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Mode-Coupling Theory for the Pasty Rheology of Soft Glassy Materials
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We introduce a simple mode-coupling model for concentrated suspensions under flow. This m
exhibits a jamming transition and stress vs shear rate relations which are very similar to experime
results. Namely, a Newtonian regime or yield stress are followed by a slow variation of the stress
higher shear rates, and by an apparent Newtonian regime for very large shear rates. Another str
result is that under oscillating strain, even in the jammed state, the system exhibits a relaxation
which depends on the strain amplitude. [S0031-9007(98)07254-8]

PACS numbers: 62.20.Fe, 83.20.–d, 83.50.Gd
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We present a model which aims at describing the m
chanical behavior of very concentrated suspensions
soft particles. Such systems, like concentrated emulsio
colloidal suspensions near random close packing, c
centrated suspensions of small particles of gel, and c
centrated colloids electrostatically charged, are known
exhibit peculiar pastelike behavior for high enough co
centration of the dispersed phase: they have a yield str
and thus very nonlinear mechanical properties. They
share the property of being made of a collection of so
objects.

Beyond a critical value of their concentration, th
particles become packed together, and they experie
a jamming transition. These systems have recently be
named soft glassy materials.

At the macroscopic scale, the jamming transition co
responds to the fact that, below a critical concentratio
the system is fluid, and the stress vanishes at rest;
above the critical concentration, stress can be stored
the system—after flow cessation for instance. Obvious
because these systems exhibit a yield stress, their
chanical behavior under the action of flow is very no
linear. More precisely, some recent model systems a
simulations exhibit a power-law relation between stre
and shear rate, with quite small exponents (around 0
for small shear rates, and an exponent around 1 for la
shear rates [1–3].

At the mesoscopic scale, the jamming transition mea
that the motions of the particles under flow become mo
and more collective as it is approached, leading to ve
complex trajectories and rearrangements of the particle

Actually, this jamming situation has two generic ingre
dients: (i) at rest, above a critical concentration, the sy
tem is jammed; (ii) when a flow is applied to the system
it modifies deeply its dynamics.

The effect of flow on a system near jamming trans
tion may be described by a phase diagram shear rate
concentration. At zero shear rate, random close pack
concentration,fc, corresponds to a critical point. Below
fc, any infinitely small applied stress induces rearrang
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ments and flow of the particles, whereas abovefc, a finite
nonvanishing stress must be applied in order to make
system flow. This means that there is a half-line of d
generacy of the stress (for vanishing shear rate, above
critical concentration), with a critical point at its extrem
ity. But as far as the shear rate is different from zero, t
stress always reaches a unique value in a stationary fl
whatever the concentration is. In other words, the sh
kills the jammed state, because the shear rate renews
stantly the structure of the system [4,5]. This descripti
remains valid as long as the stress remains homogene
in the sample (no fractures, for instance). This phase d
gram is very similar to the magnetic field vs temper
ture phase diagram of the Ising model. The shear r
Ùg plays the role of the magnetic field, the stresss that
of the magnetization, and the concentrationf stands for
the temperature. However, soft glassy materials are no
thermodynamic equilibrium, and the relations betweenÙg,
s, andf do not derive from a free energy but from a dy
namical equation. Here, we introduce such an equati
based on a mean-field analysis of a mode-coupling theo

An attempt of this type of approach was recently pr
posed by Sollich, Cates, and us [4]. The jamming tra
sition was described using a glass model introduced
Bouchaud [6]. One of the results of the model was t
scaling law relating the stress with the shear rate, with
exponent depending on the distance to the jamming tr
sition. The control parameter was an effective tempe
ture which attempted to describe the mechanical noise.
was introduced phenomenologically and was not rela
to the macroscopic shear rate, whereas shear must ind
changes of configurations in the sample, and thus affec
effective temperature.

In this Letter, we present a model which describes mo
directly the interactions between the particles trajectori
This model thus belongs to the mode-coupling class
models [7].

We first divide the sample into blocks carrying a stre
s depending both on timet and on their positionr. The
evolution of the blocks follows simple rules.
© 1998 The American Physical Society
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(1) When submitted to a shear rateÙg, the stresses of all
the blocks increase during time intervaldt by the quantity
G0 Ùgdt.

