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Random Telegraph Noise in Microstructures
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The theory of random current switchings in conductors withS-type current-voltage characteristic is
presented. In the range of bistability, the mean time spent by the system in the low-current state b
a transition to the high-current state occurs,t̄l , decreases with voltage, and that for the high-curren
state,t̄h, grows with voltage; both variations are exponential-like.t̄l ­ t̄h at a definite voltage in the
bistability range. These results are in full accordance with experiments on microstructures. Becau
the growth of both times with the size of the conductor, such noise is observable just in microstruct
[S0031-9007(98)07134-8]

PACS numbers: 72.70.+m, 73.50.Fq, 73.50.Td
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In many systems [reverse-biasedp-n junctions, metal-
oxide-semiconductor field-effect transistors (MOSFET’s
metal-insulator-metal (MIM) tunnel junctions, small sem
conductor resistors, or small metallic samples], the curre
randomly switches between two discrete values. The tim
intervals between switchings are random, but the two v
ues of the fluctuating current are time-independent. Th
kind of noise is studied from the 1950s and is now calle
“random telegraph noise” (RTN) (for reviews see [1–3]
Recently, at least two groups observed RTN in m
crostructures in the range of voltages where the curre
voltage characteristic (CVC) wasS shaped [4–8]. The
goal of this Letter is to present the theory of RTN in sys
tems withS-type CVC which explains, in rather genera
terms, the dependence of RTN parameters on the volt
and on the size of the system.

An S-type dependence of the current density,j, on
the electric field,F, is schematically shown in Fig. 1,
curve 1 (for a review see [9]). In the range of the electr
fields between the second and the first threshold fie
Ft2 andFt1, the current is a three-valued function of th
field. The states corresponding to the lower and upp
branches of the CVC are locally stable, that is, stab
against all small perturbations. The state correspond
to the negative differential resistance branch is unsta
against some even small perturbations [9]. Howeve
large fluctuations may cause transitions between the t
locally stable states (LSS), producing switchings of th
current, if the load impedance is sufficiently lower tha
the resistance of the sample, i.e., if the sample is und
voltage-controlled regime. This system is an example o
bistable macroscopic system. Other examples include
tunnel diode (a system withN-type CVC), nonequilibrium
chemical systems, and many others. The first theo
of stochastic transitions between the LSS in a bistab
electronic device was developed by Landauer [10] for t
tunnel diode. The general theory is presented in [11,12

Even though the specific mechanisms of theS-type
CVC may be very different in different systems, som
features of this phenomenon, not only the shape of t
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CVC, are general [9]. The rapid nonlinear growth of th
current with voltage in semiconductors and semiconduc
microstructures can be often attributed to the rapid grow
of the number of free charge carriers due to som
kind of breakdown, for instance, to the low-temperatu
impurity breakdown. Another possible mechanism is
rapid growth of the electron mobility in a semiconducto
in which the times of momentum and/or energy relaxatio
grow with the electron temperatureT .

We first study suchS-type CVC which stem from the
variation of the total numberN of the free charge carriers
in the sample. The master equation for the probabilit
PsNd, of the state withN free charge carriers can be

FIG. 1. TheS-type current-voltage characteristics (schema
cally). j is the current density, andF is the electric field.
Curve 1: The “intrinsic” dcS-type CVC. Ft1, Ft2, andF0 are
the first threshold field, the second threshold field, and the fie
at whicht̄l ­ t̄h, respectively. Curve 2: The dc CVC of a mi-
crostructure measured under voltage-controlled regime and w
the time of current averaging much greater than the mean tim
t̄l and t̄h.
© 1998 The American Physical Society
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written as follows:

≠PsNdy≠t ­ W1sN 2 1dPsN 2 1d

1 W2sN 1 1dPsN 1 1d

2 fW1sNd 1 W2sNdgPsNd . (1)

HereW1sNd andW2sNd are, respectively, the probabil-
ity, per unit time, of generation (processN ! N 1 1)
and trappingsN ! N 2 1d of one free charge carrier in
the state withN such carriers. The theory of systems de
scribed by the master equation (1) (the random quant
is a whole number, its incrementDN ­ 61 only) is well
developed [10–14].

We consider conductors withN ¿ 1. The rates
W6sNd scale with the volumeV of the system as
W6sNd ­ Vg6snd, where g6snd are the specific rates
which depend on the density of the free charge carrie
n ­ NyV (if the system is quasi-2D the volumeV must
be replaced with the surface area). It means that t
theory presented here is not concerned with the RT
produced by transitions (electron trapping and detrappin
involving one or few traps only.

