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Optimal Eavesdropping in Quantum Cryptography with Six States
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A generalization of the quantum cryptographic protocol by Bennett and Brassard is discussed,
three conjugate bases, i.e., six states. By calculating the optimal mutual information between s
and eavesdropper it is shown that this scheme is safer against eavesdropping on single qubits t
one based on two conjugate bases. We also address the question for a connection between the m
classical correlation in a generalized Bell inequality and the intersection of mutual informations bet
sender/ receiver and sender/eavesdropper. [S0031-9007(98)07272-X]

PACS numbers: 03.67.Dd, 03.65.Bz
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In 1984 Bennett and Brassard [1] suggested a quant
cryptographic protocol, in the following called BB84,
which enables two parties to establish a secret key, us
principles of quantum mechanics. In this scheme th
sender of the quantum information, usually called Alice
transmits quantum bits in the basisj0l, j1l or the conjugate
basisj0l, j1l, defined by

j0l ­
1

p
2

sj0l 1 j1ld ,

j1l ­
1

p
2

sj0l 2 j1ld ,
(1)

to the receiver Bob, who performs measurements
these bases. After classical communication via a pub
channel, a secret key can be established by using o
those cases in which the bases of Alice and Bob coincid

In this paper we want to discuss a generalized sche
which is based on the use of three rather than two bas
The third one used in addition to the previous ones
denoted byj0l, j1l and defined by

j0l ­
1

p
2

sj0l 1 ij1ld ,

j1l ­ 1
p

2
sj0l 2 ij1ld .

(2)

In the Bloch vector picture a density matrix% is written
as% ­ 1

2 s' 1 $s ? $sd, with $s being the Bloch vector and
$s the Pauli matrices. The six states can be viewed
Bloch vectors pointing along the positive and negativex,
y, andz directions. Alice sends one of these, denoted
jc inl, with equal probability.

Such a scenario is a straightforward extension of th
traditional protocol and its possibility has been mentione
at various occasions [2]. Our main purpose is to poi
out that this generalized scheme is principally more secu
than the one in [1]. This is due to the fact that the optim
strategy an eavesdropper, traditionally called Eve, c
design to gather information by performing some unitar
transformation on the quantum bit in transit gives her,
our scenario, less information for a fixed disturbance
Bob’s qubit. As Alice increases the set of inputs, it i
more difficult for Eve to learn something in transit.

It was conjectured in [3] and shown in [4] that in
the BB84 scenario the disturbance corresponding to B
and Eve possessing the same information with resp
0031-9007y98y81(14)y3018(4)$15.00
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to Alice exhibits a connection to the Clauser-Horn
Shimony-Holt (CHSH) inequality. After deriving Eve’s
optimal strategy we will ask whether, in the generalize
protocol, the crossing point between the two releva
mutual informations has a connection to a generaliz
Bell inequality where Alice and Bob use the observabl
$ai ? $sa and $bi ? $sb , hi ­ 1, 2, . . . , nj, respectively, with
the Bloch vectors$ai , $bi spanning not only a plane, but the
Bloch sphere.

After this introduction and outline of the paper, le
us derive the eavesdropping strategy that is optimal w
respect to the mutual information between Alice and Ev
IAE . We do not consider collective or coherent attack
but only interaction with single qubits. The most gener
unitary transformation Eve can design is of the form

Uj0l jXl ­
p

F j0l jAl 1
p

1 2 F j1l jBl , (3)

Uj1l jXl ­
p

F j1l jCl 1
p

1 2 F j0l jDl . (4)

The first qubit is the one sent to Bob and acted on by E
Eve’s initial state isjXl, andjAl, jBl, jCl, jDl refer to her
normalized states after the interaction. It was shown
[5] that it is sufficient for Eve to use two qubits in orde
to extract the maximal information. The fidelity of Bob’s
bit is F and is taken to be in the interval1y2 # F # 1.

We assume Eve to be clever enough to treat all
possible states in the same way (i.e., with same disturba
for Bob)—otherwise Alice and Bob could find out abou
her existence by comparing error rates in different bas
This assumption results in three constraints which t
scalar products of Eve’s states have to fulfill:

kB j Dl ­ 0 ,

RekC j Al ­ 2 2
1
F

, (5)

kA j Bl 1 kD j Cl ­ 0 .

