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Stabilizing Role of Itinerant Ferromagnetism in Intergranular Cohesion in Iron
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We present a simple, general energy functional for ferromagnetic materials based upon a local sp
density extension to the Stoner theory of itinerant ferromagnetism. The functional reproduces we
available ab initio results and experimental interfacial energies for grain boundaries in iron. The
model shows that intergranular cohesion along symmetric tilt boundaries in iron depends strong
upon the magnetic structure at these interfaces and illuminates the underlying mechanisms. [S003
9007(98)07289-5]
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Iron and its steel alloys exhibit two distinct outstand
ing physical properties, high strength and high magne
response. Little is known about the direct relationshi
if any, between the microscopic origins of these prop
erties. The exchange interaction, preference for alig
ment of spins to reduce interelectronic Coulomb repulsio
through the statistical avoidance of fermions, drives itine
ant ferromagnetism. Fundamental topological excitatio
of the crystalline lattice govern mechanical response: d
locations mediate plasticity; grain boundaries control m
crostructure and intergranular cohesion. In this Letter w
present a new model for itinerant ferromagnetic iron an
demonstrate that the exchange interaction plays a sign
cant stabilizing role in grain boundaries, thereby contribu
ing to the strength of intergranular cohesion.

The fundamental role played by exchange in controllin
the mechanical response of magnetic materials is at pres
poorly understood for lack of an appropriate microscop
theory. Studies in iron to date are limited to eithe
full-blown ab initio spin-dependent electronic structure
calculations [1] or simple interatomic potentials such as th
embedded atom method (EAM) [2]. While describing th
relevant physics,ab initio calculations treat explicitlytoo
manydegrees of freedom to allow studies of the comple
structures of all but the simplest extended defects. For t
reason, total energyab initio studies of iron to date have
been limited to small clusters exploring the behavior of th
simplest [S ­ 3s111d] grain boundary [3–5]. Interatomic
potentials, while practical for complex systems, deal wit
too few degrees of freedom to treat itinerant exchang
properly. Nonetheless, these potentials have been usefu
studies of grain boundaries [6], dislocations [7], and eve
fracture [8]. Energies calculated for grain boundaries wi
the EAM [6], however, are exaggerated by about a factor
2 when compared with experimental values [9], beginnin
to approach even the experimental surface energy [1
Here, we present a simple, general model which giv
much better results and reveals the mechanisms stabiliz
the boundaries.

In response to the above weakness, Krasko [11] has
troduced recently an atomistic potential which includes
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prescription for estimating the exchange energy of ea
atom from its local environment. Here, we follow an a
ternate, microscopic route. In accord with the microsco
origin of itinerant ferromagnetism, we consider the e
tended nature of the electrons and determine only the s
moment coupling constant, the Stoner parameter [12],
function of the local atomic environment.

Microscopic approach.—Such intermediate, electroni
structure based descriptions of iron have been develo
in previous studies of iron [13,14], but for ideal crystallin
systems. Our approach to the study of defects is
first identify the smallest, physically reasonable set
degrees of freedom from these studies and then extend
treatment to include inhomogeneous systems.

Hasegawa and Pettifor [13] reproduce the experim
tal P 2 T phase diagram of iron by combining a tigh
binding description of thed bands with a treatment o
spin-fluctuation effects. They note that asT ! 0, spin-
fluctuation effects become unimportant and their sp
fluctuation theory reduces to the traditional mean-fie
Stoner theory of itinerant ferromagnetism [12] at a temp
atureTf ø 500 K. Zhong, Overney, and Tomanek [14
take up the fact that mean-field Stoner theory is suffici
at room temperature and build a model for bulk crystalli
iron based upon anspd tight-binding Hamiltonian and
Stoner theory, treating only the mean atomic spins.

We therefore identify a minimal set of active physic
degrees of freedom belowTf to consist of the net mean
spin moment on each atom and single particle sta
constructed from atomicliked orbitals. To pass beyond
perfect crystalline material, we introduce a local atom
spin-density extension to Stoner theory.

Construction of energy functional.—Our selected de-
grees of freedom are (i) the linear combination coe
cientscnksi, mzd describing the bonding among themz ­
22, . . . , 2 atomic d states of each atomi for each band
n and each point in the Brillioun zonek, (ii) the net spin
nssid, s ­ 61, associated with each atomi, and (iii) the
location $ti of each atomi.

