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Dynamical Generation of Fermion Mass and Magnetic Field in Three-Dimensional QED
with Chern-Simons Term
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We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term,
considering the screening effect ofN flavor fermions. We find a new phase of the vacuum, in which
both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS
term k equalsNe2y4p. The resultant vacuum becomes the finite-density state half filled by fermions.
For k ­ Ne2y2p, we find the fermion remains massless and only the magnetic field is induced.
For k ­ 0, spontaneous magnetization does not occur and should be regarded as an external field.
[S0031-9007(98)06439-4]
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Field theoretical models in (2 1 1)-dimensional space-
time have attracted much attention as effective theori
at long distance in planar condensed matter physics. E
pecially, quantum electrodynamics in2 1 1 dimensions
(QED3) has been intensively studied in connection wit
the effective theories of high-Tc superconductivity [1], as
well as the probe for (3 1 1)-dimensional quantum chro-
modynamics. In2 1 1 dimensions, there can be a topo
logical gauge action known as Chern-Simons (CS) term
This term connects a magnetic fieldB with an electric
charge densityekcycl for fermion fieldc . From this pe-
culiar property, the CS term is used in the field theoretic
understanding of the fractional quantum Hall effect [2].

As a natural extension of QED3, a theory in which gauge
field action includes both the CS term and the Maxwe
term was proposed by Ref. [3]. In this theory (CS-QED3),
the coefficientk for the CS term gives the photon a
gauge invariant mass which explicitly violates the parit
symmetry. Some years ago, Hosotani [4] showed th
spontaneous magnetization occurs in CS-QED3, through
breaking the most secret symmetry—Lorentz invarianc
In this theory, the Gauss lawkB ­ 2ekcycl follows
from the equation of motion. Thus the magnetized vacuu
corresponds to state with finite fermion densitykcycl fi

0. In Ref. [5] a chemical potential termm cyc was intro-
duced as an explicit breaking term for Lorentz symmetr
and the condensationkcycl at m ! 0 limit was studied.
It was found that the above vacuum is stable if and only
the fermion bare mass is zero.

In this paper, we examine the possibility that Lorent
symmetry is broken in a theory in which fermion mas
and magnetization are both spontaneously generated.
regard the fermion bare mass term2mc̄c as an ex-
plicit breaking term for flavorUs2Nd symmetry [6] as
well as a chemical potential termm cyc for Lorentz
symmetry. Solving the Schwinger-Dyson (SD) equation
we clarify whether or not two condensations,kcycl and
kc̄cl, are dynamically realized at the symmetric limi
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m ! 0, m ! 0. They signal fermion mass generation
and magnetization, respectively. Fork ­ Ne2y4p , we
find a new phase of vacuum, in which both massiv
fermions and a magnetic field are dynamically gener
ated so that both symmetries are simultaneously broke
The vacuum stability is also examined by calculating
the Cornwall-Jackiw-Tomboulis (CJT) potential [7] and
2-loop effective potential.

For simplicity, we set the Dirac fermion in four compo-
nents. Theg-matrices are given as follows:

g0 ­

µ
s3 0
0 2s3

∂
, g1 ­

µ
is1 0
0 2is1

∂
,

g2 ­

µ
is2 0
0 2is2

∂
.

(1)

We use the metric diagsgmnd ­ s21, 1, 1d, so that the
g-matrices satisfy the algebrahgm, gnj ­ 22gmn . Our
starting Lagrangian including explicit breaking terms is

L ­ 2
1
4

FmnF mn 2
k

2
emnrAm≠nAr 2

1
2j

s≠Ad2

1 c̄fgmsi≠m 1 eAmd 2 m 1 mg0gc , (2)

where c denotes theN flavor four-component fermion
and we confine ourselves to the case that fermion ma
is dynamically generated only as a parity conserving mas
From the above Lagrangian, we acquire the gauge fie
equation ≠nF nm 2 sky2demnrFnr ­ 2ec̄gmc whose
vacuum expectation value gives the Gauss law constra
kB ­ 2ekcycl under the existence of constant mag
netic field.

