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Optimal Eavesdropping in Quantum Cryptography with Six States
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A generalization of the quantum cryptographic protocol by Bennett and Brassard is discussed, using
three conjugate bases, i.e., six states. By calculating the optimal mutual information between sender
and eavesdropper it is shown that this scheme is safer against eavesdropping on single qubits than the
one based on two conjugate bases. We also address the question for a connection between the maximal
classical correlation in a generalized Bell inequality and the intersection of mutual informations between
sender/receiver and sender/eavesdropper. [S0031-9007(98)07272-X]

PACS numbers: 03.67.Dd, 03.65.Bz

In 1984 Bennett and Brassard [1] suggested a quantuto Alice exhibits a connection to the Clauser-Horne-
cryptographic protocol, in the following called BB84, Shimony-Holt (CHSH) inequality. After deriving Eve's
which enables two parties to establish a secret key, usingptimal strategy we will ask whether, in the generalized
principles of quantum mechanics. In this scheme therotocol, the crossing point between the two relevant
sender of the quantum information, usually called Alice,mutual informations has a connection to a generalized
transmits quantum bits in the bagis, |1) or the conjugate Bell inequality where Alice and Bob use the observables

basis|0), |1), defined by a; - 6* andb; - ¢”, {i = 1,2,...,n}, respectively, with
oy = | the Bloch vectors:;, b; spanning not only a plane, but the
0) = —= (o) + [1)), i»0i SP g y aplane,
|_> ?(I )+ 1) (1) Bloch sphere.
1) = 5 (10) = [1)), After this introduction and outline of the paper, let

to the receiver Bob, who performs measurements it'S derive the eavesdropping strategy that is optimal with
these bases. After classical communication via a publi€espect to the mutual information between Alice and Eve,
channel, a secret key can be established by using onI{f . We do not consider collective or coherent attacks,
those cases in which the bases of Alice and Bob coinciddut only interaction with single qubits. The most general

In this paper we want to discuss a generalized schemihitary transformation Eve can design is of the form
which is based on the use of three rather than two bases. U0y |X) = VF|0)|A) + V1 — F|1)|B), 3
The third one used in addition to the previous ones is

denoted byl0), |1) and defined by Ul 1X) = VEIDIC) + VI = Flo) D). (4)
S 1 The first qubit is the one sent to Bob and acted on by Eve.
|9> T2 (10) + i), (2) Eve’sinitial state i9X), and|A), |B), |C), |D) refer to her
1) = % 10y — il1)). normalized states after the interaction. It was shown in

[5] that it is sufficient for Eve to use two qubits in order

In the_BfOCh V%Ctoi plct'ureaa d.enS|ty matigkis written to extract the maximal information. The fidelity of Bob’s
asg = (1 + 5 - &), with s being the Bloch vector and oo s taken to be in the intervif2 < F < 1.
o the Pauli matrices. The six states can be viewed as We assume Eve to be clever enough to treat all six

Blc;:nh dve(;tggigﬁ;ntlrﬂiféoggn?:opnoslg;/?hzgg %i%?gg a ossible states in the same way (i.e., with same disturbance
Y, itz : ’ or Bob)—otherwise Alice and Bob could find out about

"), with equal probability. her existence by comparing error rates in different bases.

tra?:llijtﬁ)hn; Srccigig?a:r? de}tstrzgsr;gf”?'vﬁgjs E)étggsn']oenm?;ntgerhis assumption results in three constraints which the
hai p ; P Y : . %calar products of Eve’s states have to fulfill:
at various occasions [2]. Our main purpose is to poin

out that this generalized scheme is principally more secure (BID) =0,

than the one in [1]. This is due to the fact that the optimal 1

strategy an eavesdropper, traditionally called Eve, can ReC|A) =2 — 7 (5)
design to gather information by performing some unitary

transformation on the quantum bit in transit gives her, in (A|B) +(D|C) =0.

our scenario, less information for a fixed disturbance ofUnitarity of the matrixU means

