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Mechanisms of Self-Ordering of Quantum Nanostructures Grown on Nonplanar Surfaces
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We present an analytic model that explains the self-ordering of quantum nanostructures grown on
nonplanar surfaces. Self-limiting growth in these structures results from the interplay among growth-
rate anisotropy, curvature-induced capillarity, and, for alloys, entropy of mixing effects. Experimental
results on self-limiting organometallic chemical vapor deposition on corrugated surfaces are in
quantitative agreement with the model. The implications of the self-limiting growth characteristics
on the self-ordering of quantum wells, wires, and dots are discussed. [S0031-9007(98)07220-2]

PACS numbers: 68.65.+g, 68.55.—a, 81.10.Bk, 82.65.Dp

Two- or three-dimensionally quantum-confined semi- The formation of surface patterns during growth relies
conductor structures have attracted much attention becauea lateral gradients in the surface chemical potenial
of their interesting physical properties and potential deviceConsidering, for simplicity, variations in only one dimen-
applications [1]. To overcome limitations in size and inter-sion ), w of the componeni of an alloy at a growth
face quality related to traditional lithography techniquestemperaturd’ is written as
many efforts have been devoted to study their formation,,. = 4, + Qo[o(£)F/2E + Qoly(8) + y"(0)]k(£)
duringthe epitaxial process [2]. This can be accomplished
if a suitable driving force is introduced to yield the desired + kgT In xi(§), (1)
lateral heterostructure patterning. A widely used approacihereyx; is the mole fraction. In (1), the second term is
in this direction is to exploit self-ordering processeptar  related to the tangential surface stress E being the elas-
nar surfacesas for strained-induced Stranski-Krastanowtic modulus [4], the third one is due to the surface cur-
growth of quantum dots (QDs) [3,4]. Such techniquesvaturex and involves the (orientation-dependent) surface
have the advantage that self-ordering is achieved withoutee energyy () [12] (with £}, the atomic volume), and the
any surface patterning prior to growth; however, they suffourth one is a contribution due to the entropy of mixing
fer from a limited control on uniformity and deposition [13]. Self-ordering driven by lateral gradients of stress has
site due to the intrinsic random nature of the nucleatiorbeen discussed for the InAGaAs system [4]. In what fol-
process. lows, we consider self-ordering of lattice-matched, strain-

Self-ordering of nanostructures ononplanar sur- free structures, and hence drop the strain-related term.
faces has the potential for solving these problems, as For faceted surface profiles, such as the one shown in
the corrugated surface can provide a template for th&ig. 1, the curvature-related contribution toin (1) can
nucleation sites. In fact, organometallic chemical vapoibe expressed as [12,14]
deposition (OMCVD) and molec_ular beam _ epitaxy wip = o = yQo/lip: s = MO, (2)
(MBE) on substrates patterned with corrugations (see
Fig. 1) [5,6] or with pyramidal patterns [7] have been
successfully employed to fabricate uniform arrays of
quantum wires (QWRs) and QDs. Despite the accurate
structural control demonstrated with this approach, the
understanding of the self-limiting growth mechanism
on such corrugated surfaces has been essentially phe
nomenological [8]. Existing models can, in fact, predict
only constant growth rates of thick layers @m-sized
facets, depending on their orientation and environment,
as a result of gas-phase and surface diffusion [9,10].
The growth behavior of facets in the 10-nm scale,
relevant to the self-ordering of quantum nanostructures, b)
cannot be explained with such models, since facet-size 4}/
dependent surface diffusion fluxes should be invoked to _ — -
account for the self-limiting growth [11]. c) L

In this Letter we address the self-limiting growth of ) i
ted surface. and establish a model that uaF—lG' 1. Schematic groove profiles, composed of three facets
a corruga ’ a '@'10'[ to scale). (a) Evolution of the growth front as commonly

titatively describes the self-ordering of quantum wellsppserved in OMCVD. (b) The same for MBE. (c) Chemical
(QWSs), QWRs, and QDs on such patterned substrates. potential at each facet.

