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Magnetron Instability in the Low-Space-Charge Limit
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The resonant interaction between practically stable, smooth cavity diocotron modes and empty-
magnetron cavity slow waves generates the unstable “loaded” magnetron cavity modes. In the
low-space-charge, guiding center fluid picture, the most unstable frequency nearly satisfies the
Buneman-Hartree resonance with the cathode flow surface, and the growth is symmetric around
resonance. A negative density gradient/dr < 0, is necessary for instability. Because the unstable
frequencies scale as the diocotron frequeneyx wp, the relative growth rate, scaling asp/w, is
independent of, and does not go to zero wiil}/Q? = wp/Q = 0, as it does for diocotron modes.
[S0031-9007(98)07160-9]

PACS numbers: 84.40.Fe, 52.20.Dq, 52.40.Hf, 52.80.Pi

The onset of unstable oscillations in periodically struc-eBy/m.c are the plasma and cyclotron frequencies. Un-
tured magnetron cavities has yet to be analytically destable magnetron frequencies extend well below the cy-
scribed, though magnetrons [1] are the earliest sourcedotron(}, as observed in experiments.
of microwave devices. Thus far analysis has focused on A schematic illustration of the cavity geometry is
the stability of non-neutrakE X B drifting flows inside shown in Fig. 1. A dc voltage/, applied across the
smoothwall cavities [2—4]. Short wavelength, slow phaseradiusr, combined with a uniform applied magnetic field
velocity space charge perturbations (diocotron modesB, in the axial directiornz, induces an azimuthdl X B
have been shown to be practically stable [2] when the flowdrift flow around the cathode. For a cold fluid (zero
touches the cathode (cathode layer). In addition theskarmor radius) of constant density,, the equilibrium
modes can exist only at frequencies above the cyclotrofiow profileuy = ugf fora < r < his
frequency [3], while spontaneous onset of magnetron os-
cillations is observed [5] well below cyclotron frequency. eEy(r) w? a®
It is shown in this Letter that in magnetron cavities, which to(r) = mQ Q2 (’ B T)’
support slow waves in vacuum, a new instability results
from the interaction of the cathode layer with the cavitywhere Ey(r) is the radial field. The space charge limit
slow wave; the unstable frequencies are centered arourth(a) = 0, no slip ug(a) = 0 condition, is imposed at
the intersection between the smooth cavity diocotronthe cathode. For magnetic insulatioh,< b, V, must
and the magnetron cavity slow wave dispersion relationsnot exceed the Hull voltage-eVy = (1/8)mQ2(b —
Recent treatment [6] of a similar situation employed az?/b)?>. We will focus on the low space charge limit
single harmonic “planarized anode” approximation, lead-w?/Q? < 1, the densitys, being much smaller than the
ing to a different dispersion relation which did not exposeBrillouin densitynp such thatw?2(ng) = Q2.
the physics of the diocotron-slow wave coupling and the The relevant frequencies are the wave frequeacy
analytic parameter dependence of the instability. the cyclotron frequency), the plasma frequencw,,

While smooth cavities support monochromatic slowand the diocotron frequenay, = 0?2/ characterizing
wavesw /ck < 1 only in the presence of a cathode chargethe shear in the drift velocityluy/dr. Since by defini-
layer, magnetron cavities support slow waves in vaction wp < w, < Q (w, being the geometrical mean of
uum. Owing to the vane periodicity, a single frequency() and wp), separation of time scales occurs naturally
magnetron mode involves many azimuthal “free spacein low space charge situations,/(} < 1 when deal-
spatial harmonics of the vane period. It is shown thatjng with low frequency mode® « wp = w,.. The ratio
when a cathode layer is introduced, a single frequencwp/w, on the other hand, remains finite with decreas-
“loaded” magnetron eigenmode involves a superpositioing density by exciting lower cavity frequencies; it will
of diocotron-type modes at spatial harmonics of the vanée shown thatwp/w ~ 1/n, n being the azimuthal mode
period. The interaction of one, resonant, diocotron harnumber. Thus, the slow wave, low space charge scal-
monic with the vacuum cavity phase velocity generatesng is adopted, neglecting terms2/Q? ~ w?/c%k* ~
the instability responsible for the onset of magnetron os€? while retaining w/ck ~ € and wp/w ~ €°. That
cillations. Since the excited frequencies are near the dicamounts to averaging out the fast cyclotron scale, leav-
cotron frequencywp, the relative growth rate, scaling as ing the drift equations of the guiding center (GC) mo-
wp/w ~ 1, is nontrivial in the low space charge limit tion. Accordingly, and for step function density profile
op/Q = 0?2/Q% < 1, wherew? = 4me’ng/m,, O = dw2/dr = —w28(r — h), the full cold fluid description

