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The dissipative nature of the particle interactions is responsible for aninherentlack of scale separation
in granular systems which is not related to the typical grain/container size ratios. It is demonstr
that rapid granular flows are typically supersonic, shear rates in these systems are nearly always “l
the mean free times are comparable with the macroscopic time scale(s), and themean free paths can
be of macroscopic dimensions, the latter indicatingnonlocality. Additional physical and computational
implications are discussed. [S0031-9007(98)07276-7]

PACS numbers: 46.10.+z, 47.50.+d, 47.55.Kf, 83.10.Hh
r

al
f

,

s,

h

s

d

y

r,

e

m.
One of the major questions in the field of granula
flows is whether their dynamics can be described
macroscopic equations of motion which are local in spa
and memory free. In this respect, rapid granular flow
[1] which are, by definition, flows in which the particles
(grains) interact by practically instantaneous collision
seem to be good candidates for the construction
such equations of motion. Indeed, kinetic theory h
been applied [2] to the study of such systems a
to the derivation of appropriate constitutive relation
It turns out that some of the peculiar properties o
granular systems, such as their instability to clusteri
[3], layering [4–5], plug formation [4–5], and, in genera
to the creation of microstructures, can be captured
the continuum equations. The collapse phenomen
[6], while not directly a consequence of the continuu
equations of motion, may also be partly captured by t
continuum equations, at least in one dimension [7].

Hydrodynamiclike equations are usually intimately re
lated to the notion of scale separation, the Navier-Stok
equation(s) for fluids being a classical example. It is f
this reason that it is important to understand the degree
scale separation that can be expected in granular syste
It is shown below that such scale separation is nonex
tent except when the system is very nearly elastic. Mo
over, a few peculiar properties of rapid granular flow
such as the existence of macroscopic mean free paths,
demonstrated.

Consider a simply sheared stationary monodispe
granular system composed of disks (spheres) in tw
(three) dimensions whose collisions are characterized
a fixed coefficient of normal restitutione. The average
velocity $y is taken to point in the streamwisex direction
and depends linearly on the spanwisey coordinate:
$y ­ gyx̂, where g is the shear rate and̂x is a unit
vector in thex direction. Such a flow can be shown to
exist on the basis of equations of motion derived fro
0031-9007y98y81(14)y3022(4)$15.00
r
by
ce
s

s,
of

as
nd
s.
f

ng
l,
by
on
m
he

-
es

or
of
ms.
is-
re-
s,
are

rse
o

by

m

kinetic theory [2]; it can also be produced in molecula
dynamic (MD) simulations [3(a),8]. It can be shown
by dimensional analysis and general phenomenologic
(mean-field) arguments [9] (in agreement with results o
kinetic theoretical calculations [2(f),2(g),3(b),3(c),9,10])
that the granular temperatureT (notice: here and belowT
is defined as the mean square of the velocity fluctuation
as is common in the field of granular flows), in this system
satisfies

T ­ C
g2,2

0

e
, s1d

where e ; 1 2 e2 is the degree of inelasticity and,0
is the equilibrium mean free path (see below), whic
is given by 1ynsT , where n is the (particle) number
density andsT is the total collisional cross section of two
particles. The prefactorC is a function of the degree of
inelasticity and the volume fraction, but for our purpose
it suffices to know thatC is O s1d, its value for dilute and
nearly elastic systems being about 0.6 in 2D [2(f)] an
3 in 3D [2(g)].

Consider first the change of the macroscopic velocit
over a distance of a mean free path,0 in the y direction:
g,0. A shear rate can be considered small ifg,0 is small
with respect to the thermal speed

p
T . Using Eq. (1), one

obtains: g,0y
p

T ­
p

ey
p

C, i.e., the shear rate is not
“small” unless the system is nearly elastic (notice that fo
e.g.,e ­ 0.9 :

p
e ­ 0.44).

Consider next the mean free timet, i.e., the ratio of
the mean free path and the thermal speed:t ; ,0y

p
T .

Clearly,t is the microscopic time scale characterizing th
system at hand andg21 is the macroscopic time scale
characterizing this system. The ratiotyg21 ­ tg is a
measure of the temporal scale separation in the syste
Employing Eq. (1) and the definition oft, one obtains
tg ­

p
ey

p
C, andO s1d quantity. It follows that there

is no temporal scale separation in this system,irrespective
© 1998 The American Physical Society
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of its size or the size of the grains, except whene is very
small.

The ratio of the speedgjyj to the thermal speed
p

T
can be rewritten, using Eq. (1), as follows:gjyjy

p
T ­

s
p

ey
p

C d sjyjy,0d. Since, as mentioned,
p

ey
p

C is typi-
cally O s1d, except for very nearly elastic systems, th
speed is supersonic when the coordinatey is larger (in
absolute value) than about a mean free path. The subso
domain is very small indeed, being limited to a strip (in
2D, and a corresponding volume in 3D) whose width is o
the order of a mean free path around the stagnant line
2D) or plane (in 3D).