hye=yp I=rp 6
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where 6 is the sidewall orientationy = 2(y, cscf —

v, cot 6), + (—) refers to the top (bottom) (100)-oriented
facet,l; (I,) is the width of the top (bottom) facet, ang =

v,. Note thatu, > ug and u, < wo [see Fig. 1(c)].
This chemical potential profile determines adatom “cap-
illarity” fluxes j towards the bottom of the groove, which
increase ag,, decrease. The growth rates;/dr (i =
t,b,s) at the different facets (in the growth direction) are
derived from (2) using the Nernst-Einstein relatigne:
—V; n and the diffusion equatiosiz; /dt = R; — QoV,j;.
Here the gradient¥; are approximated by differences
between the two boundaries of each facet [4]. Using i
the growth ratesk; = Rr; on each facet in the absence - substrate
of capillarity fluxes, withR being the “nominal” growth -

rate on a planar (100) reference sample [15], we obtain FIG. 2. TEM section of a 0.3sm-pitch V groove, on which
a GaAdAlGaAs heterostructure has been grown at 700y

dzsp ( C ) dz, low pressure OMCVD.

i Ty ¥ s th = Rr,, 3)
b rugated structure (see first reference in [5] for details). The
self-limiting evolution of the bottom facets is evidenced by
the perpendicular propagation of the dark vertical stripe
at the center of the groove (see Fig. 2), which represents
Ga segregation at the nanofacets defining the bottom of
the groove (so-calledertical quantum wellYQW) [16].
On the other hand, the boundary between the top of the
mesa and the sidewalls (short-dashed line in Fig. 2) propa-
gates towards the center of the groove, until planarization
is achieved. Self-limiting growth at the top of ridges, cor-
sl _ _ 1/3. sl _ 1/3 responding taAr < 0, has been observed in MBE growth
= 1Cr/(CANTS -l = (Cry/An)7E, - (4) of GaAs/AlGaAs on corrugated (100) substrates [6]. This
with Ar = r, — r,, representing the growth-rate diff_erent behavior for OMCVD a_nd MBE_, which we ex-
anisotropy. Thus, to obtain self-limiting growth at the top Pl&in as due to the opposite sign afr, is a result of
(bottom) of the grooveAr must be negative (positive). the higher dissociation rate of the precursors during OM-
ForAr > 0 the additional, capillarity-induced growth rate CVD on the densely stepped groove sidewalls [10]. MBE
[dashed arrow in Fig. 1(a)] adds to the intrinsic one  9r0Wth, on the other hand, leads to slowly growifig1}
to exactly balance,, sincer, > r,. On the other hand, A ©F B sidewalls [6]. L
capillarity leads to a decrease of the top growth rate and W€ now examine the effect of the entropy of mixing

therefore to an expansion of the top facet. The oppositéerm in (1) on the self-limiting profile. As a particular case,
behavior takes place fakr < 0 [see Fig. 1(b)]. we consider the effect of the lateral variation in Al mole

Self-limiting growth at the bottom facet (with» > 0)  fraction at the AlGa_.As VQW (Fig. 2). The (lower)

is obtained during GaA&IGaAs OMCVD on (100) sub- Al mole fraction at the bottom facet can be expressed as
strates corrugated along tf@l 1] direction [2,5]. Anex- *» = x/[x(1 = k) + k], wherex |s;[he mole fraction at
ample is shown in Fig. 2, which displays a transmissiorf"® néarby sidewalls, and = 1.81 = 0.05 for OMCVD

electron microscopy (TEM) cross section of a typical C?r_gfr?]:votzoag Z(?r();ﬁe[tz]t.t olrisfiggetth:s\slﬁiegi?r?é ';gtren?quations

