VOLUME 81, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JLy 1998

Dynamical Generation of Fermion Mass and Magnetic Field in Three-Dimensional QED
with Chern-Simons Term
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We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term,
considering the screening effect &f flavor fermions. We find a new phase of the vacuum, in which
both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS
term k equalsNe? /4. The resultant vacuum becomes the finite-density state half filled by fermions.
For k = Ne?/2m, we find the fermion remains massless and only the magnetic field is induced.
For k = 0, spontaneous magnetization does not occur and should be regarded as an external field.
[S0031-9007(98)06439-4]
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Field theoretical models ir2(+ 1)-dimensional space- u — 0, m — 0. They signal fermion mass generation
time have attracted much attention as effective theorieand magnetization, respectively. Fer= Ne?/4m, we
at long distance in planar condensed matter physics. E$éind a new phase of vacuum, in which both massive
pecially, quantum electrodynamics i+ 1 dimensions fermions and a magnetic field are dynamically gener-
(QED;) has been intensively studied in connection withated so that both symmetries are simultaneously broken.
the effective theories of higli: superconductivity [1], as The vacuum stability is also examined by calculating
well as the probe for3 + 1)-dimensional quantum chro- the Cornwall-Jackiw-Tomboulis (CJT) potential [7] and
modynamics. Ir2 + 1 dimensions, there can be a topo- 2-loop effective potential.
logical gauge action known as Chern-Simons (CS) term. For simplicity, we set the Dirac fermion in four compo-
This term connects a magnetic fieRl with an electric nents. They-matrices are given as follows:

charge density(y ) for fermion fieldys. From this pe- 0 . 0

culiar property, the CS term is used in the field theoretical ~— y° = <‘63 B > I = <lgl i )

understanding of the fractional quantum Hall effect [2]. 73 ad (1)
As a natural extension of QBDa theory in which gauge 5 io 0

field action includes both the CS term and the Maxwell = < 0 —i02>'

term was proposed by Ref. [3]. In this theory (QE&D;), o
the coefficientk for the CS term gives the photon a We use the metric diag*”) _M(_l,,’ 1’_1)' soﬂzhat the
gauge invariant mass which explicitly violates the parity?-Matrices satisfy the algebrg*, y*} = —2¢#”. Our
symmetry. Some years ago, Hosotani [4] showed thattarting Lagrangian including explicit breaking terms is

spontaneous magnetization occurs in-QBD;, through 1 , K ) 1 )
breaking the most secret symmetry—Lorentz invariancel = i FunF*" = 2 €uvp AL AP — E (6. A)
In this theory, the Gauss lawB = —e(yt ) follows T 0

from the equation of motion. Thus the magnetized vacuum Plyk o, + eAu) —m + py'lp, (2)

corresponds to state with finite fermion densiyt /) #  where ¢ denotes theV flavor four-component fermion
0. In Ref. [5] a chemical potential term Ty was intro-  and we confine ourselves to the case that fermion mass
duced as an explicit breaking term for Lorentz symmetryjs dynamically generated only as a parity conserving mass.
and the condensatiofyty) at u — 0 limit was studied. From the above Lagrangian, we acquire the gauge field
It was found that the above vacuum is stable if and only ifequation o, F** — (x/2)e*"? F,, = —ey* whose
the fermion bare mass is zero. vacuum expectation value gives the Gauss law constraint
In this paper, we examine the possibility that LorentzsB = —e(y/T/) under the existence of constant mag-
symmetry is broken in a theory in which fermion massnetic field.
and magnetization are both spontaneously generated. Welt is known that QED is a super-renormalizable theory
regard the fermion bare mass termmiyyy as an ex- and its beta function for coupling constant has a nontrivial
plicit breaking term for flavorU(2N) symmetry [6] as infrared fixed point [6]. Therefore we cannot neglect the
well as a chemical potential terme Ty for Lorentz  screening effect of vacuum polarization at long distance.
symmetry. Solving the Schwinger-Dyson (SD) equationFollowing Ref. [6], we introduce dimensionful coupling
we clarify whether or not two condensatiorig;f¢) and o = Ne?/47 and keepa finite when N is taken to
(), are dynamically realized at the symmetric limit infinity so that the vacuum polarization effect can be taken
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into the effective action successively IfN expansion. Now we will show that the possible values efunder
Since we also attempt to investigate the spontaneouke existence of the constant magnetic field is restricted
magnetization, we separate the gauge figh¥* into by the Gauss lawkB = —e{yTy). It is known that,

