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The resonant interaction between practically stable, smooth cavity diocotron modes and em
magnetron cavity slow waves generates the unstable “loaded” magnetron cavity modes. In
low-space-charge, guiding center fluid picture, the most unstable frequency nearly satisfies
Buneman-Hartree resonance with the cathode flow surface, and the growth is symmetric ar
resonance. A negative density gradient,dnydr , 0, is necessary for instability. Because the unstab
frequencies scale as the diocotron frequency,v ~ vD , the relative growth rate, scaling asvDyv, is
independent of, and does not go to zero with,v2

e yV2 ­ vDyV ­ 0, as it does for diocotron modes.
[S0031-9007(98)07160-9]

PACS numbers: 84.40.Fe, 52.20.Dq, 52.40.Hf, 52.80.Pi
n-
y-

o

it

t

f
ly

s-
l

al-

v-
-

The onset of unstable oscillations in periodically stru
tured magnetron cavities has yet to be analytically d
scribed, though magnetrons [1] are the earliest sour
of microwave devices. Thus far analysis has focused
the stability of non-neutralE 3 B drifting flows inside
smoothwall cavities [2–4]. Short wavelength, slow phas
velocity space charge perturbations (diocotron mode
have been shown to be practically stable [2] when the flo
touches the cathode (cathode layer). In addition the
modes can exist only at frequencies above the cyclotr
frequency [3], while spontaneous onset of magnetron o
cillations is observed [5] well below cyclotron frequency
It is shown in this Letter that in magnetron cavities, whic
support slow waves in vacuum, a new instability resu
from the interaction of the cathode layer with the cavit
slow wave; the unstable frequencies are centered aro
the intersection between the smooth cavity diocotro
and the magnetron cavity slow wave dispersion relation
Recent treatment [6] of a similar situation employed
single harmonic “planarized anode” approximation, lea
ing to a different dispersion relation which did not expos
the physics of the diocotron-slow wave coupling and th
analytic parameter dependence of the instability.

While smooth cavities support monochromatic slo
wavesvyck ø 1 only in the presence of a cathode charg
layer, magnetron cavities support slow waves in va
uum. Owing to the vane periodicity, a single frequenc
magnetron mode involves many azimuthal “free spac
spatial harmonics of the vane period. It is shown tha
when a cathode layer is introduced, a single frequen
“loaded” magnetron eigenmode involves a superpositi
of diocotron-type modes at spatial harmonics of the va
period. The interaction of one, resonant, diocotron ha
monic with the vacuum cavity phase velocity generat
the instability responsible for the onset of magnetron o
cillations. Since the excited frequencies are near the d
cotron frequencyvD, the relative growth rate, scaling as
vDyv , 1, is nontrivial in the low space charge limit
vDyV ­ v2

eyV2 ø 1, wherev2
e ­ 4pe2n0yme, V ­
0031-9007y98y81(14)y3026(4)$15.00
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eB0ymec are the plasma and cyclotron frequencies. U
stable magnetron frequencies extend well below the c
clotronV, as observed in experiments.

A schematic illustration of the cavity geometry is
shown in Fig. 1. A dc voltageV0 applied across the
radiusr, combined with a uniform applied magnetic field
B0 in the axial directionz, induces an azimuthalE 3 B
drift flow around the cathode. For a cold fluid (zer
Larmor radius) of constant densityn0, the equilibrium
flow profile u0 ­ u0û for a # r # h is

u0srd ­
eE0srd

mV
­

v2
e

V2

µ
r 2

a2

r

∂
, (1)

where E0srd is the radial field. The space charge lim
E0sad ­ 0, no slip u0sad ­ 0 condition, is imposed at
the cathode. For magnetic insulation,h , b, V0 must
not exceed the Hull voltage2eVH ; s1y8dmV2sb 2

a2ybd2. We will focus on the low space charge limi
v2

eyV2 ø 1, the densityn0 being much smaller than the
Brillouin densitynB such thatv2

e snBd ­ V2.
The relevant frequencies are the wave frequencyv,

the cyclotron frequencyV, the plasma frequencyve,
and the diocotron frequencyvD ; v2

eyV characterizing
the shear in the drift velocitydu0ydr. Since by defini-
tion vD , ve , V (ve being the geometrical mean o
V and vD), separation of time scales occurs natural
in low space charge situationsveyV ø 1 when deal-
ing with low frequency modesv ~ vD # ve. The ratio
vDyv, on the other hand, remains finite with decrea
ing density by exciting lower cavity frequencies; it wil
be shown thatvDyv , 1yn, n being the azimuthal mode
number. Thus, the slow wave, low space charge sc
ing is adopted, neglecting termsv2

eyV2 , v2yc2k2 ,
e2 while retaining vyck , e and vDyv , e0. That
amounts to averaging out the fast cyclotron scale, lea
ing the drift equations of the guiding center (GC) mo
tion. Accordingly, and for step function density profile
dv2

eydr ­ 2v2
edsr 2 hd, the full cold fluid description
© 1998 The American Physical Society