A sl 3 A 2
[ L
dzp xRyr} + Art bAY 4ol =s In[x(1 — k) + k];,
dt Iy I

s \3 2 ®)
dzy G of e LS x(1— k) +k
Zho— (1 =R G+ A 2E) gy Z ) I T
a0 [r” "\ L, L)k ’

with the indexesA andG referring to AlAs and GaAs growth, respectively. Equating the growth rates at the sidewalls
and the bottom facet yields an equation for the self-limiting bottom f&tdor an alloy,
; b _ a= xArA(lls,{A)3 + (1 - X)AFG(IZS;{G)3,
R Ar(x),  with {p = 2[x(LA2 In[x(1 — k) + k] + (1 — x) (LS)? In 2=R*Ky (6)
b b Ar(x) = xArt + (1 — x)ArC,

whereC = 2Q¢D,7y/ksT, Dy is the diffusion coefficient
on the sidewallsr is the lifetime for adatom incorporation
(adatom desorption is neglected), and= r;, since these
facets have the same crystallographic orientation.

Self-limiting evolution is achieved when the corners
between facets propagate in the growth direction, i.e.
whendz;/dt = dz;/dt (dz,/dt = dzy/dr). This yields
the self-limiting widths of the top and bottom facét$,
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wherelifA andlifG denote the self-limiting facet widths for barrier on the sidewalls perpendicular to the groove
the binary AlAs and GaAs composition, respectively. Theaxis, (4) predicts a dependence essentially of the form
self-limiting profile of an alloy is therefore determined by exp(—Eg/3kgT) for lil in a binary. For AlGa_,As,
the interplay among the effects of capillarity), entropy  the T dependence of;’, given by (6), derives from the
of mixing (»), and growth rate anisotrofyAr(x)]. Arrhenius form ofl;'y, I3'c, L4, and LS. The measured
The self-limiting widths ;' of Al,Ga_,As grooves variation of /' with T is shown in Fig. 3(b) forx = 0,
grown by low pressure OMCVD were measured fromQ.19, 0.29, and 0.47 and fa00 < 7 < 750°C. As
TEM data for a wide range of growth parameters [18].the bottom facets could not be readily resolved for very
Figure 3(a) shows the measured self-limiting widths versusarrow (<10 nm) profiles, we have characterized the
x for T = 700 °C. Using the measured paramet@f@ = groove width in that case by the radius of curvatpie
129 = 3 nm, lf,fA =9.1 * 0.1 nm, andAr® =022 = for a hyperbola tangent to the surface [}; is related
0.05 [19], we fitted the experimental values with the to /§' via a simple geometrical factor. The Arrhenius
solution of (6), leavingL? as the only fit parameter fit for GaAs givesEs = 1.9 + 0.3 eV. This parameter
[20], and finding LS = 175 + 20 nm. This value is is then employed in (6) to fit the AGa _.As profiles,
lower than the one estimated on (100) surfaces [21], ags a function ofl;', only. As before, we have assumed
expected for a densely stepped, high-index facet. T@LO)? > (L4)?, Ar® = 0.22 + 0.05 (this value does
estimate the importance of the entropy effects, we als@ot vary significantly with7', in the range considered),
represent by the shaded area in Fig. 3(a) the best fitgnd verified the insensitivity of the fit to the value of
for 15’ neglecting the terntb) in (6) and settingAr¢ = Ar4. Least squares fits of the Aba_,As profiles
0.22, with the boundaries corresponding to the extremgFig. 3(b)] yield, consistently for the three composi-
casesAr? =1 (long-dashed line) orAr* = 0 (short- tions, E3 = 2.3 = 0.2 eV. This difference between
dashed line). The measured alloy self-limiting widths arethe GaAs and AlAs diffusion barriers is consistent with
systematically smaller than the ones predicted neglectingtronger Al-As bonds, as compared with Ga-As ones [22].
the entropy term. The evolution of the surface profile towards a self-
Assuming an Arrhenius temperature dependencéimiting shape can be evaluated by relating the variation
of Dy = Do exp(—Ep/kpT), with Ep the diffusion in the facet width to the difference in growth rates at the
bottom facet and the sidewalls@s, = p(dz, — dz,)[2],
where p is a factor dependent on the facet orientations
(p = 3.75 for our geometry). The evolution of, is
obtained by combining (3) and (4) for a binary, or (5) and