background and propagating fields &, = A5 + A, unlessu? = m? + 2nleB|, n = 1,2,..., the charge con-
with A%'(x) = Bx28,1. The background fieldi{}* can densation(ys T ) is related to the parity violating part of
be fully contained into the fermion propagator vacuum polarizationll, with the relation: —e(yty) =
1 BII,(0) [12]. The Gauss law becomé&$x — 11,(0)] =
S(x,y) = —<x e YO 0 y>, 0 which means that the nonzero magnetic field can pene-
yi(iou + e M ) —m o+ py trate the system when the effective photon masg, :=
©) x — 11,(0), becomes zero. Otherwise, the system with
by using the proper time method [8]. It is determined as « # II,(0) excludes a magnetic field whether its ori-
ie ~ gin is external or dynamical. In this case we should set
S(x,y) = eX[(g(x — YHAT (x + y)>S(x — ), (4 the magnetic field to zero and investigate the dynami-
cal generation of parity breaking fermion mass as well

and the Fourier transform fd(x — y) is given as asU(2N) symmetry breaking [13]. We calculaié, (0),
~ » whenu? < m? + 2|eB|, as [11
S(k) = if ds ex;{—is<m2 - k2 + Ml&)} H =
0 eBs I1,(0) = —2asgn(ueB)d(|ul — m), 9)
X {[1 + y1y2tan(eBs)] (m + y°ke) where the step functiod(x) has a valuel/2 at x = 0
— (y'k1 + y*ky) seC(eBs)}, (5) as a zero temperature limit of Fermi-Dirac statistics. We

wherek, := k° + u + ie sgnk®) which modifies the e find that IT,(0) has different values according te| <

prescription to be consistent with the shift of Hamiltonian” 4| = m, and |u| > m. Therefore, the constraint

: x = 11,(0) forces us to take the different approach to a
by . The photon propagator can be read frdimand is symmetric limit (. m) — (0.0) for each value ofc S0

AR (p) = ——— | g*¥ — ptp” + ik Ppe™ that the nonzero magnetic field can exist. The possible
p?+ K2 p? p? way of a symmetric limit for each value & can be read
+§(p—2)2, (6) 0, lul < m—0
. - k =1 —asgriueB), |ul=m—0, (10)
where we see that the Chern-Simons coefficiepiays a —2asgnueB), m < |ul— 0

role of gauge invariant photon mass.

The effective gauge action improved by fermion 1-loop
correction is constructed by integrating out the fermion
field [9] and truncating up to the next to leading order in
1/N expansion, that is,

which corresponds to empty, half-filled, and fully filled
lowest Landau levels, respectively.

In the following, we investigate the dynamical genera-
tion of fermion mass and magnetic field for theories with
|| =0,a,2a. We confirm that the fermion mass,

I[A] = —iNTrLns™' and the chemical potential, are dynamically generated
3 1, o at the symmetric limit(m, u) — (0,0). In order to be
+ fd x _33 — kBA"(x) consistent with the nonzero magnetic field, and u,

should satisfy the same relation that the explicit breaking
+ iAM(x)D*I —i9)A” (x) 7) parameters: and u satisfy in Eq. (10) for each.
2 mr ' It was shown in Ref. [14] that the strong magnetic field
where D~! denotes the inverse of the improved pho—PIa%;]ed aJrrolle gf cata!yst rog (2]\8 S\]y mmitry'b'reakmdg |
ton propagatoD,,, (p) :— [A;i(P) — I, (p)"". The in the @ )-dimensional Nambu-Jona-Lasinio model.