VOLUME 81, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 5 OCTOBER1998

th-
nd

ity,

,
w

to

to
tips,

y
.

FIG. 1. Geometry illustration of cathode layer flow inside
(a) a smooth cylindrical cavity, and (b) a magnetron cavity wit
periodic anode vanes.

[4] is reduced to the diocotron eigenmode equation [2]

1
r

≠

≠r

µ
r

≠

≠r

∂
cn 2

n2

r2 cn

­ 2
n
r

vD

v 2 snyrdu0shd
dsr 2 hdcn , (2)

with Cnsr, ud ­ cnsrdeinu and Eun ­ s21yrd≠Cny
≠u ­ 2sinyrdcneinu . The dielectric response of the
cathode layer is reduced to thed-function term in the
right-hand side, corresponding to the excitation of
surface perturbation at the hub topr ­ h.
h

a

Equation (2) has been previously solved for (i) a ca
ode layer in a smooth anode cavity (no vanes) [2] a
(ii) an empty structured anode (magnetron) cavity,vD ­
0 [1]. For a cathode layer inside a smooth anode cav
the solutions are monochromatic diocotron modes

Cnsr , ud ­ AanC 2
n sr , adeinu, a # r # h , (3)

Cnsr , ud ­ Aan

∑
C 2

n sr , ad

1
vD

2v̂
C 2

n sh, adC 2
n sr , hd

∏
einu

h , r # b , (4)

with the definitionsC 6
n sx, yd ­ sxyydn 6 syyxdn and

v̂ ; v 2
1
2

vD

µ
1 2

a2

h2

∂
. (5)

The smooth anode boundary conditioncnsbd ­ 0 yields
the diocotron dispersion relation in cylindrical geometry

Zdsv, nd ; C 2
n sb, ad

1
vD

2v̂
fC 1

n sb, ad 2 C 1
n sab, h2dg ­ 0 , (6)

from which follow stable modesFv ­ 0 of real
frequency

vdsnd ­
1
2

vD

Ω
n

µ
1 2

a2

h2

∂
2

f1 2 sayhd2ng f1 2 shybd2ng
1 2 saybd2n

æ
.

(7)

For large azimuthal wave numbern ¿ 1, vd ­
vDns1 2 a2yh2dy2. In the above GC approximation
s ; v2

eyV2 ­ 0, diocotron modes are stable for a flo
touching the cathode (cathode layer); for finites they
are weakly unstable [3] and their growth tends rapidly
zero, ase22ys.

The empty-magnetron cavity modes are subject
piecewise constant boundary conditions at the vane
Eu ~ Fei2pjyN for 2pj 2 xy2 , u , 2pj 1 xy2, and
Eu ­ 0 otherwise, wherex is the angle subtended b
a slot, j ­ 0, 1, . . . , N 2 1 and N the number of vanes
The cavity modes are Bloch-type modulated waves,
r

Cnsr , ud ­
X̀

j­2`

Anj a
nj C 2

n sr , adeinju , a # r # b , (8)

Cnsr , ud ­ F
Nx

2p

X̀
j­2`

r
nj

sinsnjxy2d
njxy2

sin

∑
v

c
sb 1 p 2 rd

∏
einju , b # r # b 1 p . (9)

A single frequency modev involves superposition of many azimuthal wave number harmonicsnj ­ n 1 jN ,
j ­ 0, 1, 2, . . . . The vacuum magnetron cavity dispersion, given by

ZV sv, nd ;
cotfsvycdpg

svycdp
2

Nx

2p

X̀
j­2`

sinsnjxy2d
njxy2

1
snjybd

C 1
nj

sb, ad

C 2
nj

sb, ad
­ 0 , (10)

exhibits infinite branches (frequency bands)v ­ vqsnd, q ­ 1, 2, . . . . Each band is periodic in azimuthal wave numbe
3027
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n, vqsnd ­ vqsn 1 jNd, hence the fundamental0 ,

n , N in the first Brillouin zone is used for mode
labeling. The easiest excited lowest branch corresponds
slow waves propagating at phase velocityvysnyrd much
smaller thanc.