To describe the bonding contribution to the ener
enk associated with each single-particle orbital, we u
© 1998 The American Physical Society
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an orthogonal two-center tight-binding Hamiltonian de
scription [15]. In the usual fashion, we take the diago
nal elements of the matrix of hopping integrals amon
Lz eigenstates for two atoms separated by a distancet

along thez axis,ddd, ddp, dds, ddp, ddd, to decay ex-
ponentially with distance,ddl ­ ddloe2qt. To set the
primitive matrix elementsddlo and the decay factorq we
insist that the tight-binding Hamiltonian reproduces we
the ab initio density of states for thed bands, which is
accomplished by setting the Slater-Koster parameters
ddso ­ 21 Ry, ddpo ­ 1 Ry, dddo ­ 20.5 Ry, and
the decay factor toq ­ 0.638 72 bohr21.

In summing over the single particle energies, w
replace the integral over the Brillouin zone with a discre
sum with appropriate weightswk [16]. The tendency
of our system to spin polarize requires us to consid
separate Fermi occupation numbersfnks for each spin
channels. We also include the fermionic entropy

snks ; 2kBf fnks ln fnks 1 s1 2 fnksd lns1 2 fnksdg ,

so that our band structure energy appears as the fi
sum in the energy functional (1), where theenk are the
eigenvalues of the tight-binding Hamiltonian. All of the
results below are computed atT ­ 300 K.

Combining the Fermi occupationsfnks with the ex-
pansion coefficientscnks yields the local atomic spin
densities,nssid ;

P
n,k,m wkfnksjcnksi, mdj2. The Stoner

theory of itinerant ferromagnetism describes an energe
benefit of polarization due to exchange of magnitud
NatIm2y4, where Nat is the total number of atoms in
the crystal,m is the spin polarization per atom, andI is
the Stoner parameter [12]. To extend this theory beyo
homogeneous bulk systems, we introduce a local appro
mation to the exchange energy in the same spirit as
local-density approximation [17] of density functional the
ory [18]. In particular, for an inhomogeneous system, w
associate a separate energy contribution to the excha
from each atom equal to what we would expect on
per atom basis from a homogeneous system consisting
atoms in the identical environment with identical spin po
larization. This contribution appears as the second s
in our energy functional (1). The physical motivation fo
this approximation is that the itinerant nature of magnetis
in iron tends to smooth variations in the spin polarizatio
limiting the effects of gradient corrections. This approac
has the advantage of allowing us to draw uponab initio
values of the Stoner exchange parameter in bulk.

Krasko [19] has performedab initio linear response the-
ory calculations of the Stoner parameterI in bcc and fcc
bulk iron and found it to have a mild, approximately linea
volume dependence,dIyds ­ 20.01 Ryybohr, wheres is
the Wigner-Seitz (WS) radius, and to have slightly diffe
ent values for the bcc and fcc lattices,Io

bcc ­ 0.072 Ryym
2
B

and Io
fcc ­ 0.069 Ryym

2
B at s ­ 2.66 bohr. The use of

these values in our model gives the correct magnetic a
nonmagnetic states for the bcc and fcc structures, resp
tively. However, to yield the correct total energy orderin
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of states, we have found necessary a slight enhancem
of the bulk Stoner parameters toIo

bcc ­ 0.077 Ryym
2
B

and Io
fcc ­ 0.070 Ryym

2
B, which leads to no magnetiza

tion in the fcc phase and a bcc phase magnetic mom
of 2.56 mByatom, somewhat enhanced relative to the a
cepted moment.