In the systems under consideration, the probability de
sity psnd of the charge carriers’ densityn is found by using
the expansion in powers ofV 21 [11,12]. For systems de-
scribed by Eq. (1), the stationary probability distributio
density equals [13]:̄psnd ­ C expf2Vmsndg, where

msnd ­ 2
Z n

n0

dn0 lnfg1sn0dyg2sn0dg , (2)

and in the exponent only the term~ V has been retained.
The coefficientC and the densityn0 are determined by the
normalization ofp̄snd.

For each fieldF in the range of bistability, the specific
rates in the steady states satisfy the equationsg1snid ­
g2snid, where ni is the density in any of these three
states, i.e., low-currentsni ­ nld, high-currentsni ­ nhd,
and locally unstable statesni ­ nlud. As follows from
Eq. (2), these states correspond to the extrema ofmsnd.
The second derivative at an extremum equals:

m00snid ­

Ω
d

dn
fg2snd 2 g1sndg

æ
ni

¡
g1snid . (3)

Obviously, the state is locally stable if the differenc
g2snd 2 g1snd grows with n, and is unstable in the
opposite case. It follows then thatmsnd has minimums at
n ­ nl andn ­ nh, and a maximum atn ­ nlu (Fig. 2).

Another system withS-type CVC is an electron gas with
frequent electron-electron scattering and with the time
electron momentum scattering by ionized impuritiestp

and/or the time of electron energy scattering by phono
te growing with the electron temperatureT . This “over-
heating” model was used for the analysis of systems w
S-type CVC [9]. The random quantity is the electron en
ergyE the increments of which in the random processese

vary continuously. Actually, it is assumed in this mode
that jej ø kBT due to the inequalitytp ø te and to
the smallness of the characteristic energy of emitted a
-
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FIG. 2. The dependence of the “potential”m on the electron
density n (shown schematically) for three electric field
F: (1) Ft2 , F , F0, (2) F ­ F0, and (3)F0 , F , Ft1.
The positions ofmsnd extrema, i.e.,nl , nlu, andnh, are shown
for the curve 1. The dependence ofm on the specific electron
energy u in the “overheating” model of theS-type CVC is
qualitatively the same.

absorbed acoustic phononsh̄V ø kBT . The stochastic
dynamics of the system is determined by the probabil
WsE 2 e ! Ed per unit time and per unit energye of a
transition from a state with total energyE 2 e to a state
with energyE. The intensive random variable in this cas
is the specific energyu ­ EyV (or the electron tempera-
tureT , uyn). The transition rates scale with the volum
V asWsE ! E0d ­ Vgsu, E0 2 Ed.

Because the change of the energyjej due to electron
acceleration or deceleration by the applied electric fie
F and by emission and absorption of acoustic phono
is øuyn , kBT , the master equation is reduced to th
Fokker-Planck equation in its simplest form. In this ap
proximation,psud is given by the same equation aspsnd
with msnd replaced withmsud ­ 2

Ru du0A0su0dyA1su0d.
Here A0sud ­ ssudF2 2 Qsud is the specific power,
per unit volume, acquired by the electron gas fro
the electric field minus the power transferred to th
phonon bath, the coefficient of energy diffusionA1sud ­

A
simpd
1 sud 1 A

sphond
1 sud, where A

simpd
1 sud ­ e2nF2Dsud,

and A
sphond
1 sud ­ nsh̄Vd2yph. Dsud is the ordinary

diffusion coefficient, andyph is the frequency of electron
scattering by phonons. The steady states satisfy the co
tion A0suid ­ 0. The model assumes that there are thr
stationary values ofui satisfying this equation. Obviously
a steady state is locally stable ifs0sudF2 2 Q0sud , 0,
i.e., if m00suid . 0, and unstable in the opposite case (th
prime denotes differentiation with respect tou).

The experimentally measured are the mean times,t̄l

andt̄h, spent by the system in the low-current LSS (low
CVC branch) withn ­ nlsFd and in the high-current LSS
(upper CVC branch) withn ­ nhsFd, respectively, before
a transition to the other LSS occurs. If the system happe
to reach the locally unstable state it “falls” with equa
probability s1y2d into any of the two LSS. Therefore, the
2987
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problem is to find the mean timētsnd necessary to reach
for the first time the unstable state by starting from a sta
with a given density of free charge carriersn, wheren
is sufficiently lower thannlu (for calculation of the time
t̄l) or sufficiently higher thannlu (for calculation oft̄h).
For processes with incrementsDN ­ 61, the equation
for the timet̄snd was found in [13,14] (see also [11]). In
the lowest approximation in1yV :

t̄l ; t̄snld ­
p exphV fmsnlud 2 msnldgj
g1snld

p
m00snld jm00snludj

. (4)

The equation fort̄h is found by replacingnl by nh.
For the “overheating” model one can use the approa
suggested by Weiss [15]. The result fort̄l can be
obtained from Eq. (4) by substitutingui for ni and
A1suldy2 for g1snld.

