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Rapid Granular Flows as Mesoscopic Systems
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The dissipative nature of the particle interactions is responsible forthementlack of scale separation
in granular systems which is not related to the typical grain/container size ratios. It is demonstrated
that rapid granular flows are typically supersonic, shear rates in these systems are nearly always “large,”
the mean free times are comparable with the macroscopic time scale(s), amédhefree paths can
be of macroscopic dimensigrthe latter indicatingionlocality Additional physical and computational
implications are discussed. [S0031-9007(98)07276-7]

PACS numbers: 46.10.+z, 47.50.+d, 47.55.Kf, 83.10.Hh

One of the major questions in the field of granularkinetic theory [2]; it can also be produced in molecular
flows is whether their dynamics can be described bydynamic (MD) simulations [3(a),8]. It can be shown
macroscopic equations of motion which are local in spacdy dimensional analysis and general phenomenological
and memory free. In this respect, rapid granular flowgmean-field) arguments [9] (in agreement with results of
[1] which are, by definition, flows in which the particles kinetic theoretical calculations [2(f),2(g),3(b),3(c),9,10]),
(grains) interact by practically instantaneous collisionsthat the granular temperatufe(notice: here and belo®
seem to be good candidates for the construction ois defined as the mean square of the velocity fluctuations,
such equations of motion. Indeed, kinetic theory hassis common in the field of granular flows), in this system
been applied [2] to the study of such systems andatisfies
to the derivation of appropriate constitutive relations. Y20
It turns out that some of the peculiar properties of T=C——1,
granular systems, such as their instability to clustering
[3], layering [4—5], plug formation [4—5], and, in general, where e = 1 — ¢? is the degree of inelasticity ané,
to the creation of microstructures, can be captured bys the equilibrium mean free path (see below), which
the continuum equations. The collapse phenomenois given by 1/nor, where n is the (particle) number
[6], while not directly a consequence of the continuumdensity andsr is the total collisional cross section of two
equations of motion, may also be partly captured by thearticles. The prefacto€ is a function of the degree of
continuum equations, at least in one dimension [7]. inelasticity and the volume fraction, but for our purposes

Hydrodynamiclike equations are usually intimately re-it suffices to know thaC is O (1), its value for dilute and
lated to the notion of scale separation, the Navier-Stokesearly elastic systems being about 0.6 in 2D [2(f)] and
equation(s) for fluids being a classical example. It is for3 in 3D [2(g)].
this reason that it is important to understand the degree of Consider first the change of the macroscopic velocity
scale separation that can be expected in granular systenmzer a distance of a mean free pdthin the y direction:

It is shown below that such scale separation is nonexisy€y. A shear rate can be considered smalf , is small
tent except when the system is very nearly elastic. Morewith respect to the thermal spegd. Using Eq. (1), one
over, a few peculiar properties of rapid granular flows,obtains: y€y/~/T = \/€//C, i.e., the shear rate is not
such as the existence of macroscopic mean free paths, diwmall” unless the system is nearly elastic (notice that for,
demonstrated. e.g.,.e =09 : /e = 044).

Consider a simply sheared stationary monodisperse Consider next the mean free time i.e., the ratio of
granular system composed of disks (spheres) in twthe mean free path and the thermal speeds €y//T.
(three) dimensions whose collisions are characterized b§learly, 7 is the microscopic time scale characterizing the
a fixed coefficient of normal restitution. The average system at hand ang ' is the macroscopic time scale
velocity o is taken to point in the streamwisedirection  characterizing this system. The ratigy ' = 7y is a
and depends linearly on the spanwise coordinate: measure of the temporal scale separation in the system.
v = yyX, where y is the shear rate and is a unit Employing Eg. (1) and the definition of, one obtains
vector in thex direction. Such a flow can be shown to 7y = \/e/+/C, and O (1) quantity. It follows that there
exist on the basis of equations of motion derived fromis no temporal scale separation in this systemnespective
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of its size or the size of the grainsxcept where is very  €,) one can neglect?y? with respect toT in Eq. (2),

small. in which casef = €¢,. However, when|y| > ||, in
The ratio of the speed|y| to the thermal speed/T  particular wherjy| > £, the thermal speed is far smaller
can be rewritten, using Eq. (1), as followgly|/~/T =  than the average speed, and in this case
(€/C) (Iyl/€). Since, as mentioned/e/~/C is typi-
cally ©(1), except for very nearly elastic systems, the y) = ¢ M S A Iyl = £ Mf (3)
y , p y y y ) 0 JT JC JC 4 0>