vacuum polarizationll ,,(p) can be regularized in a Under the strong magnetic field, the wave function
v N . .
gauge invariant manner [10,11], as for a charged fermion is localized around the region

3 with the size of magnetic length := 1/+/leB]. So,
,,(p) = _Nezj ﬂtr[y §(k)%§(k - the fermion behaves the same as i & 1 dimension
# Q2m)3 # and the condensatiof¥y) becomes easily formed such
= L — ple ), — ipPe,,,Il, as in Bardeen-Cooper-Schrieffer theory [14]. Recently,
(_fﬂpl lp_gﬂz) N (11_7[) P Cpre (p; Shpagin [15] showed that, by using the SD equation, the
(pupy = Pi8w)L(p), ) fermion mass term was dynamically generated for all of
where p' = (0, p1, p») and diaggt,,) = (0,1,1). We the number of flavors in QEDwith an external magnetic
notice that the gauge invariant tensor is split into thefield. In CSQED;, when « has the consistent values in
parity conserving part and violating part. The latterEq. (10), the photon becomes massless and our effective
has the same tensor structure as the CS term, or gaugeeory, described by Eg. (7), is identical to the one in
invariant photon mass, in the effective action (7). QED; with an external magnetic field and the Gauss law
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constraint. We, therefore, only have to extend Shpagin’Takahashi identity. We also assundép®) is positive

analysis using the SD equation so as to include e definite andB-(p°) := §(p0) + B(p°) have a definite

component of fermion self-energy. sign irrespective of its argument’ so that we can
Now we construct the SD equation for fermion self- carry out the Wick rotatiop® = i p uniquely in the SD

energy. According to Ref. [15], we assume the strongequation.
magnetic fieldm <« 1/1, for which the higher Landau Setting A(p®) = 1 and substituting Eq. (16) into the
levels y/m? + 2n/I?, n = 1 decouple. Thus we only SD equation (14), we acquire the two independent integral
have to treat the lowest Landau level (LLL). We useequations
the photon propagator improved up to the next to leading o2 % B+ (k)
order in1/N expansion. The SD equation is [15 Bi(p)=u*m+ f dik —————
P q [15] +(p)=p = m Q3 )" k2 + BA (k)
Gry) = Sty = i€ [ d2d't () % D(p — k). )

y B At the limit & + m — 0, the functionD in Eq. (17)
X y*G(z,t)y"G(t,y)D ., (¢ , (11 ~ , q
#G @ )y Gt y)D 2, (11) becomes the one calculated from the massless photon

where we use the bare vertex approximation aRd propagator and has logarithmic behavior in the infrared
denotes the full fermion propagator which should beregion of momentum. That iszlﬁ(ﬁ) ~ —8m2a X

consistently determined through the SD equation. W‘Fnll[al with ap := al/N(1 + cal). The constantc
assume that the full propagat@ also has the same genotes the parity conserving vacuum polarization effect
form as§ in Eq. (4), where we only have to replade  11,(0) = cal and is determined by the Riemann zeta
with G. S(k) in Eq. (5) can be decomposed into the function asc = —6+/2 ¢(—1/2) = 1.76397.