Going beyond bulk to inhomogeneous systems with
termediate coordinationsQ, we make a linear interpola-
tion for Ii between what would be expected at the sa
WS radius for the bcc (Q ­ 8) and the fcc (Q ­ 12) lat-
tices. We determine the local coordination numberQi and
WS radiussi for each atomi with the formulation de-
veloped by Sawada [20] and the conversionsi ­ Risa 1

byQi 1 cyQ2
i dy2 from his parameterRi. We find that

setting Sawada’s coefficients tol1 ; 4.5023 bohr21, l2 ;
10.6376 bohr22 and usinga ; 1.7144, b ; 29.0948, c ;
56.372 reproduces to within 0.01% the correct coordin
tion numbers and to within 0.3% the correct WS radii f
the diamond structure, bcc and fcc lattices when packe
the atomic density of bcc iron. With the Stoner paramet
thus determined, we set the fillingNd of the manifold ofd
states, so that the Fermi level for spin-down electrons in
bcc structure falls precisely at the minimum of the pse
dogap in the tight-binding density of states, reproduci
the physical behavior observed inab initio calculations.
The resulting filling,Nd ­ 6.7 electronsyatom, is in good
agreement with the value ofNd ­ 7.0 used successfully
in [13].

Finally, for the energy associated with the locations
the atoms, we take a power-law relationship between
interatomic potential and the hopping elements, a st
dard successful practice in tight-binding calculations [2
to produce the final term in (1). We fit the two param
ters b and p to the experimental equilibrium lattice con
stant and bulk modulus for the bcc phase of iron, yieldi
p ­ 2.2355 bohr21 and b ­ 872.5174 Ry, respectively.
The ratiol ; pyq corresponds to anormalized hardness
[21], ah ; sl 2 1dyl ø 0.7, in line with the values near
two-thirds observed previously in tight-binding descri
tions of the transition metals [22].

Our final energy functional is thus

Esh $tijd ­ min
c ,f

0

( X
nks

wks fnksenk 2 Tsnksd

2
1
4

X
i

Iifn"sid 2 n#sidg2

1
b
2

X
ifij

e2ptij

)
, (1)

The constraints on the minimization are Fermi statisti
0 # fnks # 1, and the total number ofd electrons,
Nd ­

P
nks wkfnks. This formulation is equivalentin

bulk systemsto the familiar formulation of the Stoner
theory in terms of a rigid shift between the up an
down electronic density of states, but has the advant
in treating complex structures of allowing distinct loc
2999
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Stoner parameters to be applied to each atom according
its environment.

Verification.—In bulk, we reproduce the correct energ
ordering of phases (bcc-hcp-fcc), findingEhcp 2 Ebcc ­
2.2 mRyyatom andEfcc 2 Ebcc ­ 6.5 mRyyatom. Our
fcc-bcc energy difference is on the order of what is foun
in other calculations [13] and theoretical and experiment
extrapolation [23,24]. In agreement withab initio calcula-
tions [25,26], we observe that the hcp phase is more sta
than the nonmagnetic fcc phase for all values of the WS r
dius. We predict a pressure-induced phase transition fro
the bcc to the hcp phase at a WS radius ofs ­ 2.6 bohr, in
good agreement with theab initio studies of [24,27]. (Note
that we did not fit our parameters to produce the two pr
ceeding properties.) The small energy differences amo
these phases open the question of mechanical stabil
Our Hamiltonian gives a mechanically stable ferromag
netic bcc phase, even along the Bain transformation (C0 .

0). Our predictedC0 andC44, which we have made no at-
tempt to fit, are about 25% lower than observed expe
mentally, corresponding to an underestimation of abo
12% in the frequencies in the long-wavelength portion o
the phonon spectrum.

The experimental literature determines an average ty
cal grain boundary energy ina iron, and theab initio
literature provides the spin moment distribution of th
S ­ 5s310d and S ­ 3s111d boundaries and the atomic
relaxation of theS ­ 3s111d boundary. Table I summa-
rizes our results for these and two other symmetric t
boundaries. Our calculations were carried out in supe
cells containing two oppositely oriented boundaries sep
rated by at least 16 layers of atoms. We performed fu
structural and supercell relaxations of these boundaries

Table I shows that our energy results are in goo
agreement with the experimental studies, which set t
mean typical grain boundary energy to be approximate
770 ergycm2 [9]. [The S ­ 3s112d boundary, the coher-
3000
TABLE I. Summary of grain-boundary results: Boundary formation energy (Egb), exchange
contribution to the energy (Eex), change in magnetic moment on the boundary plane (Dm),
maximum Stoner parameter (DImax), and outward motion of planes immediately neighboring
the boundary (Dz). Results of other studies appear in parentheses.