Bob’s qubit. As Alice increases the set of inputs, it is (A|D) + (B|C)=0. (6)

more difficult for Eve to learn something in transit. ] ) ] )
It was conjectured in [3] and shown in [4] that in The mutual information between Alice and Bob is

the BB84 scenario the disturbance corresponding to BogiVen by
and Eve possessing the same information with respect I*® =1+ DlogD + (1 — D) log(1 — D), (7)
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whereD is the disturbance of Bob’s qubit, defined by where the complex coefficients have to satisfy
D=1-F=1-"[e’ly"), (8)

and ¢? is the right-hand side of Egs. (3) and (4), traced laal® + 1B8al® + lyal® + 16417 =1, (10)

over Eve’s bits. All logarithms are taken to base 2. By

construction, Bob’s disturbance is the same no matteand similarly for|B),|C), |D). We are free to choos®)

which state was sent by Alice. The procedure to calculatas one of the four basis vectors; ef&) = |00) and can

the mutual information between Alice and Eve is morefulfill the first constraint in Eq. (5) by settingD) = [11),

involved. We expand without loss of generality. We then find for the mutual
[A) = a4l00) + BAl10) + y4|01) + S4|11), 9 | information the form

I*E =1 + 3{r[FlasP + (1 = F).Flacl’] + 7[FIBl%. FIBcl’] + 7[Flyal’. Flycl]

+ 7[F1841 + (1 = F),Fl5cI’]}, (11)
where we define | [4], for the purpose of comparison./*¢ is identical in
7lx,y]=xlogx + ylogy — (x + y) logx + y). both cases.) Note that our curve lies everywhere below

(12) the one for the BB84 case. The six-state protocol is

Note that—7[x,1 — x] is the entropy function. Equa- thergfore more secure against eavesdropping on single

tion (11) is the mutual information which Eve reachesdubits.

when postponing the measurement until she learns which In our case, both bits of Eve carry mutual information,

basis was used by listening to the public channel. unlike the one described by [4]. If she would either
The task is to maximizd4E with the constraints of Measure only one of her two bits, or if she would use a

Egs. (5) and (6). The method of Lagrange multipliersone-bit probe from the beginning, her maximal information

leads to a set of equations which cannot be simultaneouskyould be

fulfilled unlessay = ac = 0 and 64, = 6¢ = 0. This JAEINE — 1 + £(D) log f1(D)

means that the best solution for Eve is to use states

such that(A | B) = 0 = (C| D), which one would have +[1 = f1(D)]logll — f1(D)], (18)
expected. f1i(D) = 3[1 + D + D2 - 3D)],

Now we have only two parameter| and|fc| for which is the lowest curve in Fig. 1. The calculation for the

IAE and can write . . ;
JAE — 1 4 1F{7[|,8 . 18c] one-bit pr_obe follows t_he same line as explained qbove for
2 Al IPC the two-bit probe, but is less involved. Note that in order
+ 7[(1 = |BaH), (1 — |BcP)]}, (13)  to maximize her mutual information in the six-state scheme
which is a concave function. Here we have used

T[Fx,Fy] = F7[x,y]. (14) N N
It is straightforward to write down the system of equations - g
which has to be fulfilled in order to maximize'?. Be- e
cause of their high symmetry, one can find one solution 08 - oot e 8
easily, namely, astaes

1Bal* = 1 — |Bcl?, (15) sl |
and thus e
I'F =1+ Fr[lBal’,1 = 1BAI]. (16) 3

By checking the higher derivatives, one confirms that this 04
is a maximum, which is, due to concavity, the absolute
maximum. Inserting into the second line of Eq. (5) allows
us to find the “best” relative phase betwelr and|C) 02
and thus leads to the solution for the highest mutual
information that Eve can extract from measuring her two N , , , , L
qubits, 005 01 015 0.2 0.35 0.3 035 04 045 05

" =1+ (1 = D){f(D)log f(D) + [1 — f(D)]

FIG. 1. Maximal mutual informatiod*£ between Alice and

X log[1 — f(D)]}, (17)  Eve as a function of Bob’s disturband2. The upper curve
holds for BB84 [4] and is shown for the purpose of comparison.
f(D) = % 1 + VD2 — 3D) |. The lower curves refer to the six-state protocol. Their analytic
1 forms are shown in Egs. (17) and (18). The mutual information

This function is shown in Fig. 1, where we also give thepetween Alice and Bob is in both scenarios given by the
corresponding mutual information for BB84, taken from curve 745,
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Eve necessarily needs two qubits as a resource, whereas fershown to obey|C|| = 2+/2. e(HereZz,- refer to Alice’s
BB84 a one-bit probe is sufficient to reach optimality [6]. directions of measurement ang to those of Bob.) This

