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Mode-Coupling Theory for the Pasty Rheology of Soft Glassy Materials
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We introduce a simple mode-coupling model for concentrated suspensions under flow. This model
exhibits a jamming transition and stress vs shear rate relations which are very similar to experimental
results. Namely, a Newtonian regime or yield stress are followed by a slow variation of the stress for
higher shear rates, and by an apparent Newtonian regime for very large shear rates. Another striking
result is that under oscillating strain, even in the jammed state, the system exhibits a relaxation time
which depends on the strain amplitude. [S0031-9007(98)07254-8]

PACS numbers: 62.20.Fe, 83.20.—d, 83.50.Gd

We present a model which aims at describing the mements and flow of the particles, whereas abgyea finite
chanical behavior of very concentrated suspensions afonvanishing stress must be applied in order to make the
soft particles. Such systems, like concentrated emulsionsystem flow. This means that there is a half-line of de-
colloidal suspensions near random close packing, corgeneracy of the stress (for vanishing shear rate, above the
centrated suspensions of small particles of gel, and coreritical concentration), with a critical point at its extrem-
centrated colloids electrostatically charged, are known taty. But as far as the shear rate is different from zero, the
exhibit peculiar pastelike behavior for high enough con-stress always reaches a unique value in a stationary flow,
centration of the dispersed phase: they have a yield stresghatever the concentration is. In other words, the shear
and thus very nonlinear mechanical properties. They alkills the jammed state, because the shear rate renews con-
share the property of being made of a collection of softstantly the structure of the system [4,5]. This description
objects. remains valid as long as the stress remains homogeneous

Beyond a critical value of their concentration, thein the sample (no fractures, for instance). This phase dia-
particles become packed together, and they experienggam is very similar to the magnetic field vs tempera-
a jamming transition. These systems have recently beetnre phase diagram of the Ising model. The shear rate
named soft glassy materials. v plays the role of the magnetic field, the stresshat

At the macroscopic scale, the jamming transition cor-of the magnetization, and the concentratidrstands for
responds to the fact that, below a critical concentrationthe temperature. However, soft glassy materials are not at
the system is fluid, and the stress vanishes at rest; buhermodynamic equilibrium, and the relations between
above the critical concentration, stress can be stored ior, and¢ do not derive from a free energy but from a dy-
the system—after flow cessation for instance. Obviouslynpamical equation. Here, we introduce such an equation,
because these systems exhibit a yield stress, their mbeased on a mean-field analysis of a mode-coupling theory.
chanical behavior under the action of flow is very non- An attempt of this type of approach was recently pro-
linear. More precisely, some recent model systems angdosed by Sollich, Cates, and us [4]. The jamming tran-
simulations exhibit a power-law relation between stressition was described using a glass model introduced by
and shear rate, with quite small exponents (around 0.1Bouchaud [6]. One of the results of the model was the
for small shear rates, and an exponent around 1 for larggcaling law relating the stress with the shear rate, with an
shear rates [1-3]. exponent depending on the distance to the jamming tran-

At the mesoscopic scale, the jamming transition meansition. The control parameter was an effective tempera-
that the motions of the particles under flow become moraure which attempted to describe the mechanical noise. It
and more collective as it is approached, leading to veryvas introduced phenomenologically and was not related
complex trajectories and rearrangements of the particlesto the macroscopic shear rate, whereas shear must induce

Actually, this jamming situation has two generic ingre- changes of configurations in the sample, and thus affect its
dients: (i) at rest, above a critical concentration, the syseffective temperature.
tem is jammed; (ii) when a flow is applied to the system, In this Letter, we present a model which describes more
it modifies deeply its dynamics. directly the interactions between the particles trajectories.

The effect of flow on a system near jamming transi-This model thus belongs to the mode-coupling class of
tion may be described by a phase diagram shear rate vsodels [7].
concentration. At zero shear rate, random close packing We first divide the sample into blocks carrying a stress
concentrationg,., corresponds to a critical point. Below o depending both on timeand on their positionr. The
¢., any infinitely small applied stress induces rearrangeevolution of the blocks follows simple rules.
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(1) When submitted to a shear ratethe stresses of all Let us first describe the solution of this model in
the blocks increase during time interval by the quantity the absence of shear. We get a naive description of a
Goydt. mode-coupling theory of glass transition [7]. The model

(2) If the absolute value of the stress of a given blockexhibits a dynamical transition, between a frozen system,
is larger than a critical valuer., it is set to zero after and a liquid state in which the stress is self-sustained,
atimer. This process is very similar to rearrangementshrough a diffusive term, by overstressed regions. This
described by Princen for foams [8]. However, the factdescription of a jamming transition is very similar to the
that the stress is set to zero after the rearrangement one due to Ivanoet al. [10].
randomly distributed around zero is clearly not critical. Fory = 0, one easily finds that (1) and (2) lead to

(3) If the stress o’ is set to zero, the stress field
is modified in the whole sample. We will describe this = ab .
interaction with a mean-field approximation by adding a 1 +2VD + 2D
random valueA to the stresses of all the other blocks.