It is known that QED3 is a super-renormalizable theory
and its beta function for coupling constant has a nontrivia
infrared fixed point [6]. Therefore we cannot neglect the
screening effect of vacuum polarization at long distance
Following Ref. [6], we introduce dimensionful coupling
a ­ Ne2y4p and keepa finite when N is taken to
infinity so that the vacuum polarization effect can be take
© 1998 The American Physical Society
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into the effective action successively in1yN expansion.
Since we also attempt to investigate the spontaneo
magnetization, we separate the gauge fieldAm into
background and propagating fields asAm ­ Aext

m 1 Am,
with Aext

m sxd ­ Bx2dm1. The background fieldAext
m can

be fully contained into the fermion propagator

Ssx, yd ­ 2

*
x

É
1

gmsi≠m 1 eAext
m d 2 m 1 mg0

É
y

+
,

(3)

by using the proper time method [8]. It is determined a

Ssx, yd ­ exp

µ
ie
2

sx 2 ydmAext
m sx 1 yd

∂eSsx 2 yd , (4)

and the Fourier transform foreSsx 2 yd is given as

eSskd ­ i
Z `

0
ds exp

∑
2is

µ
m2 2 k2

e 1
tanseBsd

eBs
k2

∂∏
3 hf1 1 g1g2 tanseBsdg sm 1 g0ked

2 sg1k1 1 g2k2d sec2seBsdj , (5)

whereke :­ k0 1 m 1 ie sgnsk0d which modifies theie
prescription to be consistent with the shift of Hamiltonia
by m. The photon propagator can be read fromL and is

Dmnspd ­
1

p2 1 k2

"
gmn 2

pmpn

p2
1 ik

premnr

p2

#

1 j
pmpn

sp2d2
, (6)

where we see that the Chern-Simons coefficientk plays a
role of gauge invariant photon mass.

The effective gauge action improved by fermion 1-loo
correction is constructed by integrating out the fermio
field [9] and truncating up to the next to leading order i
1yN expansion, that is,

GfAg ­ 2iN Tr Ln S21

1
Z

d3x

"
2

1
2

B2 2 kBA0sxd

1
1
2

AmsxdD21
mn s2i≠dAnsxd

#
, (7)

where D21 denotes the inverse of the improved pho
ton propagatorDmnspd :­ fD21

mnspd 2 Pmnspdg21. The
vacuum polarizationPmnspd can be regularized in a
gauge invariant manner [10,11], as

Pmnspd ­ 2Ne2
Z d3k

s2pd3 trfgm
eSskdgn

eSsk 2 pdg ,

­ spmpn 2 p2gmndPespd 2 ipremnrPospd
1 sp'

m p'
n 2 p2

'g'
mndP'spd , (8)

where p
m
' ­ s0, p1, p2d and diagsg'

mnd ­ s0, 1, 1d. We
notice that the gauge invariant tensor is split into th
parity conserving part and violating part. The latte
has the same tensor structure as the CS term, or ga
invariant photon mass, in the effective action (7).
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Now we will show that the possible values ofk under
the existence of the constant magnetic field is restricte
by the Gauss lawkB ­ 2ekcycl. It is known that,
unlessm2 ­ m2 1 2njeBj, n ­ 1, 2, . . . , the charge con-
densationkcycl is related to the parity violating part of
vacuum polarizationPo with the relation:2ekcycl ­
BPos0d [12]. The Gauss law becomesBfk 2 Pos0dg ­
0 which means that the nonzero magnetic field can pene
trate the system when the effective photon mass,keff :­
k 2 Pos0d, becomes zero. Otherwise, the system with
k fi Pos0d excludes a magnetic field whether its ori-
gin is external or dynamical. In this case we should se
the magnetic field to zero and investigate the dynami
cal generation of parity breaking fermion mass as wel
asUs2Nd symmetry breaking [13]. We calculatePos0d,
whenm2 , m2 1 2jeBj, as [11]

Pos0d ­ 22a sgnsmeBdusjmj 2 md , (9)

where the step functionusxd has a value1y2 at x ­ 0
as a zero temperature limit of Fermi-Dirac statistics. We
find that Pos0d has different values according tojmj ,

m, jmj ­ m, and jmj . m. Therefore, the constraint
k ­ Pos0d forces us to take the different approach to a
symmetric limit sm, md ! s0, 0d for each value ofk so
that the nonzero magnetic field can exist. The possibl
way of a symmetric limit for each value ofk can be read
as

k ­

8<: 0, jmj , m ! 0
2a sgnsmeBd, jmj ­ m ! 0
22a sgnsmeBd, m , jmj ! 0

, (10)

which corresponds to empty, half-filled, and fully filled
lowest Landau levels, respectively.

In the following, we investigate the dynamical genera-
tion of fermion mass and magnetic field for theories with
jkj ­ 0, a, 2a. We confirm that the fermion massmd

and the chemical potentialmd are dynamically generated
at the symmetric limitsm, md ! s0, 0d. In order to be
consistent with the nonzero magnetic field,md and md

should satisfy the same relation that the explicit breakin
parametersm andm satisfy in Eq. (10) for eachk.