(1)
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Equation (2) has been previously solved for (i) a cath-
ode layer in a smooth anode cavity (no vanes) [2] and
(i) an empty structured anode (magnetron) cavity, =
0 [1]. For a cathode layer inside a smooth anode cavity,
the solutions are monochromatic diocotron modes

W, (r,0) = Aa"C, (r,a)e™, a=r=h, (3

(@)

v, (r,0) = Aa”[Cn_ (r,a)

+

©D C;(h,a)cn—(r,h)}ei"e
20

h<r=b, (4)
with the definitionsC,"(x,y) = (x/y)" = (y/x)" and
. 1 a®
w=w—Ele—ﬁ. (5)

The smooth anode boundary conditigpR(b) = 0 yields
the diocotron dispersion relation in cylindrical geometry

Zy(w,n) =C, (b,a)

(b)

+

So LGl (b.a) = Cf (@b )] =0, (6)

from which follow stable modesFw = 0 of real

frequency
1 a’
wy(n) = E‘UD{”<1 — ﬁ)
FIG. 1. Geometry illustration of cathode layer flow inside _ 2n _ 2n
(a) a smooth cylindrical cavity, and (b) a magnetron cavity with — [1 = (a/m)™][1 — (n/b) ]},
periodic anode vanes. 1 — (a/b)>

(7)

For large azimuthal wave number > 1, w,; =
wpn(l — a*>/h?)/2. In the above GC approximation,
1 i( i) o s = w2/Q? = 0, diocotron modes are stable for a flow
" or ¥ r2 U touching the cathode (cathode layer); for finitethey

n wp are weakly unstable [3] and their growth tends rapidly to
—— 2 ———8(r — W)y, (2) zero, ase /s,

row = (n/rjuoh) The empty-magnetron cavity modes are subject to
with W, (r,0) = ¢,(r)e™® and E, = (—1/r)o¥,/  piecewise constant boundary conditions at the vane tips,
00 = —(in/r)y,e™®. The dielectric response of the Ey « Fel2™i/N for27j — y/2 < 0 < 2xj + x/2,and
cathode layer is reduced to thefunction term in the E, = 0 otherwise, wherey is the angle subtended by
right-hand side, corresponding to the excitation of aa slot,j = 0,1,...,N — 1 and N the number of vanes.

[4] is reduced to the diocotron eigenmode equation [2]

r or

surface perturbation at the hub tep= h. | The cavity modes are Bloch-type modulated waves,
v, (r,0) = Z Anja”an_(r,a)ei"fB, a<r=»b, (8)
j=7oo
= sin(n; x /2 .
v, (r,0) = FN—X L Msin[i(b +p - r)}e’"fe, b=r=b>b+p. (9)
2m Z=onp o nix/2 c