The cathode layer dispersion inside a periodically stru
tured anode is now introduced, with the details describ
elsewhere [7]. The magnetron mode structure below t
vane tipsa # r # b is a superposition of diocotron-type
solutions (3) and (4) over the vane harmonicsnj ­ n 1

jN , replacing the free space harmonics in (8). The field
inside the vane gaps retain their vacuum cavity structu
of (9). Eliminating coefficients [7], by matchingEu and
3028
to
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Bz at the vane tipsr ­ b, where≠Bzy≠r ­ sivycdEu ,
yields the following dispersion relation for a cathode lay
in a magnetron cavity:

Z sv, nd ; ZV sv, nd 2
X̀

j­2`

vD

2v

Jnj

Zdsv, njd
­ 0 .

(11)

In (11), the dispersion of a vacuum magnetron mode
coupled to the dispersions of diocotron modes over al
the vane spatial harmonicsnj ­ n 1 jN . The coupling
strength is proportional to the diocotron frequency ra
vDyv, while Jnj ; jnj C

1
nj

sb, ad and
jnj ­ 2
sinsnjxy2d

snjxy2d
Nxy2p

snjybdp

(
C 2

nj
sb, ad

C 1
nj

sb, ad
2

C 1
nj

sb, ad fC 1
nj

sb, ad 2 C 1
nj

sab, h2dg

fC 2
nj

sb, adg2

)
(12)
e

lar

n
n

ns
are purely geometrical factors. It is the interactio
between smooth diocotron and structured anode mod
that creates unstable magnetron modes.

Although (11) is valid for arbitraryvDyv, the stability
properties are easier to analyze in the smallvDyv ,
e limit. Then, of all the Jnj terms, only resonant
diocotron harmonic(s)Zdsv, nld . 0 make an important
contribution. Singling out one resonant term, forj ­ l,
and rearranging (11), leads to∑

ZV sv, nd 2
vD

2v
Z

∏
fv 2 vdsnldg 2

vD

2
jnl ­ 0 ,

(13)

where Z contains all of the nonresonant term
Z ­

P
jfil Jnj yZdsv, njd. If jnl is formally set to

zero (but vD remains finite), the solutions decouple
into independently propagating magnetron cavity mod
v ­ vV snd, solutions of ZV sv, nd ­ 0, and smooth
anode diocotron modesv ­ vdsnld, solutions of
Zdsv, nld ­ 0, depicted in Fig. 2. For finitevDjnl an
instability arises around the intersection of the emp
cavity and the diocotron mode branchesvdsnld . vV snd.
For small vDyv . e the dispersionZV sv, nd can be
expanded aboutvd, ZV ­ Z0 1 Z

0
0sv 2 vdd, where

Z0 ; ZV svdd and Z
0
0 obtained from (10). Substituting

in (13) and solving the resulting quadratic equation yield
the loaded cavity magnetron mode dispersion

v ­ vdsnld

1
2sZ0 2 Zd 6

q
sZ0 2 Zd2 1 2vDjlZ

0
0

2Z
0
0

, (14)

valid for small vDyv [the numerical solution of (13)
must be used forvDyv # 1]. Complex roots (instability)
occur in the frequency range where

0 , sZ0 2 Zd2 , 22vDjnl Z
0
0 . (15)

Figure 3 plots the growth rate near thep mode n ­
8 in a 16 vane cavity withx ­ py16 for vDyvp ­
0.60 and the following cavity parameters (normalize
n
es

s

es

ty

s

d

to vyc): a ­ 0.0908, b ­ 0.182, h ­ 0.134, andp ­
1.24. Given thatZ0

0 in Eq. (15) is generally negative, the
right-hand side inequality is satisfied forjl . 0, obtained
for a negativedensity stepdn0ydr , 0.

Although a given cavity frequencyvsnd may resonate
with a diocotron mode through any one of the van
harmonicsnl ­ n 1 lN , maximum magnetron growth
occurs at the fundamental resonancesl ­ 0d, vsnd ­
vdsnd, as Jnl diminishes rapidly with l. The most
unstable frequency is such that the empty cavity angu
phase velocitys1yrdvysnyrd ­ vyn nearly matches the
angular flow velocity at the hub toph; from Eq. (7)

v

n
.