Boundary Egb Eex Dm DImax Dz
(ergycm2) (ergycm2) (%) (%) (bohr)

S ­ 3s112d 140 28600 14 2 0.1
(300b)

S ­ 5s310d 560 23800 9 3 0.5
(1300b) (8c)

(,770 a)

S ­ 3s111d 770 25200 18 4 0.6
(15d–18e) (0.5–0.8e)

S ­ 9s114d 760 24100 15 4 0.9
(1450b)

(,770 a)

Expt: a[9]. EAM: b[6]. Ab initio: c[28]; d[3]; e[5].
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ent twin, is a known special case expected to be unrep
sentatively low in energy.] The structural and magne
predictions of our energy functional are in excellent qua
titative agreement with theab initio predictions for the
outward structural relaxation of the atomic planes of t
S ­ 3s111d boundary and for the fractional enhanceme
of the spin moments on the symmetry plane for both t
S ­ 5s310d and S ­ 3s111d boundaries. (SeeDz and
Dm in Table I.)

Finally, Fig. 1 shows the detailed spatial distribution o
spin moments in the vicinity of theS ­ 5s310d boundary.
The figure shows that our model not only reproduc
the enhancement of moments on the symmetry plane
also predicts correctly the tendency for the spin to fa
below the bulk moment before eventually heading back
the bulk value as one moves away from the bounda
Although the figure shows some discrepancies amo
the details of the two sets of predictions, the agreem
which we find supports the fundamental soundness of
approach and its ability to capture the basic physics of a
make accurate predictions for complex structures in iro

Exchange stabilization of grain boundaries in iron.—
The fact that the embedded atom model consistently ex
gerates boundary energies in iron by a factor of 2 over o
functional points to the participation in boundary energe
ics of a microscopic mechanism more subtle than sim
distortions of the metallic bonding network. The data
Table I show that the exchange interaction is a major fa
tor in the physics of the grain boundaries. The tenden
to minimize the exchange contribution drives the syste
to lower its energy at the expense of an almost, but n
quite, compensating dramatic increase in the atomic a
band structure contributions. The end result of this b
ance is the lower and much more realistic set of bound
energies in Table I.

Breakdown of the large negative contributions fro
the exchange interaction shows that the enhancem
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FIG. 1. Prediction of atomic spin moments in the vicinity o
the S ­ 5s310d symmetric tilt boundary in iron. Left: Present
model; Right:ab initio results of [28]. Horizontal line gives
the bulk phase moment of our calculation.

comes mostly from an increase by 10%–20% of the atom
spin moments with a lesser contribution from an increa
by 2%–4% of the Stoner exchange parameters themsel
(Table I.) The increase in magnetic moments along t
boundary therefore plays a key role in stabilizing th
boundaries.

The origin of the increase in moments is the fact th
the states in the energy range which contributes to t
spin moments in the system tend to be more localiz
on the grain boundary. States with energy below bo
Fermi levelsm" and m# are filled equally with up and
down spins and so contribute nothing to the net mome
as do the completely empty states with energies above b
Fermi levels. Only those states with energies between
Fermi levels are filled with uncompensated spins and c
contribute to the net spin moments. The states in th
energy range tend to localize on the boundary as a dir
consequence of the more open structure of the bounda
which lowers the tight-binding matrix elementsddl and
thereby narrows the band toward the band center. We ha
confirmed this latter behavior by direct inspection of th
electronic states.

Our model also sheds light on the mechanisms und
lying structural relaxation of the grain boundaries. In a
boundaries in our study, the two planes of atoms immed
ately neighboring the symmetry plane relax outward an
compress into the surrounding bulk. This relaxation pa
tern is also observed in theab initio calculations of the
S ­ 3s111d boundary [5]. Because the Stoner paramet
increases with compression of the lattice [19], the e
change interaction provides a driving force for this relaxa
tion pattern. In particular, the compression of the plan
neighboring the symmetry plane into the surrounding bu
increases the Stoner parameters for a total of four layers
atoms, the two moving layers and the two bulk layers in
which they are compressed on either side of the bounda
f
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In conclusion, we have developed a local spin densit
functional description of itinerant ferromagnetic materials
which provides a simple and accurate picture of th
relationships among geometry, magnetization, relaxatio
and stability for tilt grain boundaries in iron.
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