Unitarity of the matrixU means

kA j Dl 1 kB j Cl ­ 0 . (6)

The mutual information between Alice and Bob i
given by

IAB ­ 1 1 D log D 1 s1 2 Dd logs1 2 Dd , (7)
© 1998 The American Physical Society
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l

whereD is the disturbance of Bob’s qubit, defined by
D ­ 1 2 F ­ 1 2 kc inj%Bjc inl , (8)

and %B is the right-hand side of Eqs. (3) and (4), trace
over Eve’s bits. All logarithms are taken to base 2. B
construction, Bob’s disturbance is the same no mat
which state was sent by Alice. The procedure to calcula
the mutual information between Alice and Eve is mo
involved. We expand

jAl ­ aAj00l 1 bAj10l 1 gAj01l 1 dAj11l , (9)
d
y
ter
te

re

where the complex coefficients have to satisfy

jaAj2 1 jbAj2 1 jgAj2 1 jdAj2 ­ 1 , (10)

and similarly forjBl, jCl, jDl. We are free to choosejBl
as one of the four basis vectors; e.g.,jBl ­ j00l and can
fulfill the first constraint in Eq. (5) by settingjDl ­ j11l,
without loss of generality. We then find for the mutua
information the form
IAE ­ 1 1
1
2 htfFjaAj2 1 s1 2 Fd, FjaCj2g 1 tfFjbAj2, FjbCj2g 1 tfFjgAj2, FjgCj2g

1 tfFjdAj2 1 s1 2 Fd, FjdCj2gj , (11)
w
s
le

a

r
r
e

.
c

where we define
tfx, yg ­ x log x 1 y log y 2 sx 1 yd logsx 1 yd .

(12)
Note that2tfx, 1 2 xg is the entropy function. Equa-
tion (11) is the mutual information which Eve reache
when postponing the measurement until she learns wh
basis was used by listening to the public channel.

The task is to maximizeIAE with the constraints of
Eqs. (5) and (6). The method of Lagrange multiplie
leads to a set of equations which cannot be simultaneou
fulfilled unlessaA ­ aC ­ 0 and dA ­ dC ­ 0. This
means that the best solution for Eve is to use sta
such thatkA j Bl ­ 0 ­ kC j Dl, which one would have
expected.

Now we have only two parameters,jbAj and jbCj for
IAE , and can write

IAE ­ 1 1
1
2 FhtfjbAj2, jbCj2g

1 tfs1 2 jbAj2d, s1 2 jbCj2dgj , (13)
which is a concave function. Here we have used

tfFx, Fyg ­ Ftfx, yg . (14)
It is straightforward to write down the system of equation
which has to be fulfilled in order to maximizeIAE . Be-
cause of their high symmetry, one can find one soluti
easily, namely,

jbAj2 ­ 1 2 jbCj2, (15)
and thus

IAE ­ 1 1 FtfjbAj2, 1 2 jbAj2g . (16)
By checking the higher derivatives, one confirms that th
is a maximum, which is, due to concavity, the absolu
maximum. Inserting into the second line of Eq. (5) allow
us to find the “best” relative phase betweenjAl and jCl
and thus leads to the solution for the highest mutu
information that Eve can extract from measuring her tw
qubits,

IAE ­ 1 1 s1 2 Dd h fsDd log fsDd 1 f1 2 fsDdg

3 logf1 2 fsDdgj , (17)

fsDd ­
1
2

µ
1 1

1
1 2 D

p
Ds2 2 3Dd

∂
.

This function is shown in Fig. 1, where we also give th
corresponding mutual information for BB84, taken from
s
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[4], for the purpose of comparison. (IAB is identical in
both cases.) Note that our curve lies everywhere belo
the one for the BB84 case. The six-state protocol i
therefore more secure against eavesdropping on sing
qubits.

In our case, both bits of Eve carry mutual information,
unlike the one described by [4]. If she would either
measure only one of her two bits, or if she would use
one-bit probe from the beginning, her maximal information
would be

IAE,1bit ­ 1 1 f1sDd log f1sDd

1 f1 2 f1sDdg logf1 2 f1sDdg , (18)

f1sDd ­
1
2 f1 1 D 1

p
Ds2 2 3Dd g ,

which is the lowest curve in Fig. 1. The calculation for the
one-bit probe follows the same line as explained above fo
the two-bit probe, but is less involved. Note that in orde
to maximize her mutual information in the six-state schem
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FIG. 1. Maximal mutual informationIAE between Alice and
Eve as a function of Bob’s disturbanceD. The upper curve
holds for BB84 [4] and is shown for the purpose of comparison
The lower curves refer to the six-state protocol. Their analyti
forms are shown in Eqs. (17) and (18). The mutual information
between Alice and Bob is in both scenarios given by the
curveIAB.
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Eve necessarily needs two qubits as a resource, whereas
BB84 a one-bit probe is sufficient to reach optimality [6]

It is worth mentioning that the optimal unitary transfor
mation which leads to Eq. (17) disturbsall Bloch vectors
in the same way, not only the six states used by Alice, a
allows Eve to gain the same information inall possible
bases. In other words, the optimal eavesdropping acti
for six states is a universal transformation. This mea
that using a bigger number of states cannot increase se
rity. The gain in security described in this paper is du
to the fact that the three bases are spanning the full Blo
sphere, as opposed to the case of BB84 where only a tw
dimensional plane is spanned.

