ø 0), we haveBsdV d ø 0. That is, since
the distance is increasing, then the vehicle will not brak
even if its headway is smaller than the safe distance.

In contrast to previous approaches, the above mac
scopic traffic model explicitly contains an anisotropic
nonlocal interaction termBsdV d. This is not only essential
for a realistic treatment of situations with large gradien
of rsx, td or V sx, td, but also for an efficient and robus
numerical integration. Moreover, the prefactor ofB has
now been obtained from the plausible assumption that,
high densities, the time headway between successive
hicles isT . Finally, all model parameters are meaningfu
measurable, and have the correct order of magnitude.

Our simulations have been carried out with a
explicit finite-difference integration scheme and th
following parameter values:V0 ­ 128 kmyh, rmax ­
160 vehiclesykm, T ­ 1.6 s, t ­ 31 s, and g ­ 1.0.
The response of equilibrium traffic to localized distur
bances is similar to the Kerner-Konhäuser model [7]. F
densitiesr , rc1 and r . rc4, homogeneous traffic is
stable, and for a rangerc2 , r , rc3 of intermediate
densities, it is linearly unstable, giving rise to cascades
traffic jams (“stop-and-go traffic”). For the two density
regimesrc1 # r # rc2 andrc3 # r # rc4 between the
stable and the linearly unstable regions, it is metastab
i.e., it behaves nonlinearly unstable with respect to pe
turbations exceeding a certain critical amplitude, but ot
erwise stable. For the self-organized densityrjam inside
traffic jams we find a typical valuerjam . rc4 [13].

Now, we will discuss synchronized flow. Figure 1
shows the simulation of freeway traffic near an on-ram
during a “rush hour,” where we assumed that the flo
downstream of the on-ramp almost reaches the maxim
equilibrium flow (“capacity limit”) Qmax. The upstream
boundary condition at positionx0 ­ 26 km was speci-
fied in accordance with the equilibrium flow-density rela
tion for free traffic (dotted lines in Fig. 3, shown below
before the maximum of the curve) with flows according t
Fig. 1(c). We started with a high main flow that is mono
tonically decreasing in the course of time. Atx ­ 0 km,
an on-ramp with merging lengthL ­ 300 m injects an
additional time-dependent inflowQrmp into the freeway.
This on-ramp flow was assumed to have a short a
tiny peak att ­ 10 min [Fig. 1(c)]. As a result, a wave
of denser traffic propagated downstream, thereby gain
3043
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FIG. 1. Spatiotemporal evolution of the lane-averaged dens
after a small peak of inflow from the on-ramp. The on
ramp merges with the main road atx ­ 0 km with a merging
length of 300 m. Traffic flows from left to right. In (a), the
parabolically shaped region of high density corresponds to S
Plot (b) shows the formation of this state in more detail. Th
time-dependent inflowsQmain at the upstream boundary and
Qrmpyn at the on-ramp are displayed in (c).

a larger amplitude, and eventually propagated upstre
again with about211 kmyh. Once the perturbation
reached the ramp, dense traffic (of about 48 vehiclesykm)
with relatively high flows (1600 vehiclesyh) correspond-
ing to V ­ 33 kmyh built up in the upstream direction.
Although the flow from the main road was gradually de
creased fort . 30 min, it took more than 100 additional
minutes, until the region of congested traffic vanished.

All these features agree with the experimental observ
tions of ST described in Ref. [8]. There, a peak on th
on-ramp flow was observed at about 7:15 a.m. The tra
sition to ST was first detected at 7:16 a.m. as a short d
of the velocity 700 m downstream from the on-ramp (de
tector D3 in [8]). At about 7:22 a.m., the front reached
detector (D2) 200 m upstream of the ramp (correspondi
to a mean propagation speed of211 kmyh), and propa-
gated slower to the next detector D1 (700 m upstream
While the perturbation at detector D3 lasted only a fe
minutes, it was followed by nearly two hours of congeste
traffic (V ø 30 kmyh, Q ø 1500 vehiclesyh) at the de-
tectors D2 and D1.