=0 no entropic

1
]
i
oo effects ] (6) for a ternary, yielding, respectively,
E so0 i N3
< ~ ! dl Iy
s 60 S~ At =1 —h=pAr L) -1, (7a)
-2 ~ * dz, Ip
40 =~ 3
. . di, I b sl
20 -wnl;f?erlgtrgmc | o =P Ar(x) 7 E(lb — Iy, (7b)
0
a) 0 0.2 0.4 X 0.8 0.8 ! wherez,, = Rt is the nominal thickness. These relations
show that/, tends to expand (contract) when its size
30 is smaller (larger) than its self-limiting one, at a rate
. that increases as this deviation increases [note that, since
£ (LY)? > (L4)?, the termb in Eq. (7b) is negative].
£ The measured evolution df,, starting from a self-
=10 limiting Alg3;Ga7As shape via the development of a
a 8 - . .
6 | ® x=0 GaAs self-limiting profile (circles) and then back to a self-
T x=13 limiting Aly3Gay-As profile (squares), all taking place
41 ¢ |X=-47 | | at 700°C, is displayed in Fig. 4. Both profiles evolve
11.5 12 12.5 13 towards their self-limiting sizeg' (129 + 3 nm for GaAs
b) 1/k,T (eV) and31.6 = 1.1 nm for Aly3Gay-As [11]). The solid line

’ . is a numerical integration of (7a), using the experimental
FIG. 3. (a) Measured; as a function ofx for 7 = 700°C.  value Ar = 0.22. The evolution of the GaAs profile is

The solid line is a fit of the measured values with the function i ;
defined in (6). The shaded region shows how the profilewe” reproduced by this theoretical curve. To model the

width would depend o in the absence of entropy of mixing S€l-limiting evolution of Ab;Ga;As (dashed line), we
effects. (b) Arrhenius p|0t Ofosl: measured in AlGa,_,As have used in (7b) the measured value of the gI’OWth rate
with 0 < x < 0.47. anisotropyAr(0.3) = 0.19 = 0.05, and leftL¢ as the only
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In conclusion, we have shown that self-limiting epitaxial [17] G. Biasiolet al. (to be published).
growth on nonplanar substrates results from a stable equit8] The bottom profiles, assumed here to be formed by only
librium between growth rate anisotropy on different facets ~ °n€_facet for simplicity, are in reality composed of a

. e . . 100) facet, surround 11} A ones [11].
composing the surface and capillarity-induced d|ffu5|on.[19] £/a|u)es of Ar given Efre and |ate[r iL the text were

Foran a”Qy’ the cqmp(_)sition varies across the groove as'a measured at the top of the mesas, for facet lengths much
result of different diffusion lengths for different alloy com- larger thar/}! for the given growth conditions, in order to

ponents. Entropic effects tend, however, to counteract this  neglect capillarity-related growth-rate variations.
nonuniform composition, thus reducing the widths of alloy[20] Since (L¢)? > (L4)> [22], we have neglected in the fit

self-limiting profiles. The predictions of the model quanti- the AlAs term appearing in(») in (6), and thus any
tatively describe both the steady state and the evolution of entrqpy-related cqmppsitional variations in the VQW are
the self-limiting surface profiles during OMCVD growth ascribed toGa diffusion away from the bottom. No

of AIGaAs on nonplanar surfaces. Strain effects could be ~ reliable estimate forAr-” is available; however, the fit
treated in the same framework by adding the stress term in :tS Ver)(/) lﬂsefSItllqve to this pa(rﬁmetsr; ny ;rf?ngmg/;

the chemical potential in (1). This model forms the basis Orglm o t? o tv‘;tﬁggze:?fgzﬁgng thSSt ug“t Sofv‘;:'ee it
for understanding the self-ordering of a variety of quan- y ’ g quaty i

The main source of uncertainty in the fit is the error
tum nanostructures formed by growth on nonplanar sub- ;A ¢

strates, including VQWs [16], crescent shaped QWRS [5]j21] M. Shinohara, M. Tanimoto, H. Yokoyama, and N. Inoue,
and pyramidal QDs [7]. Appl. Phys. Lett.65, 1418 (1994).
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