The mean free time is usually defined as the tim
between consecutive collisions of a particle. It is clea
that mean free times depend on therelative velocities
of the particles, hence they are Galilean invariant.
simple, textbooklike (and mean field) derivation of the
above expression for the mean free timet proceeds as
follows: the flux of particles impinging on a given particle
is (proportional to)n

p
T , hence the typical number of

collisions per unit time experienced by this particle i
nsT

p
T , and thus the mean free time is proportional t

1ynsT
p

T . Following the definition of,0: t ­ ,0y
p

T
(this derivation is somewhat different from standar
textbook derivations; the latter start with the derivation o
an expression for the mean free path, which, as explain
below, is valid for systems in equilibrium in frames of
reference in which they are stationary). During a mea
free time a “typical” particle traverses a distance that
determined by itsabsolute speed. This distanceis the
mean free path. Thus, the mean free path, is given
by upt, where up is the average speed of a particle,
quantity that depends on the frame of reference. Indee
consider a gas in equilibrium viewed from a frame o
reference in which the center of mass of the gas mov
at a speedu, which is far larger than the thermal
speed

p
T . In this caseup ø u and the mean free path

observed in this frame is, ø ut ­ us,0y
p

T d, i.e., it
is much larger than,0. This observation would have
been of philosophical value only, had it been applicab
to systems in equilibrium alone. As shown below, it ha
measurable physical consequences in sheared systems

Next, we return to the sheared granular system. T
velocity $u of a particle equals$u ­ gyx̂ 1 $yth, where $yth
is the thermal component of the velocity (the average
$y2

th being T ). Assuming statistical independence of th
thermal and average velocities, the steady-state avera
of u2 is given by g2y2 1 T ; hence, the typical speed
up of a particle can be taken to beup ­

p
g2y2 1 T ,

which implies that the mean free path, as a function o
the spanwise coordinatey is given by

,s yd ­ t

q
g2y2 1 T ­

q
g2y2 1 T

,0p
T

. s2d

At values ofy at which the speed is subsonic (following
the above consideration this happens whenjyj is less than
e
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,0) one can neglectg2y2 with respect toT in Eq. (2),
in which case, ø ,0. However, whenjyj . j,0j, in
particular whenjyj ¿ ,0, the thermal speed is far smalle
than the average speed, and in this case

,s yd ø ,0
gjyj
p

T
­

p
e

p
C

jyj ­

p
e

p
C

jyj

,0
,0 , (3)

i.e., the true mean free path is (much) larger than t
equilibrium mean free path forjyj ¿ ,0. Moreover, it
is of macroscopic dimensions, being anO s1d quantity
times jyj; in particular, if the systems are wide enoug
(in the spanwise direction) the mean free path c
exceed the length of the system (in the streamwi
direction). In addition, the angular distribution of the fre
paths becomes highly weighted towards the streamw
direction for jyj ¿ ,0, since there the thermal velocity
is small with respect to the average velocity (thus th
direction of motion of a particle is close tôx).

The above results have been tested in MD simulatio
of a sheared system of 20 000 disks in a square enclos
(of unit side) using Lees-Edwards boundary condition
[3(a),8,11] in the y direction and periodic boundary
conditions in thex direction. In these simulationse ­
0.6, the shear rate is 100 inverse time units and the volu
fraction n is 0.05 (dilute system) or 0.4 (relatively dens
system). Figure 1(A) depicts a scatter plot of the fre
paths (for then ­ 0.05 system) arranged according to th
y value of the beginning of each free flight. Figure 1(B
shows,syd (computed for eachy by averaging over the
free paths in a narrow strip aroundy) as a function ofy

FIG. 1. (A) Scatter plot of the distribution of free paths,
versus y for a system in which the macroscopic velocity
vanishes at the centerlines y ­ 0d. Here,n ­ 0.05. (B) The
mean free path (Avg,) as a function ofy.
3023
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(with 20.5 , y , 0.5). The linear dependence of,s yd
on jyj is prominent. Notice that while the maximal value
of ,s yd is 0.2, some free paths [cf. Fig. 1(A)] exceed th
length of the system. Thus strongnonlocalityis observed.

Another interesting,y dependent, property is exhibited
by the rms of thecollisional pressurefluctuations; Fig. 2
[the parameters are the same as in Fig. 1], depic
this quantity as a function ofy (here the range of
y is 0 , y , 1). The solid line corresponds to$y ­
gs y 2 0.5dx̂, the dashed line corresponds to$y ­ gs y 2