speed is supersonic when the coordinatés larger (in

absolute value) than about a mean free path. The subsonig. the true mean free path is (much) larger than the
domain is very small indeed, being limited to a strip (in equilibrium mean free path foly| > ¢,. Moreover, it
ZD, and a Corresponding volume in 3D) whose width is Ofis of macroscopic dimensionS, being ﬂ](]) quantity
the order of a mean free path around the stagnant line (iimes |y|; in particular, if the systems are wide enough
2D) or plane (in 3D). _ ~ (in the spanwise direction) the mean free path can
The mean free time is usually defined as the timeaxceed the length of the system (in the streamwise
between consecutive collisions of a particle. It is cleargirection). In addition, the angular distribution of the free
that mean free times depend on thedative velocities paths becomes highly weighted towards the streamwise
of the particles, hence they are Galilean invariant. Agjrection for |y| > ¢, since there the thermal velocity
simple, textbooklike (and mean field) derivation of thejs small with respect to the average velocity (thus the
above expression for the mean free timeproceeds as gjrection of motion of a particle is close ©).
follows: the flux of particles impinging on a given particle  The above results have been tested in MD simulations
is (proportional to)n+/T, hence the typical number of of 4 sheared system of 20000 disks in a square enclosure
collisions per unit time experienced by this particle is(of unit side) using Lees-Edwards boundary conditions
nop/T, and thus the mean free time is proportional t0[3(a),8,11] in they direction and periodic boundary
1/nor/T. Following the definition ofty: 7 = €/v'T  conditions in thex direction. In these simulations —
(this derivation is somewhat different from standardg e, the shear rate is 100 inverse time units and the volume
textbook derivations; the latter start with the derivation offraction » is 0.05 (dilute system) or 0.4 (relatively dense
an expression for the mean free path, which, as explainegg,stem)_ Figure 1(A) depicts a scatter plot of the free
below, is valid for systems in equilibrium in frames of paths (for thev = 0.05 system) arranged according to the
reference in which they are stationary). During a mean, value of the beginning of each free flight. Figure 1(B)
free time a “typical” particle traverses a distance that isshows¢(y) (computed for eacly by averaging over the

determined by itsabsolute Speed This distanceis the free paths in a narrow Strip around as a function Ofy
mean free path. Thus, the mean free pétlis given

by u*7, whereu® is the average speed of a particle, a
guantity that depends on the frame of reference. Indeec A _
consider a gas in equilibrium viewed from a frame of i ]
reference in which the center of mass of the gas move: R S
at a speedu, which is far larger than the thermal
speedy/T. In this casex* =~ u and the mean free path
observed in this frame i€ =~ ur = u({y/T), i.e., it
is much larger tharfy. This observation would have
been of philosophical value only, had it been applicable
to systems in equilibrium alone. As shown below, it has
measurable physical consequences in sheared systems.
Next, we return to the sheared granular system. The

velocity z of a particle equald = yyX + D, Wheredy, oz |’ " | | e
is the thermal component of the velocity (the average ol o5 - v\/\A E
v3 beingT). Assuming statistical independence of the ]
thermal and average velocities, the steady-state averacy , - \ ]
of u? is given by y2y? + T; hence, the typical speed ~ | ]
u* of a particle can be taken to h& = \/y2y? + T, 005 [ ]
which implies that the mean free path, as a function of : ]
the spanwise coordinateis given by 0 b 0'4 b 0'2 e S e Tt

<o
o
)
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o
= 24,2 - 2,2 20
t(y) T\/V y=+T \/7 y=+T NG (2) FIG. 1. (A) Scatter plot of the distribution of free patlfs
. . . . versusy for a system in which the macroscopic velocity
At values ofy at which the speed is subsonic (following vanishes at the centerlife = 0). Here,» = 0.05. (B) The