In the low-field part of the bistability range, i.e., at fields
F . Ft2 but close toFt2, the differencemsnlud 2 msnhd
is small and tends to zero asF ! Ft2 when nh and nlu

coalesce. In this extreme casemsnld , msnhd (Fig. 2),
and the timētl ¿ t̄h; i.e., the globally stable phase (GSP
corresponds to the lower branch of the CVC. The rando
transitions from the low-current phase to the high-curre
phase are comparatively rare (the time between consequ
pulses is long) and the random current pulses are posit
and short. In the opposite extreme case, when the fieldF
is close toFt1, msn1d . msnhd, and the timētl ø th: the
GSP is the high-current phase. Then the random curr
pulses are also short but negative.

A field, F0, must exist, within the range of bistabil-
ity, at which t̄l ­ t̄h. At this field (Fig. 2) the po-
tential msnld ­ msnhd [the effect of the preexponential
factors in Eq. (4) has been neglected]. It is known from
the theory of conductors withS-type CVC (see [9]) that,
under the current-controlled regime, a field exists with
the same range of bistability (“sustaining” field) at which
the two phases, corresponding to the lower and upp
stable branches of the CVC, coexist and are separa
by a boundary the thickness of which is some diffusio
length l. Then the high-current phase has the form o
a current filament with radiusR ¿ l, and the CVC is
vertical. In the deterministic approximation (fluctuation
neglected) this field is determined by the stability of th
boundary which leads to the equationHsnld ­ Hsnhd,
whereHsnd ­

Rn dn0fg1sn0d 2 g2sn0dgDsn0d, andDsnd
is a phenomenological diffusion coefficient which dete
mines the flow of charge carriers in the transition boun
ary region. The extrema ofHsnd and msnd coincide.
However, the sustaining field andF0 may differ.

The difference of the two potentials in the vicinity of
the field F0 varies linearly with F: msnld 2 msnhd ­
asF 2 F0d, wherea ­ hsdydFd fmsnld 2 msnhdgjF0 . It
means that in the range of the field aroundF0 the ratio of
the two times,

t̄lyt̄h ø expf2VasF 2 F0dg , (5)

varies exponentially with the fieldF. Of course, in the
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same vicinity ofF0, msnlud 2 msnld andmsnlud 2 msnhd
also vary linearly with the fieldF. Therefore, each of the
two times varies exponentially withF: t̄l drops [because
msnlud 2 msnld drops] andt̄h grows. Since the times
t̄l and t̄h depend on the corresponding differences
potentials exponentially, and these differences depend
the electric field, one may expect a strong, exponenti
like, dependence of the times onF in the entire range
of bistability except the close vicinities of the threshol
(critical) fieldsFt1 andFt2. Just an exponential variation
of the times in the low-current and high-current states wi
voltage is observed in all experiments [4,6–8].

As follows from Eq. (4), the times̄tl and t̄h grow
exponentially with the volumeV of the system which
exhibits theS-type CVC. This dependence stems from
the fact that the random transitions between the two loca
stable macroscopic states are driven by large fluctuation
the system, and the greater the size of the system the r
are such fluctuations which are necessary for the transit
to happen. Therefore, the mean times spent in each
the LSS are many times greater than the characteris
microscopic times of electron transport in the system. Th
conclusion is in a good agreement with experiments:
Ref. [4] the timest̄l and t̄h vary from 10 ms up to 1 s,
that is, in any case are by several orders higher th
any microscopic transport time. The preexponential fac
in Eq. (4) is independent of the system’s size and, as
whole, can be considered as a microscopic time which
a combination of microscopic times related to the local
stable and locally unstable steady states.

In large systems, if the effect of nucleation is neglecte
(see below), the times̄tl and t̄h become so long that the
current switching can be seen only at the threshold elec
fields: at F ø Ft1 and F ø Ft2, where the differences
msnlud 2 msnld andmsnlud 2 msnhd, respectively, tend to
zero (Figs. 1 and 2). When the fieldF is increased from
small values and reachesFt1, the current switches to the
upper branch. When the field is then reduced it drop
at F ø Ft2, to the lower branch, and a hysteresis loop
observed.

It was assumed above that the most probable of tho
states which separate the two domains of attraction [1
to the low-current and to the high-current steady sta
respectively, is the spatially uniform state withn ­ nlu

(or u ­ ulu). A fluctuation with a volume smaller than
V (but greater than some critical one) after being creat
may grow further and realize the transition. The role
such fluctuations is analogous to the role of nuclei of th
new phase in the vicinity of a first-order equilibrium phas
transition.