A single frequency modaw involves superposition of many azimuthal wave number harmonics= n + jN,

j=0,1,2,.... The vacuum magnetron cavity dispersion, given by
(w/op 27 =, mix/2 (n;/b) C, (b.a)
exhibits infinite branches (frequency bands)= w,(n), g = 1,2,.... Each band is periodic in azimuthal wave number
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n, wg(n) = wy(n + jN), hence the fundamentdl < B, at the vane tips- = b, wheredB,/dr = (iw/c)Ey,

n < N in the first Brillouin zone is used for mode yields the following dispersion relation for a cathode layer
labeling. The easiest excited lowest branch corresponds io a magnetron cavity:
slow waves propagating at phase veloqity(n/r) much

0 ]

smaller tharc. 7 =z _ @p  =n 0.
The cathode layer dispersion inside a periodically struc- (@.n) v(@.n) j:Zoo 20 Zy(w,n;)
tured anode is now introduced, with the details described (11)

elsewhere [7]. The magnetron mode structure below the

vane tipsa = r = b is a superposition of diocotron-type In (11), the dispersion of a vacuum magnetron mode is
solutions (3) and (4) over the vane harmonigs= n +  coupled to the dispersions of diocotron modes over all of
jN, replacing the free space harmonics in (8). The fieldshe vane spatial harmonies = n + jN. The coupling
inside the vane gaps retain their vacuum cavity structurstrength is proportional to the diocotron frequency ratio
of (9). Eliminating coefficients [7], by matching, and | wp/w, while Z,, = fnanj(b,a) and

_ S|n(l’l]/\//2) NX/27T Cn_, (b, Cl) . Cn-',— (b’ a) [Cn-t (b’ a) - Cyj/— (ab9 h2)]
(n;x/2) (n;/b)p | C,f (b a) [C, (b, a)P

En; = (12)

are purely geometrical factors. It is the interactionto w/c): a=0.0908, b =0.182, h = 0.134, andp =
between smooth diocotron and structured anode modés24. Given thatZ in Eq. (15) is generally negative, the

that creates unstable magnetron modes. right-hand side inequality is satisfied fér > 0, obtained
Although (11) is valid for arbitrarywp /w, the stability  for a negativedensity steping/dr < 0.
properties are easier to analyze in the sma/w ~ Although a given cavity frequency (n) may resonate

e limit. Then, of all the 5, terms, only resonant with a diocotron mode through any one of the vane
diocotron harmonic(s¥,(w,n;) = 0 make an important harmonicsn; = n + [N, maximum magnetron growth
contribution. Singling out one resonant term, for= [,  occurs at the fundamental resonan@e= 0), w(n) =

and rearranging (11), leads to wy(n), as 2, diminishes rapidly with/. The most
wp wp unstable frequency is such that the empty cavity angular
[Zv(wﬂ) - 2—2}[0) — wq(ny)] — — & =0, phase velocity(1/r)w /(n/r) = w/n nearly matches the
@ (13) angular flow velocity at the hub tafp; from Eq. (7)
where Z contains all of the nonresonant terms © iwDKl - ‘1_2> - l} (16)
Z=Y,:E,/Ziw,n)). If &, is formally set to n 2 h? '
zero (but wp remains finite), the solutions decouple
into independently propagating magnetron cavity modes 1.20

o = wy(n), solutions of Zy(w,n) = 0, and smooth
anode diocotron modesw = wy(n;), solutions of

Z,(w,n;) = 0, depicted in Fig. 2. For finitavp &, an 0.90 | n
instability arises around the intersection of the empty i
cavity and the diocotron mode branches(n;) = wy(n). 2° I
For small wp/w = € the dispersionZy(w,n) can be 3 060 f ]

expanded aboutw,, Zy = Zy + Zj)(w — w,), where

Zo = Zy(wg) and Z} obtained from (10). Substituting [
in (13) and solving the resulting quadratic equation yields 030 M/
the loaded cavity magnetron mode dispersion i

o = wy(n)

— — — 7)2 ! 0.00 #+—— e . ——
+ (20— 2) % \/(ZOZ/ 27 2entiz (14) 0.0 ) 32.0
22 ’

valid for small wp/w [the numerical solution of (13)
must be used fowp/w = 1]. Complex roots (instability) FIG. 2. Intersections of av = 16 vane magnetron cavity

occur in the frequency range where vacuum dispersion (light solid line), with smooth diocotron
5 ) mode dispersion curves (broken lines) of various diocotron
0<(Zy — 2) < 2wpénZ. (15)  frequenciesw, and drift velocitiesuy(h). Diamonds mark

. _ magnetron cavity modes of integar and frequency is nor-
F'QUfe 3 plots the QFOWt_h rate near the mode n = malized to the empty cavityr-mode frequencywy (N/2) = 1.