the above consideration this happens whdrnis less than  mean free path (Avd) as a function ofy.
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(with —0.5 < y < 0.5). The linear dependence éfy) produce undesired results due to the above phenomenon.
on |y| is prominent. Notice that while the maximal value Figure 3 depicts a similar result to that shown in Fig. 2 for
of £(y) is 0.2, some free paths [cf. Fig. 1(A)] exceed ther = 0.4 (the stagnant line being at= 0.5). While the
length of the system. Thus strongnlocalityis observed. free paths may not be as large for a denser system as in the
Another interestingy dependent, property is exhibited dilute limit, they are still far larger than the corresponding
by the rms of thecollisional pressurdluctuations; Fig. 2 equilibrium mean free paths, hence this property is of
[the parameters are the same as in Fig. 1], depicteather general nature. Figure 4 shows a similar effect in
this quantity as a function ofy (here the range of an elastic system prepared at a low enough temperature
y is 0 <y < 1). The solid line corresponds t6 =  (with respect to the square of the maximal mean velocity).
v(y — 0.5)%, the dashed line correspondsito= y(y —  All other parameters are the same as in Fig. 2. Panel 4A
0.25)%, and the dotted line correspondsi#ic= yy%. In  corresponds to an early time (30 collisions per particle
all three cases presented, the fluctuations are maximalter initiation) and panel 4B corresponds to a later time
at or near the stagnant line. The average collisiona{100 collisions per particle after initiation). Since the
pressure is 4 orders of magnitude smaller than the peakystem is elastic, it heats up with time until it becomes
value of the rms fluctuations. A possible explanation ofentirely subsonic, in which case the effect disappears. In
this phenomenon is that in the deep supersonic domaicontrast, an inelastic sheared system possesses an internal
there is an ordering of the particles (which violatesenergy sink and it reaches a steady state, in which the
“molecular chaos”), an expected phenomenon in “strongheffect stays put.
sheared” systems (cf., e.g., [2(a),12]); this order must Another phenomenon, which is common to granular
also be long ranged, as the free paths are long. land elastic fluids, but is enhanced in the realm of the
the subsonic domain such positional order is essentialljormer, is the “normal stress difference” [2(f),2(g),10]. It
absent (and the assumption of “molecular chaos” holds)an be shown that this effect follows from the Burnett
The width of the peaks in Fig. 2 is about an order ofcorrection in the framework Chapman-Enskog expansion
magnitude larger than a naive estimate of the width of th¢2(f),2(g),10]. The anisotropy of the normal stress is
subsonic strip; we suspect that this broadening is relatedsually negligibly small in molecular systems (in air at
to the diffusion of fluctuations. Incidentally, since the STP conditions the degree of anisotropy of the normal
simulation employs a Lees-Edwards boundary conditionstress is10~2°) and rather prominerft© (1)] in granular
the above result signals a breakdown of the (normallysystems (a result that can be obtained by substituting the
assumed) homogeneity of such a system. One could sapove expression for' in the Burnett formula for the
that homogeneity is broken when the mean free path istress tensor). Only in highly sheared dilute molecular
comparable with the size of the system (i.e., the systersystems it is possible to observe normal stress differences;
can differentiate between different valuesydf This may as explained above, granular systems are always “highly
also imply that the use of dissipative devices to absorlsheared” and thus they can serve as testing grounds for
energy in simulations of elastic sheared systems magffects such as the Burnett effect which is difficult to
measure otherwise.

5'5)_( 10

i /ﬁ\ //\ |
| | | | ': \ij » R\ MW/X

y 0% 0.4 06 08 1
y

mean square coll. press. fluctuations

mean square coll. press. fluctuations
w
g

-

FIG. 2. The mean square fluctuaton, or variance, of the
collisional pressure as a function gf(averaging is performed FIG. 3. The variance of the collisional pressure as a function
over narrow horizontal strips). The three curves correspond tof y for v = 0.4 (the other parameters being as in the previous
different choices of the stagnant line (see text). plots). The macroscopic velocity vanishesyat 0.5.
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x10° mind; among other things, one needs to account for the
(A) / violation of molecular chaos (e.g., develop a theory or

model for the two particle distribution functiorf,, cf.,
i / | e.g., [2(a),12], when a kinetic approach is employed).
A/&\/\f\/J A Y, When nonlocality is prominent (and especially when tran-
i~ NV sient and/or strongly inhomogeneous systems are consid-
2 o ‘ ‘ ered) nonlocal equations may be required; alternatively, it

variance of coll. press.
o

0 0. 06 0.8 1

y ' may be possible to use an extended set of hydrodynamic
x10™ variables to restore locality (electrostatics is long ranged
2*’(5) ’ ' ' ‘ ] but Maxwell's equations, which account for a finite speed

15/ V\ of light, are local).
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FIG. 4. (A) The variance of the collisional pressure as a
function of the y coordinate for anelastic system whose

macroscopic velocity vanishes at= 0.5. Herev = 0.05 and . 3
N = 20000. The initial temperature of the system is adjusted [g g];Sécar?g)b§||+A;g#kiEse;hzlgdBMgz\.lz’ ? jlg?u?()j Mech
so that the thermal speed is much smaller than the magnitude o¥ - €0 . s gé, J. :
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