Landau level poles? = m* + 2n/I>,n = 0,1,.... We Since the integral in Eq. (17) is dominated at the in-
see that the higher Landau level poIesNdecoupIe and onlkyared region, we pup = 0 and can rep|acéBi(]_() by

the LLL pole, k2 = m?, contributes toS(k) under the its zero momentum valuas. := [B-(0). The SD equa-
strong magnetic fieldn <« 1/1. Following Ref. [15], we tion atu * m — 0 finally becomes the gap equations:
approximate the Fourier transform &f and G with its

* w +
LLL contributions. That is, ws = —— ds ——In| =s|, ~ (18)
o —o0 s° + W+
1

§(k) ~ oK —[1 - ivy'y?sgn(eB)], (12) Wwhich have the nontrivial solutionw,| = —aqgIn|w,l,
m— y'k as well as the trivial one. We notice that, satisfies
(N;(k) ~ oIk ZEO[1 — iy'y?sgn(eB)], (13) the condition |w,| < 1, which is required to support

1 ) o the LLL approximation, sincexy < 1 for any value of
where 1 — iy y“sgn(eB) is a projection operator t0 ,2 anq §. The dynamical variablesn; and u, are
spin state. We notice that the fermion on the Iowesbiven bymg == (w4 — 0-)/21, pg = (ws + w_)/2l.

Landau level essentially behaves like 1)-dimensional According to the values ok in Eq. (10), the consistent

objects. o , solutions are determined as
Under the above approximation, the SD equation (11) (lws]/1,0) for k = 0
is simplified as (ma, pa) = {uwsvzz,ws/zz) for || = . (19)
g’fl(pO) =m — ,yO(pO + /-L) . (0, a)s/l) o fO.I' |K| =2«
io? % o The solution fork = 0 coincides with that of Ref. [15]
= @y f_ dk® vy (k°)y°D(p° — k%), on the empty vacuum. The solution fb¢| = 2a corre-

sponds to the one in Ref. [4] on the fully filled vacuum.
(14) But, in our case, the massless fermion is shown to be dy-
namically generated. The solution fp¢| = « is a new

where the functiorD is defined b . ; ; .
y one which generates massive fermion as well as finite-

A N 2 —12p2 )2 0 density vacuum half-filled by fermions.
D(p): fd pLe Doo(p™.p1). (15) It was not clear whether or not the solutions of SD
L~ . . . . equation,m, and w4, are energetically favorable and the
The functiong is ngtten in the form including the scalar magnetization spontaneously occurs for eachSo, we
component andy” componen such as have to investigate the vacuum energy. We assume the
~_ H —1
27" = B(p®) — A(p)y°p° strong couplinge > [~ and expand the vacuum energy

oS, 0 . 0 V(B) with respect td /al ~ \/B/e3. V(B) is constructed
— v B(p) +iesgn(pD)]. (16)  gom four parts including the Maxwell energy, that
without loss of generality. In Eq. (11), we use theis, V(B) = Vcyr(B) + Ve(B) + Vp(B) + B*/2. Veir
bare vertex approximation, so we must sdtp’) =1  denotes the CJT potential [7], which gives the energy
in order to maintain the consistency with the Ward-difference between the nontrivial vacuum and the trivial
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one at the presence of the magnetic field. It is evaluatednd broken Lorentz symmetry. This configuration of vac-

for eachk, in the LLL approximation, as [11] uum has been certified to be realized through our argu-
N ment in this paper. It should be noticed that the magnetic
Verr(B) = ~am max{my, | wal} leB)?? + O (B?), field does not necessarily enhance the mass generation if
v

the vacuum is fully filled by fermions. This shows the
(20)  sharp contrast to the results of Refs. [14,15], which are

which has a negative value and shows that the nontrivid?@S€d on the empty vacuum and correspond to the case

solutions are energetically favorable irrespectivexof k=5 i i
Ve (Vp) corresponds to the shift of zero-point energy We would like to thank K. Yamawaki and A.l. Sanda

for the fermion (photon) induced by the magnetic fielgfor their encouragement and enlightening discussions. We

at the symmetric limit. V+ is deduced from the 1-loop &S0 thanks V.P. Gusynin, M. Hashimoto, K.-I. Kondo,
effective action (7) asN TrinS~' in u * m — 0, that V.A. Miransky, Y. Nagatani, T. Sato, M. Sugiura, and
is [11] A. Takamura for valuable discussions. T.lI. is grateful to

K. Inoue for his encouragement.
N —
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