It turned out that, apart from fluctuations, the simulate
velocities and flows obtained at the detector positionsx ­
20.7 km (D1), x ­ 20.2 km (D2), x ­ 0.7 km (D3),
and x ­ 1.5 km (D4) (cf. Fig. 2) are in almost quanti-
tative agreement with all features of ST as displayed
Figs. 2(c), 2(b), 2(a), and 2(d) of Ref. [8]. In particular
the model reproduces the drop of the velocity to abo
30 kmyh for almost two hours, while the flow is reduced
3044
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FIG. 2. Temporal evolution of (a) the average velocity an
(b) the traffic flow per lane at four cross sections of th
freeway near the on-ramp. In front of the on-rampsx , 0d,
ST exists for a certain time interval. Downstreamsx . 0d, the
traffic situation recovers towards a freely flowing state. Th
simulated overshooting at the beginning of the breakdown
average velocity is in agreement with empirical observatio
[cf. Fig. 1(b) in Ref. [8] ].

by only 20%. Moreover, after the transition to free flow
the velocity is higher and the flow is lower than imme
diately before the transition to synchronized flow, both
the measurements and the simulation. Finally, in Fig.
we depict the relaxation to free traffic downstream of th
ramp by flow-density diagrams [see also Fig. 1(b)]. Th
results agree well with the empirical traffic data present
in Fig. 3(c) of Ref. [8].

Our results suggest the following interpretation o
the phase transition to ST. Initially, the homogeneo
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FIG. 3. Traffic dynamics in the flow-density plane (a) 0.2 km
upstream of the on-ramp and (b), (c) at two downstream cro
sections. The solid lines with the symbolsshd correspond to
the simulation results of Fig. 1. All the trajectories start a
r ­ 17 vehiclesykm and Q ­ 1770 vehiclesyh. The dashed
line represents the equilibrium relationQesrd of the model.
The vertical dotted lines indicate the stability limitsrc1, rc2,
rc3, andrc4 (determined numerically).
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flow Qmain upstream of an on-ramp is stable, while
the higher downstream flowQdown ­ Qmain 1 Qrmpyn
is metastablesn ­ number of lanesd. A perturbation of
the ramp flowQrmp triggers a stop-and-go wave, which
travels downstream as long as it is small and upstream
it becomes larger, as is known from “localized clusters
[7]. Now, assume the downstream front of the cluste
would pass the on-ramp. Then, sinceQmain [Fig. 1(c)]
is lower than the characteristic outflowQout from a jam
(being of the order of 2000 vehiclesykm), the cluster
would eventually vanish. However, during its lifetime
the cluster would continue to emit the flowQout, leading
downstream of the ramp to a flowQout 1 Qrmpyn .

Qmax. As a consequence, as soon as the perturbat
reaches the on-ramp, it induces congested traffic with
standingdownstream front just at the end of the ramp
With an observed outflow̃Qout & Qout from ST [17], the
average flow upstream is given by

Qsync ­ Q̃out 2 Qrmpyn . (5)
Now, consider the densityrsync defined by Qsync ­
Qesrsyncd in the congested part of the equilibrium flow-
density relationQesrd (dotted lines in Fig. 3, behind
the maximum of the curves). If homogeneous traffic
(meta-)stable atrsync, the on-ramp induces ST, otherwise
it induces dynamically changing states. The restrictio
Qrmp # Q̃outy2 [15] (corresponding to every second ve
hicle on the right freeway lane stemming from the on
ramp) impliesQsync $ s1 2

1
2n dQ̃out and rsync , rjam,

so that synchronized flow is significantly higher than th
flow inside traffic jams.

We have proposed a macroscopic traffic model bas
on a gas-kinetic level of description that allows one t
describe the empirically observed features of traffic flow
This Letter focused on the simulation and interpretatio
of ST, which is probably the most common form o
congested traffic. We have triggered ST by a small pe
in the inflow from an on-ramp, when the downstream
flow was close to freeway capacity. Synchronized traffi
eventually resolved in downstream direction, but spre
in upstream direction. It persisted for more than on
hour, although the main flow was steadily reduce
We also performed simulations without peaks, leavin
everything else unchanged. In these cases, we obtai
free traffic flow. This confirms that the proposed mode
can describe the hysteretic and bistable properties of r
traffic. Our interpretation of ST underlines the crucia
role of the characteristic outflowQout from congested
traffic for traffic dynamics. The simple criterionQout 1

Qrmpyn . Qmax for the formation of ST can be useful for
as
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determining bottlenecks of the existing road infrastructu
as well as for planning efficient freeway networks.
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