It is worth mentioning that the optimal unitary transfor- means that the maximal value the quantum correlation can
mation which leads to Eq. (17) distured Bloch vectors take is|S,| = 24/2, no matter whether the measurement
in the same way, not only the six states used by Alice, andirections span a plane or a sphere. This value is reached
allows Eve to gain the same information afl possible in the CHSH scenario. One can intuitively understand
bases. In other words, the optimal eavesdropping actiothis in the following way: in order to maximize the
for six states is a universal transformation. This meansum of scalar products of the measurement directions,
that using a bigger number of states cannot increase sectheir relative angles have to be as small as possible; i.e.,
rity. The gain in security described in this paper is duethey have to lie on a great circle of the sphere. Thus
to the fact that the three bases are spanning the full Bloclve cannot find a ratio fokS,/S.| that is higher than/2,
sphere, as opposed to the case of BB84 where only a twand therefore we cannot establish a Bell inequality in the
dimensional plane is spanned. sphere that corresponds to the intersection/df with

The scheme described in [1] can also be realized4? for the generalized protocol, because hBgds larger
by Alice and Bob sharing a singlet, i.e., a maximally than in BB84.
entangled state. This was discussed in [7,8]. In this case, We can generally exclude such a correspondence for
which we will consider for the rest of this article, Alice measurements by each party, i.e., chained Bell inequalities
and Bob can test for eavesdropping by calculainghe  [11]: the inequality reads nowsS| = 2n — 2. The
correlation coefficient in the CHSH inequality. Without relevant operatof for this case can be written as a sum of
any disturbance of Bob’s bit they will findlS| = 2+/2.  operators of the form used in Cirel'son’s inequality which

This value is decreased when Eve interacts unitarily withwe callCy,...,C,—;. Because of the inequality

Bob's bit. As was shO\//‘vg in [4], the intersection of the  |ic| = |Ic; + G, + ... + Coill

two curves for/4? and I corresponds t¢S| = 2; i.e.,

at disturbance® = 1 (1 — 1/+/2) the CHSH inequality =lcill + ... + ICoill = (0 — D2V2, (22)
(between Alice and Bob) is not violated. we know an upper limit of the quantum correlation. Thus

The natural question arises whether the correspondinge find|[S,/S.| = /2 as in the paragraph above and can
intersection for the generalized scheme is related to generally exclude the mentioned connection.
generalized Bell inequality. In the six-state protocol the Note that inequalities such as the original Bell inequal-
reduced density matrix of Alice and Bob after Eve'sity and a recent suggestion by Ardehali [12] where two

interaction reads directions of measurement coincide cannot be used for
D 0 0 0 our purpose: the eavesdropping interaction causes the ex-
_ _ ectation valuda - ¢ ® a - o*) to be smaller than 1 if
g L0 1D 2p-1 0 19) ?)>o da- 0" ®a-a7)
210 2b-1 1-D 0| - _
0 0 0 D In summary, we have discussed a quantum crypto-

where the matrix elements are written in the ordergraphic protocol based on six quantum states and shown
L that it is safer against eavesdropping on single qubits than
00,10,01, 11. Foranynumber of measurement directions g PPing ge q

: . .~ the BB84 scheme, because Eve’s maximal mutual infor-
that'Allce and Bob can use to test a Bell Inequallty'mation is smaller than in the BB84 scenario. Furthermore,
we find in order to reach the maximal mutual information the
IS(D)| = 1S,/ (1 — 2D), (20)  eavesdropper needs to use a two-bit probe and thus has to
where S, denotes the correlation fob = 0, i.e., the perform a more complicated transformation than in BB84.
undisturbed singlet. Thus in our case the measuremeffther resource consists of only one qubit, she gains even
directions that are optimal for the singlet are also optimaless information. We have to mention some practical dis-
for D # 0, i.e., a mixed state. This does not hold in @dvantage: in order to establish a key, one will here lose
general [9]. We will refer to the disturbance where2/3 of the signals rather thah/2 in the BB84 scenario,
|S(D)| = |S.], i.e., whereS reaches the classical limit, When using equal probabilities for all states. We have
asD.. also shown that the best way to test a CHSH inequality is

Let us first look at the case where Alice and Bobto use measurement directions that lie in a plane. In the
are using two measurement directions each that do n@iX-state protocol there is no natural relation between the
necessarily lie in a plane. Here the inequality for a modeFlassical limit of a Bell-type correlation coefficient and

with local hidden variables reads| < 2. the intersection of the information curves. We hope that
We can make use of Cirel'son’s inequality [10] in this cryptographic scheme may reach practical relevance
which the norm of the operator in the light of recent suggestions to produce maximally
C—d1- 590D - 60 +ar-690b - & entangled pairs of distant atoms [13] (see also [14]).
— 1 1
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