(2) If the absolute value of the stress of a given bloc
is larger than a critical valuesc, it is set to zero after
a timet. This process is very similar to rearrangemen
described by Princen for foams [8]. However, the fa
that the stress is set to zero after the rearrangemen
randomly distributed around zero is clearly not critical.

(3) If the stress onr0 is set to zero, the stress field
is modified in the whole sample. We will describe thi
interaction with a mean-field approximation by adding
random valueD to the stresses of all the other blocks.

Let us discuss the last point. Actually, if the block in
r0 relaxes froms to zero, the stress at pointr varies by
the quantityGsr0 2 rdssrd, whereG is the stress/stress
elastic propagator.G is well known in a homogeneous
system, and it appears that its mean value for the4p

steradians is equal to zero. This implies that the rando
value D must be chosen with a mean value equal
zero. In a homogeneous elastic medium, the stre
propagator is short range—it decreases as1yr3 —and is
very anisotropic, leading to step by step propagation of t
stress along preferential directions, and finally fracturati
phenomena, as described in earthquakes models [9].

But systems we are interested in are not at all homog
neous, so the stress propagates along easy paths de
by successive contacts, and stress thus propagates ov
long range. Moreover, these stress paths are very frag
and renew completely after very small variations of th
strain, so the mean-field approach may be a good way
describe these systems.

Finally, we can write the evolution for the probability
Pss, td of finding a stresss in a block, at timet:

≠tPss, td  2G0 Ùg≠sPss, td 1 D≠
2
s2 Pss, td

2
Hsjsj 2 scd

t
Pss, td

1
1
t

Z
js0j.sc

Pss0, td ds0 dssd , (1)

whereHsxd  1 for x . 0, and0 otherwise, andd is the
Dirac function.

The first term corresponds to the first rule, the seco
one to the noise of the third rule, and the last two term
express the failure for stresses abovesc with a rate1yt

and the reset of the stresses to zero after the failure. T
third condition writes

D  a
1
t

Z
jsj.sc

Pss, td ds , (2)

where D is the amplitude of the noise, and is the
proportional to the density of blocks that rearrange
during time t, by a proportional factora, that depends
a priori on the microscopic properties of the material.
could represent something like a mechanical fragility.
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Let us first describe the solution of this model in
the absence of shear. We get a naive description of
mode-coupling theory of glass transition [7]. The mode
exhibits a dynamical transition, between a frozen system
and a liquid state in which the stress is self-sustaine
through a diffusive term, by overstressed regions. Th
description of a jamming transition is very similar to the
one due to Ivanovet al. [10].

For Ùg  0, one easily finds that (1) and (2) lead to

D 
aD

1 1 2
p

D 1 2D
. (3)

For a ,
1
2  ac, the only solution isD  0. Solutions

correspond to distributions of stable states of the loca
stress, i.e., distributions in whichP is equal to zero for
jsj . sc. This is quite obvious: all the terms in (1)
vanish in that case.

On the opposite case, fora . ac, in addition to the
previous solution, there exists a stationary solution wit
a nonzero value ofD. The system can continuously
rearrange as a function of time. It is easy to see thatD
scales simply assa 2 acd2 aboveac.

Let us now describe the solution in the presence o
a stationary shear rate,Ùg  cte. In that case, Eqs. (1)
and (2) have always a single stationary solution (Fig. 1
The derivation is straightforward. We first solve Eq. (1)
for a given value ofD and then write the self-consistent
equation forD, i.e., Eq. (2). Then we make expansions
of this self-consistent equation to get the scaling law
given further. From the distribution probabilityP, we
compute the macroscopic stress,sM , via the mean-field
assumption: the macroscopic stress is approximated by t
average value of the local stresses.

Whatever the value ofa, at high shear rates (Ùg . 1yt),
the flow is Newtonian, and the viscosity scales as th
lifetime t of the excited state multiplied by the elastic
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FIG. 1. Distribution probabilityPssd of the stress, for differ-
ent values ofÙg.
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modulusG0. Collective effects are not important in this
situation.