The scheme described in [1] can also be realize
by Alice and Bob sharing a singlet, i.e., a maximall
entangled state. This was discussed in [7,8]. In this ca
which we will consider for the rest of this article, Alice
and Bob can test for eavesdropping by calculatingS, the
correlation coefficient in the CHSH inequality. Withou
any disturbance of Bob’s bit they will findjSj ­ 2

p
2.

This value is decreased when Eve interacts unitarily wi
Bob’s bit. As was shown in [4], the intersection of the
two curves forIAB and IAE corresponds tojSj ­ 2; i.e.,
at disturbancesD $

1
2 s1 2 1y

p
2 d the CHSH inequality

(between Alice and Bob) is not violated.
The natural question arises whether the correspond

intersection for the generalized scheme is related to
generalized Bell inequality. In the six-state protocol th
reduced density matrix of Alice and Bob after Eve’
interaction reads

rAB ­
1
2

0BBB@
D 0 0 0
0 1 2 D 2D 2 1 0
0 2D 2 1 1 2 D 0
0 0 0 D

1CCCA , (19)

where the matrix elements are written in the orde
00, 10, 01, 11. Foranynumber of measurement directions
that Alice and Bob can use to test a Bell inequality
we find

jSsDdj ­ jSqj s1 2 2Dd , (20)

where Sq denotes the correlation forD ­ 0, i.e., the
undisturbed singlet. Thus in our case the measurem
directions that are optimal for the singlet are also optim
for D fi 0, i.e., a mixed state. This does not hold in
general [9]. We will refer to the disturbance wher
jSsDdj ­ jScj, i.e., whereS reaches the classical limit,
asDc.

Let us first look at the case where Alice and Bo
are using two measurement directions each that do n
necessarily lie in a plane. Here the inequality for a mod
with local hidden variables readsjSj # 2.

We can make use of Cirel’son’s inequality [10] in
which the norm of the operator

C ­ $a1 ? $sa ≠ $b1 ? $sb 1 $a2 ? $sa ≠ $b1 ? $sb

1 $a2 ? $sa ≠ $b2 ? $sb 2 $a1 ? $sa ≠ $b2 ? $sb (21)
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is shown to obeykCk # 2
p

2. (Here $ai refer to Alice’s
directions of measurement and$bi to those of Bob.) This
means that the maximal value the quantum correlation c
take is jSqj ­ 2

p
2, no matter whether the measureme

directions span a plane or a sphere. This value is reac
in the CHSH scenario. One can intuitively understan
this in the following way: in order to maximize the
sum of scalar products of the measurement directio
their relative angles have to be as small as possible; i
they have to lie on a great circle of the sphere. Th
we cannot find a ratio forjSqyScj that is higher than

p
2,

and therefore we cannot establish a Bell inequality in t
sphere that corresponds to the intersection ofIAE with
IAB for the generalized protocol, because hereDc is larger
than in BB84.

We can generally exclude such a correspondence fon
measurements by each party, i.e., chained Bell inequalit
[11]: the inequality reads nowjSj # 2n 2 2. The
relevant operatorC for this case can be written as a sum o
operators of the form used in Cirel’son’s inequality whic
we callC1, . . . , Cn21. Because of the inequality

kCk ­ kC1 1 C2 1 . . . 1 Cn21k

# kC1k 1 . . . 1 kCn21k # sn 2 1d 2
p

2 , (22)
we know an upper limit of the quantum correlation. Thu
we find jSqyScj #

p
2 as in the paragraph above and ca

generally exclude the mentioned connection.
Note that inequalities such as the original Bell inequa

ity and a recent suggestion by Ardehali [12] where tw
directions of measurement coincide cannot be used
our purpose: the eavesdropping interaction causes the
pectation valuek $a ? $sa ≠ $a ? $sbl to be smaller than 1 if
D . 0.

In summary, we have discussed a quantum cryp
graphic protocol based on six quantum states and sho
that it is safer against eavesdropping on single qubits th
the BB84 scheme, because Eve’s maximal mutual info
mation is smaller than in the BB84 scenario. Furthermo
in order to reach the maximal mutual information th
eavesdropper needs to use a two-bit probe and thus ha
perform a more complicated transformation than in BB8
If her resource consists of only one qubit, she gains ev
less information. We have to mention some practical d
advantage: in order to establish a key, one will here lo
2y3 of the signals rather than1y2 in the BB84 scenario,
when using equal probabilities for all states. We ha
also shown that the best way to test a CHSH inequality
to use measurement directions that lie in a plane. In t
six-state protocol there is no natural relation between t
classical limit of a Bell-type correlation coefficient and
the intersection of the information curves. We hope th
this cryptographic scheme may reach practical relevan
in the light of recent suggestions to produce maximal
entangled pairs of distant atoms [13] (see also [14]).
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