8 in a 16 vane cavity withy = 7 /16 for wp/w> =  Strong magnetron-diocotron coupling occurs at the intersections
0.60 and the following cavity parameters (normalized wy(n) = w.(n;).
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FIG. 3. Magnetron instability for magnetron-diocotron reso-FIG. 4. Maximum s7-mode growth raten = N/2 vs dio-
nance at ther moden = 8 (marked by circle in Fig. 2). The cotron frequencywp, in cavities with different vane numbers
real frequencies of the two “loaded cavity” branches (solidN. The w-mode frequency is always normalized to 1.

lines) are shown against the (uncoupled) magnetron and dio-

cotron branches (light solid) of Fig. 2. Heavy dashed lines | lusion. the loaded ity | h
mark the loaded cavity imaginary frequencies (growth rates). " CONclusion, the loaded cavity, low-space-charge mag-

The modes: = 7 andn = 9 are also unstable. netron dispersion involves the coupling among the disper-
sions of practically stable smooth anode diocotron modes
and empty-magnetron cavity modes. Strongly unstable

Buneman-Hartree (BH) resonance at the hub _magnetron modes arise at the intersections among the
(1/2)wp(1 — a?/h?), and corresponds to a resonanceabove dispersion branches. In the GC approximation

. the growth rate scales ~ ~ (1 1 -
_kl)_ﬁlow the surface; |thasymptotes to the surface a¢ 1. a2/h%)’1 and s independaegn/ta;t,z/?)g/:o fA/nrgg(ative
e maximum growth rate g '

density gradient is required for instability, contrasting an

valid at largen. Thus, the exact frequency falls below the

2N (1 — a2/h?)sirt opposite conclusion for smooth cavities [4].
Yo = wp (fol/ _)F( a>/ %) sinl(@a/c)p] a7 Although the low space charge results are not directly
col(wa/c)p)/(wa/c)p applicable to magnetrons operating at high space charge,

is roughly proportional to, but not quite linear in, the dio- extrapolations tow?/Q* =1 yield the correct order
cotron frequencyw, = w?2/Q, as the quantity inside the of magnitude for the instability growth times. The
root has a weak dependence e. There is a finite growth rate dependence on various parameters agrees
width of unstable frequencies around the BH resonancdjualitatively with detailed experimental observations of
given implicitly by (15). The growth rates are nearly spontaneous growth [5]; strong.wp growth rate peaks
symmetricaround the resonant frequeney,, confirm- near the BH resonance, the growth rate increases with
ing earlier results in the small signal (i.e., nonexponentiadecreasing mode numbey the growth rate increases with
growth) crossed-field amplifier gain analysis [8]. Gain charge density (which, in the Brillouin limit scales as the
symmetry distinguishes crossed field from the rest of thénagnetic fieldw, = (1), and instability (startup) occurs
microwave devices, which exhibéntisymmetricgrowth ~ well below the cyclotron frequency.
rates with zero at exact resonance. Combining (16) and The author is indebted to B. Vyse for his motivation.
(17) shows that the relative maximum growily/w (n) —
increases with decreasing mode numberEarlier treat- [1] G.B. Collins, in Microwave Magnetronsedited by G.B.
ment [6] did not reach the above conclusions, nor the  Collins (McGraw-Hill, New York, 1948), pp. 1-42;
diocotron-slow wave coupling dispersion (11). N. Kroll ibid, pp. 49-77.
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