1
2

vD

∑µ
1 2

a2

h2

∂
2

1
n

∏
, (16)

FIG. 2. Intersections of anN ­ 16 vane magnetron cavity
vacuum dispersion (light solid line), with smooth diocotro
mode dispersion curves (broken lines) of various diocotro
frequenciesvD and drift velocitiesu0shd. Diamonds mark
magnetron cavity modes of integern, and frequency is nor-
malized to the empty cavityp-mode frequency,vV sNy2d ­ 1.
Strong magnetron-diocotron coupling occurs at the intersectio
vV snd ­ vdsnjd.
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FIG. 3. Magnetron instability for magnetron-diocotron reso
nance at thep moden ­ 8 (marked by circle in Fig. 2). The
real frequencies of the two “loaded cavity” branches (sol
lines) are shown against the (uncoupled) magnetron and d
cotron branches (light solid) of Fig. 2. Heavy dashed line
mark the loaded cavity imaginary frequencies (growth rate
The modesn ­ 7 andn ­ 9 are also unstable.

valid at largen. Thus, the exact frequency falls below th
Buneman-Hartree (BH) resonance at the hub topvBH ­
s1y2dvDs1 2 a2yh2d, and corresponds to a resonanc
below the surface; it asymptotes to the surface atn ¿ 1.
The maximum growth rate

g0 . vD

s
sj0y2d s1 2 a2yh2d sin2fsvdycdpg

1 1 cotfsvdycdpgysvdycdp
(17)

is roughly proportional to, but not quite linear in, the dio
cotron frequencyvD ­ v2

eyV, as the quantity inside the
root has a weak dependence onvD. There is a finite
width of unstable frequencies around the BH resonan
given implicitly by (15). The growth rates are nearl
symmetricaround the resonant frequencyvd , confirm-
ing earlier results in the small signal (i.e., nonexponent
growth) crossed-field amplifier gain analysis [8]. Gai
symmetry distinguishes crossed field from the rest of t
microwave devices, which exhibitantisymmetricgrowth
rates with zero at exact resonance. Combining (16) a
(17) shows that the relative maximum growthg0yvsnd
increases with decreasing mode numbern. Earlier treat-
ment [6] did not reach the above conclusions, nor t
diocotron-slow wave coupling dispersion (11).

The maximum growth rate from (17) at thep mode
n ­ Ny2 is plotted in Fig. 4 versus the charge densit
parametrized byvD ; the surface radiush is adjusted
from (16) so that the resonant frequency corresponds
p-mode resonance. Various curves correspond to d
ferent number of cavity vanesN, by adjusting the slot
anglex ­ 2pyN (Fig. 1), for the same dimensions. The
growth rate increases nearly proportional tovD. For large
vDyv , 1 the analytic growth in Fig. 4 exceeds the exa
value, from the numerical solution of (13), by 20%.
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FIG. 4. Maximum p-mode growth raten ­ Ny2 vs dio-
cotron frequencyvD , in cavities with different vane numbers
N. Thep-mode frequency is always normalized to 1.

In conclusion, the loaded cavity, low-space-charge ma
netron dispersion involves the coupling among the disp
sions of practically stable smooth anode diocotron mod
and empty-magnetron cavity modes. Strongly unsta
magnetron modes arise at the intersections among
above dispersion branches. In the GC approximati
the growth rate scales asgyv , vDyv , s1ynd s1 2

a2yh2d21 and is independent ofv2
eyV2 ­ 0. A negative

density gradient is required for instability, contrasting a
opposite conclusion for smooth cavities [4].

Although the low space charge results are not direc
applicable to magnetrons operating at high space cha
extrapolations tov2

eyV2 . 1 yield the correct order
of magnitude for the instability growth times. The
growth rate dependence on various parameters ag
qualitatively with detailed experimental observations
spontaneous growth [5]; strong,~vD growth rate peaks
near the BH resonance, the growth rate increases w
decreasing mode numbern, the growth rate increases with
charge density (which, in the Brillouin limit scales as th
magnetic fieldve . V), and instability (startup) occurs
well below the cyclotron frequency.

The author is indebted to B. Vyse for his motivation.
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