It was shown in Ref. [14] that the strong magnetic field
played a role of catalyst forUs2Nd symmetry breaking
in the (2 1 1)-dimensional Nambu-Jona-Lasinio model.
Under the strong magnetic field, the wave function
for a charged fermion is localized around the region
with the size of magnetic lengthl :­ 1y

p
jeBj. So,

the fermion behaves the same as in a0 1 1 dimension
and the condensationkc̄cl becomes easily formed such
as in Bardeen-Cooper-Schrieffer theory [14]. Recently
Shpagin [15] showed that, by using the SD equation, th
fermion mass term was dynamically generated for all o
the number of flavors in QED3 with an external magnetic
field. In CS-QED3, whenk has the consistent values in
Eq. (10), the photon becomes massless and our effecti
theory, described by Eq. (7), is identical to the one in
QED3 with an external magnetic field and the Gauss law
31
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constraint. We, therefore, only have to extend Shpagin
analysis using the SD equation so as to include theg0

component of fermion self-energy.
Now we construct the SD equation for fermion self

energy. According to Ref. [15], we assume the stron
magnetic fieldm ø 1yl, for which the higher Landau
levels

p
m2 1 2 nyl2, n $ 1 decouple. Thus we only

have to treat the lowest Landau level (LLL). We us
the photon propagator improved up to the next to leadin
order in1yN expansion. The SD equation is [15]

Gsx, yd ­ Ssx, yd 2 ie2
Z

d3z d3t Ssx, zd

3 gmGsz, tdgnGst, ydDmn st 2 zd , (11)

where we use the bare vertex approximation andG
denotes the full fermion propagator which should b
consistently determined through the SD equation. W
assume that the full propagatorG also has the same
form as S in Eq. (4), where we only have to replaceS
with G. eSskd in Eq. (5) can be decomposed into th
Landau level polesk2

e ­ m2 1 2 nyl2, n ­ 0, 1, . . . . We
see that the higher Landau level poles decouple and o
the LLL pole, k2

e ­ m2, contributes toeSskd under the
strong magnetic field:m ø 1yl. Following Ref. [15], we
approximate the Fourier transform ofeS and eG with its
LLL contributions. That is,

eSskd . e2l2k2
'

1
m 2 g0 ke

f1 2 ig1g2 sgnseBdg , (12)

eGskd . e2l2k2
' egsk0d f1 2 ig1g2 sgnseBdg , (13)

where 1 2 ig1g2 sgnseBd is a projection operator to
spin state. We notice that the fermion on the lowe
Landau level essentially behaves like (0 1 1)-dimensional
objects.

Under the above approximation, the SD equation (1
is simplified aseg21sp0d ­ m 2 g0sp0 1 md

2
ie2

s2pd3

Z `

2`
dk0 g0egsk0dg0 eDsp0 2 k0d ,

(14)

where the functioneD is defined by

eDsp0d :­ 2
Z

d2 p'e2l2p2
'y2D00sp0, p'd . (15)

The functioneg is written in the form including the scalar
componentB andg0 componentbB such aseg21sp0d ­ Bsp0d 2 Asp0dg0p0

2 g0fbBsp0d 1 ie sgnsp0dg , (16)

without loss of generality. In Eq. (11), we use th
bare vertex approximation, so we must setAsp0d ; 1
in order to maintain the consistency with the Ward
32
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Takahashi identity. We also assumeBsp0d is positive
definite andB6sp0d :­ bBsp0d 6 Bsp0d have a definite
sign irrespective of its argumentp0 so that we can
carry out the Wick rotationp0 ­ ip̄ uniquely in the SD
equation.

Setting Asp0d ; 1 and substituting Eq. (16) into the
SD equation (14), we acquire the two independent integra
equations

B6sp̄d ­ m 6 m 1
e2

s2pd3

Z `

2`
dk̄

B6sk̄d
k̄2 1 B2

6sk̄d
3 eDsp̄ 2 k̄d . (17)

At the limit m 6 m ! 0, the function eD in Eq. (17)
becomes the one calculated from the massless photo
propagator and has logarithmic behavior in the infrared
region of momentum. That ise2l eDsp̄d . 28p2a0 3

ln jlp̄j with a0 :­ alyNs1 1 cald. The constantc
denotes the parity conserving vacuum polarization effec
Pes0d ; cal and is determined by the Riemann zeta
function asc ­ 26

p
2 z s21y2d . 1.76397.