For small values of the shear rate, the system exhibit
a Newtonian regime in the liquid phase and a yield stres
in the jammed phase. The yield stress appears becau
the solutions of (1) and (2) are degenerate for a vanishin
value of the shear rate, leading to a discontinuity of the
shear stress as a function of the shear rate.

We find the following exponents, in the limit of very
small shear rates:

for a . ac, sM ,
Ùg!0

G Ùgtsa 2 acd22, (4)

for a , ac, sM ,
Ùg!0

Gsac 2 ad1y2. (5)

For the critical valuea  ac, we find a scaling between
the stress and the shear rate:

for a  ac, sM ,
Ùg!0

Ùg1y5. (6)

Moreover as far asa is in the vicinity of ac, the stress
always scales likeÙg1y5 in the crossover regime between
the high shear rate and low shear rate limits (Figs. 2
and 3).

These many regimes mimic the recent experimenta
results of Cloitre on microgel beads around the clos
packing of the beads, and that of Masonet al. on
concentrated emulsions [11]. It describes also the resul
of Durian’s simulations of foams above the close packing
and some of his recent experiments. The value1y5 of
the exponent may seem odd; it is not so far from the
experimental results of Cloitre (exponent inferior to 0.1),
and from simulations of foams using the Durian mode
by Liu (0.16) [12], as well as the experimental results on
foams by Durian (0.15) [13].

The main other rheological properties of concentrate
systems may be studied thanks to the response to
periodic flow,gstd  g0 cosvt, expressed in terms of the
elastic and loss modulus. In order to calculate the elast
and the loss modulus for a nonvanishing amplitude of th
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FIG. 2. Stresss vs shear rateÙg for different values ofa.
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strain, we make an expansion of the evolution equation
the second order ing. The calculation is analytical, and
we give only the final results.

First, we obtain that the response is Maxwellian at low
frequency, whatever the values ofa and g0. In other
words,G0 andG00 scale, respectively, asv2 andv when
v ! 0.

At high frequency, the behavior is more complex
whatever the value ofa relative to ac, G0 is constant,
whereasG00 exhibits a maximum,vc. It decreases as
v21y2 in the liquid phase and asv22 in the glassy phase.
The more striking result lies in the dependence of th
characteristic frequencyvc with a, which depends on
the amplitude of the deformation. Indeed, for vanishin
amplitudes,vc  0 in the glassy phase, andvc , sa 2

acd2 in the liquid phase. This is quite obvious, as the
high frequency modulus is nearly constant,vc reflects the
behavior of the viscosity. But, for nonzero amplitudes
vc ,

g!0
jgj in the glassy phase; all these results ar

summarized in Fig. 4.
So, in the glassy phase, a periodic deformation induc

a continuous flow of reorganizations playing the role of a
effective temperature. This induces a relaxation proce
with a characteristic time scaling asjgj21. It thus exists
in this phase as infinite nonlinearities, with an apparen
slow relaxation.

The important point lies in the result that a finite
strain amplitude modifies completely the divergence o
the typical time of mechanical relaxation. This has to
be compared with experimental results showing that pas
systems exhibit very nonlinear viscoelastic behavior. Ou
model leads to an infinitely small linear regime in the
jammed state.

So, our model describes in a very naive way a jammin
transition and mimics many of the experimental results o
soft glassy materials. We hope that this primitive mode
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FIG. 3. Dynamical phase diagram: Stresss vs a for
different values of the shear rateÙg.
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FIG. 4. Behavior of the characteristic frequency,vc vs a at
constant peak amplitudes of the shear.

opens new gates to further more subtle descriptions of
jamming transition. Questions arise whether there is so
universality or not in these systems. The experimen
situation is not clear, as most of the mechanical me
surements do not deal with the jamming transition itse
and its scaling. Moreover, the spatial homogeneity of t
flow depends dramatically on the systems: some of the
fracture macroscopically in flow, while others do not, fo
completely unknown reasons, and mechanical propert
are very inhomogeneous. More than ever, precise spa
averagings of the mechanical properties are really a ch
lenge in these jamming systems under flow.
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