The fluctuations with at least one of the linear dimen
sions smaller than some diffusion length are suppress
by diffusion processes. It is reasonable therefore to a
lyze the evolution of strong fluctuations each of whic
constitutes a domain of one phase embedded in the sec
phase. Some conclusions can be made by comparing
evolution of two characteristic nuclei: one varying alon
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the current but uniform over the sample’s cross sectio
the second varying in the direction perpendicular to th
current but uniform in the direction of current.

If the nucleus is varying along the current only, th
current density,j, not the field, is the same at both side
of the boundary between phases. Let the main phase
“cold” (n ­ nl or u ­ ul) and the nucleus “hot” (n ­ nh

or u ­ uh) at time t ­ 0. The higher current density in
the nucleus cannot be supported even under a station
regime. For instance, in the “overheating” model, insid
the nucleus the net specific power is, att ­ 0, smaller
than A0suhd ­ 0 by s1 2 slyshdslF2. Therefore, the
value of u must decrease with time, and the nucleu
must disappear. If, on the contrary, the main phase
“hot” and the nucleus is “cold” att ­ 0, the net specific
power inside the nucleus is greater thanA0suld ­ 0 by
sshysl 2 1dshF2 . 0; i.e., u must grow with time until
the cold nucleus disappears. Hence, the nuclei w
boundaries normal to the current cannot grow.

If the nucleus has the form of a filament or a laye
parallel to the current, the field is the same in the ma
phase and in the nucleus. The relative stability of th
two LSS is determined by Eq. (4) for̄tl and by the
corresponding equation for̄th: the GSP is the “cold” one
at fieldsF , F0 and the “hot” one atF . F0. Because
of the growth of GSP nuclei, the smaller of the two times
t̄l or t̄h, stops to grow exponentially withV when the
transverse size of the sampleL' is greater than the critical
transverse sizelc of the filamentary nucleus. However,
RTN is produced by transitions in both directions an
between definite two states only. Since the nuclei of th
metastable phase (MP) in the GSP cannot grow free
the waiting time for the transition of the entire system
to the MP (only such transitions are observed as RTN
must grow exponentially withV . The random creation
of finite s,V d nuclei of MP happens more frequently bu
it is observed only as comparatively small fluctuations o
the current about its value in GSP, not as RTN. Hence,
L' ¿ lc RTN is not observable.

Because the mechanisms of theS-type CVC involve
electron heating by the electric field and the energy diffu
sion lengths are usually no less than1 m, lc may be greater
thanL' in many nanostructures. If, atL' ø lc, the num-
ber of charge carriers in the sample is great (in this sen
the system may be called mesoscopic), the equations fot̄l

andt̄h remain valid. In the experiments [4,6–8] no chang
of the exponential dependence oft̄l andt̄h on voltage was
observed at that voltageU0 at which the two times become
equal. One may conjecture that, in these experiments,
width L' of the active part of the conductor was smalle
thanlc (in Ref. [4] L' , 100 200 nm), and the RTN was
caused by transitions of the sample as a whole.

In microstructures with a great number of transition
within the time of the experiment (“ergodic systems”), th
measured dc current is its mean value averaged over th
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transitions:

ĪsUd ­ ft̄lIlsUd 1 t̄hIhsUdgyst̄l 1 t̄hd . (6)

At the low-field side of the bistability range wheret̄l ¿
t̄h the dc current is close to its lower branch valu
IlsUd (Fig. 1, curve 2). As the electric field approache
F0, the current rapidly increases due to the exponent
dependence of̄tl and t̄h on F [Eq. (5)] and to the fact
that usuallyIh ¿ Il. At F ­ F0 it is equal toIsF0d ­
fIlsF0d 1 IhsF0dgy2. At greater fields it is expected to
follow the high-current branch of the intrinsicS-type
CVC. Even though the intrinsic CVC is ofS-type,
the measured CVC under voltage-controlled regime
monotonous, shows no negative differential resistan
and has a point of inflection (it can be interpreted a
“smeared phase transition”). Similar continuous dc CV
has been found in [7,8]. It is worth noticing that unde
the voltage-controlled regime the CVC may have eith
positive slope or current discontinuities.

In conclusion, the theory presented above explains
qualitative features of the experimental data: (1) The dr
and growth of the mean times̄tl and t̄h, respectively,
with voltage. (2) The exponential dependence of the
times on voltage. (3) The coincidence of these two tim
at a voltage (fieldF0) in the bistability range. (4) The
macroscopic values of the timest̄l andt̄h. The dc CVC of
microstructures under voltage-controlled regime measu
with the time of current averagingtm ¿ t̄l, t̄h has a
positive slope and a point of inflection. RTN is observab
in samples of small size (micro- and nanostructures).
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