0.25dx̂, and the dotted line corresponds to$y ­ gyx̂. In
all three cases presented, the fluctuations are maxim
at or near the stagnant line. The average collision
pressure is 4 orders of magnitude smaller than the pe
value of the rms fluctuations. A possible explanation o
this phenomenon is that in the deep supersonic dom
there is an ordering of the particles (which violate
“molecular chaos”), an expected phenomenon in “strong
sheared” systems (cf., e.g., [2(a),12]); this order mu
also be long ranged, as the free paths are long.
the subsonic domain such positional order is essentia
absent (and the assumption of “molecular chaos” hold
The width of the peaks in Fig. 2 is about an order o
magnitude larger than a naive estimate of the width of th
subsonic strip; we suspect that this broadening is relat
to the diffusion of fluctuations. Incidentally, since the
simulation employs a Lees-Edwards boundary conditio
the above result signals a breakdown of the (norma
assumed) homogeneity of such a system. One could
that homogeneity is broken when the mean free path
comparable with the size of the system (i.e., the syste
can differentiate between different values ofy). This may
also imply that the use of dissipative devices to abso
energy in simulations of elastic sheared systems m

FIG. 2. The mean square fluctuaton, or variance, of th
collisional pressure as a function ofy (averaging is performed
over narrow horizontal strips). The three curves correspond
different choices of the stagnant line (see text).
3024
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produce undesired results due to the above phenomen
Figure 3 depicts a similar result to that shown in Fig. 2 fo
n ­ 0.4 (the stagnant line being aty ­ 0.5). While the
free paths may not be as large for a denser system as in
dilute limit, they are still far larger than the corresponding
equilibrium mean free paths, hence this property is o
rather general nature. Figure 4 shows a similar effect
an elastic system prepared at a low enough temperatu
(with respect to the square of the maximal mean velocity
All other parameters are the same as in Fig. 2. Panel 4
corresponds to an early time (30 collisions per particl
after initiation) and panel 4B corresponds to a later tim
(100 collisions per particle after initiation). Since the
system is elastic, it heats up with time until it become
entirely subsonic, in which case the effect disappears.
contrast, an inelastic sheared system possesses an inte
energy sink and it reaches a steady state, in which t
effect stays put.

Another phenomenon, which is common to granula
and elastic fluids, but is enhanced in the realm of th
former, is the “normal stress difference” [2(f),2(g),10]. It
can be shown that this effect follows from the Burnet
correction in the framework Chapman-Enskog expansio
[2(f),2(g),10]. The anisotropy of the normal stress is
usually negligibly small in molecular systems (in air a
STP conditions the degree of anisotropy of the norm
stress is10220) and rather prominentfO s1dg in granular
systems (a result that can be obtained by substituting t
above expression forT in the Burnett formula for the
stress tensor). Only in highly sheared dilute molecula
systems it is possible to observe normal stress differenc
as explained above, granular systems are always “high
sheared” and thus they can serve as testing grounds
effects such as the Burnett effect which is difficult to
measure otherwise.

FIG. 3. The variance of the collisional pressure as a functio
of y for n ­ 0.4 (the other parameters being as in the previou
plots). The macroscopic velocity vanishes aty ­ 0.5.



VOLUME 81, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 5 OCTOBER1998

e
r

).
-
id-
it
ic
d
d

l
e

h.

.

.

id
FIG. 4. (A) The variance of the collisional pressure as
function of the y coordinate for anelastic system whose
macroscopic velocity vanishes aty ­ 0.5. Heren ­ 0.05 and
N ­ 20 000. The initial temperature of the system is adjuste
so that the thermal speed is much smaller than the magnitude
the macroscopic velocity near the boundaries of the system (
average temperature in the system is 0.1, while the shear rat
100). (B) The same system as in (A) at a later time when th
temperature is higher due to heating by the shear.

Another manifestation of the mesoscopic nature o
granular systems is the dependence of their constituti
relations on the coarse graining scales [13(c)] and t
strong fluctuations of stress [13] observed in these sy
tems. Still another mesoscopic property of granula
systems has been discovered [14] in free (or unforce
systems: It turns out that the latter systems exhib
enhanced long-range velocity correlations. We wish
add that static and quasistatic granular systems exhi
(micro)structures (such as arches and stress chains) wh
can span the entire “width” of the system, and they shou
be considered to be mesoscopic as well.

As has been the experience in mesoscopic solid st
physics, mesoscopic systems exhibit many differe
physical properties than macroscopic ones. In particula
average or averaged properties may obscure typical
fects in such systems, and thus the process of (ensemb
averaging should be approached with care. Large me
free paths, as discussed above, indicate that the effect
interactions (say, in a coarse-grained description) m
be long ranged and that the effect of boundaries m
be of greater importance in granular systems than
corresponding elastically colliding systems.

We believe that derivations of equations of motion fo
granular systems should proceed with these findings
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mind; among other things, one needs to account for th
violation of molecular chaos (e.g., develop a theory o
model for the two particle distribution function,f2, cf.,
e.g., [2(a),12], when a kinetic approach is employed
When nonlocality is prominent (and especially when tran
sient and/or strongly inhomogeneous systems are cons
ered) nonlocal equations may be required; alternatively,
may be possible to use an extended set of hydrodynam
variables to restore locality (electrostatics is long range
but Maxwell’s equations, which account for a finite spee
of light, are local).
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