Since the integral in Eq. (17) is dominated at the in-
frared region, we put̄p ­ 0 and can replacelB6sk̄d by
its zero momentum valuesv6 :­ lB6s0d. The SD equa-
tion atm 6 m ! 0 finally becomes the gap equations:

v6 ­ 2
a0

p

Z `

2`

ds
v6

s2 1 v
2
6

ln j 2sj , (18)

which have the nontrivial solution:jvsj ­ 2a0 ln jvsj,
as well as the trivial one. We notice thatvs satisfies
the condition jvsj ø 1, which is required to support
the LLL approximation, sincea0 , 1 for any value of
e2 and N . The dynamical variablesmd and md are
given bymd :­ sv1 2 v2dy2l, md :­ sv1 1 v2dy2l.
According to the values ofk in Eq. (10), the consistent
solutions are determined as

smd , mdd ­

8<: sjvsjyl, 0d for k ­ 0
sjvsjy2l, vsy2ld for jkj ­ a

s0, vsyld for jkj ­ 2a
. (19)

The solution fork ­ 0 coincides with that of Ref. [15]
on the empty vacuum. The solution forjkj ­ 2a corre-
sponds to the one in Ref. [4] on the fully filled vacuum.
But, in our case, the massless fermion is shown to be dy
namically generated. The solution forjkj ­ a is a new
one which generates massive fermion as well as finite
density vacuum half-filled by fermions.

It was not clear whether or not the solutions of SD
equation,md andmd, are energetically favorable and the
magnetization spontaneously occurs for eachk. So, we
have to investigate the vacuum energy. We assume th
strong couplinga ¿ l21 and expand the vacuum energy
V sBd with respect to1yal ,

p
Bye3. V sBd is constructed

from four parts including the Maxwell energy, that
is, V sBd ­ VCJTsBd 1 VFsBd 1 VPsBd 1 B2y2. VCJT
denotes the CJT potential [7], which gives the energy
difference between the nontrivial vacuum and the trivial
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one at the presence of the magnetic field. It is evaluate
for eachk, in the LLL approximation, as [11]

VCJTsBd ­ 2
N

4p
maxhmd , jmdjj jeBj3y2 1 O sB2d ,

(20)

which has a negative value and shows that the nontrivia
solutions are energetically favorable irrespective ofk.

VF (VP) corresponds to the shift of zero-point energy
for the fermion (photon) induced by the magnetic field
at the symmetric limit. VF is deduced from the 1-loop
effective action (7) asiN Tr ln S21 in m 6 m ! 0, that
is [11],

VFsBd ­ 2
N
4p

jeBj3y24
p

2 z s21y2d 1 O sB2d . (21)

VP is also calculated from the effective action (7) as a
2-loop contribution of2siy2d Tr ln D21 in m 6 m ! 0,
that is [11],

VPsBd ­ 2
jkj

p2 jeBj arctan

µ
2jkj

pa

∂
1 O sB3y2d . (22)

The linear term forB is acquired fromPo in the photon
propagator, since the energy shift of the photon’s vacuum
energy is an appearance of the difference of effectiv
photon mass in the infrared momentum region [4].

In V sBd, the term proportional toB3y2 is dominated
by that of VFsBd and has a positive coefficient for each
k [11]. As to the linear term forB, it appears for only
jkj ­ a, 2a, which corresponds to the charge condense
vacua, and has a negative coefficient. ThereforeV sBd
has a stationary point atB fi 0 for jkj ­ a, 2a, so the
magnetic field is dynamically generated. Fork ­ 0, the
spontaneous magnetization does not occur and we mu
regard a magnetic field as an external one.

In summary, we have investigated the dynamical sym
metry breaking in Chern-Simons QED3. We have found
that both the fermion mass and the magnetic field are dy
namically generated whenjkj ­ a and the correspond-
ing vacuum is given as a half-filled lowest Landau level.
This is a new phase of vacuum with nonvanishing fermion
mass and broken Lorentz symmetry. Forjkj ­ 2a, we
have shown that the fermion remains massless and on
the magnetic field is induced on the fully filled vacuum.
This is the situation in Ref. [4]—vanishing fermion mass
d

l

e

d

st

-

-

ly

and broken Lorentz symmetry. This configuration of vac-
uum has been certified to be realized through our argu
ment in this paper. It should be noticed that the magneti
field does not necessarily enhance the mass generation
the vacuum is fully filled by fermions. This shows the
sharp contrast to the results of Refs. [14,15], which are
based on the empty vacuum and correspond to the ca
k ­ 0.
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