Let us discuss the last point. Actually, if the block in
r’ relaxes fromo to zero, the stress at pointvaries by
the quantityG(r’ — r)o(r), where§ is the stress/stress
elastic propagator.G is well known in a homogeneous
system, and it appears that its mean value for 4he

steradians is equal to zero. This implies that the random On the opposite case, far > a., in addition to the

. revious solution, there exists a stationary solution with
value A must be chosen with a mean value equal td? y

: . a nonzero value ofD. The system can continuousl
zero. In a homogeneous elastic medium, the stress Y y

propagator is short range—it decreased As'—and is riaazgngfngil aa&mi:t'zn)f;ggnv%a Itis easy to see Mat
very anisotropic, Ieadl_ng to step by step propagation Of.thé Let us now describé the solutcié)n in the presence of
stress along preferential directions, and finally fracturatlona stationary shear rate; — . In that case, Egs. (1)
phenomena, as described in earthquakes models [9]. . o ’ "
: . and (2) have always a single stationary solution (Fig. 1).

put systems we are interested in are not at all NOMOYrne gerivation is straightorward. We first solve Eq. (1)
neous, so t_he stress propagates along easy paths deflr}gr a given value ofD and then write the self-consistent
by successive contacts, and stress thus propagates ovelg% c?uation forD, i.e., Eq. (2). Then we make expansions
long range. Moreover, these stress paths are very fragi . P A A ;
and renew completely after very small variations of theOf this self-consistent equation to get the scaling laws

strain, so the mean-field approach may be a good way tgglrin uftlérttmir'mzé?gctgﬁcd':tgbuno?,ifrtﬂzamtgﬁ-ﬁ d
describe these systems. P p 86,

Finally, we can write the evolution for the probability assumption: the macroscopic stress is approximated by the

o ; — average value of the local stresses.
P(c.1) of finding a stressr in a block, at timer: Whatever the value of, at high shear rateg(> 1/7),

3, P(0,t) = —Govd,P(o,t) + Da,.P(0,1) the flow is Newtonian, and the viscosity scales as the
_ lifetime 7 of the excited state multiplied by the elastic
_H(o| — o)
T

3)

Fora < % = a., the only solution isD = 0. Solutions
correspond to distributions of stable states of the local
stress, i.e., distributions in which is equal to zero for
lo| > o.. This is quite obvious: all the terms in (1)
vanish in that case.

P(o,t)

1 / /
* ? -/|0"|>ch(0' )do' (o), (1)

whereH (x) = 1 for x > 0, and0 otherwise, and is the 08t
Dirac function.

The first term corresponds to the first rule, the second
one to the noise of the third rule, and the last two terms
express the failure for stresses abavewith a ratel/r a
and the reset of the stresses to zero after the failure. The
third condition writes

0.6 [

04

1
D=a— [ P(o,t)do, 2 02}
7T Jlol>o.

where D is the amplitude of the noise, and is then
proportional to the density of blocks that rearranged ©°°; -
during time 7, by a proportional factor, that depends o

a priori on the microscopic properties of the material. ItFiG. 1. Distribution probability? (o) of the stress, for differ-
could represent something like a mechanical fragility.  ent values ofy.
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modulusG’. Collective effects are not important in this strain, we make an expansion of the evolution equation to

situation. the second order iry. The calculation is analytical, and
For small values of the shear rate, the system exhibita/e give only the final results.

a Newtonian regime in the liquid phase and a yield stress First, we obtain that the response is Maxwellian at low

in the jammed phase. The yield stress appears becaufequency, whatever the values af and y,. In other

the solutions of (1) and (2) are degenerate for a vanishingiords,G’ andG” scale, respectively, as*> and @ when

value of the shear rate, leading to a discontinuity of thew — 0.

shear stress as a function of the shear rate. At high frequency, the behavior is more complex:
We find the following exponents, in the limit of very whatever the value of relative to a., G’ is constant,
small shear rates: whereasG” exhibits a maximumw,.. It decreases as
fora > aw, oy ~ Gyrla — )2, @) 0~ % inthe liquid phase and as ™~ in the glassy phase.

=0 The more striking result lies in the dependence of the
fora < ac, oy ~ Gla. — )2 (5) characteristic frequencw, with «, which depends on

y=0 the amplitude of the deformation. Indeed, for vanishing

For the critical valuex = a., we find a scaling between amplitudes.w. = 0 in the glassy phase, and, ~ (a —

the stress and the shear rate: a.)? in the liquid phase. This is quite obvious, as the
for @ = ae, oy ~ 5. (6)  high frequency modulus is nearly constaat, reflects the

¥—0 behavior of the viscosity. But, for nonzero amplitudes,

Moreover as far ag is in the vicinity of ., the stress . ~ |y| in the glassy phase; all these results are

always scales likey!/5 in the crossover regime between u
the high shear rate and low shear rate limits (Figs. 2S
and 3).

These many regimes mimic the recent experiment
results of Cloitre on microgel beads around the clos
packing of the be_ads, and that Of_ Masen al. on in this phase as infinite nonlinearities, with an apparent
concentrated emulsions [11]. It describes also the result‘aOW relaxation.
of Durian’s simulations of foams above the close packing The important point lies in the result that a finite

;ahnd some ofth|s recent exgzr_m:e.nts. tThe ]Yall‘ié of th strain amplitude modifies completely the divergence of
€ exponent may seem odd, 1t IS not so 1ar from ey, typical time of mechanical relaxation. This has to
experimental results of Cloitre (exponent inferior to 0.1),be compared with experimental results showing that pasty

gndL_frorg 1sEismullgltions of”foamrs] using the Dulrian r?Odelsystems exhibit very nonlinear viscoelastic behavior. Our
y Liu (0. ).[ ], as well as the experimental results OMmodel leads to an infinitely small linear regime in the
foams by Durian (0.15) [13]. &ammed state

The main other rheo!ogical properties of concentrate So, our model describes in a very naive way a jamming
systems may be studied thanks to the response 10 @ qition and mimics many of the experimental results on

periodic flow,y(r) = yo Coswr, expressed in terms of the ¢ glassy materials. We hope that this primitive model
elastic and loss modulus. In order to calculate the elastic

and the loss modulus for a nonvanishing amplitude of the

rﬁmarized in Fig. 4.

So, in the glassy phase, a periodic deformation induces
continuous flow of reorganizations playing the role of an
ffective temperature. This induces a relaxation process

Svith a characteristic time scaling 4g|~!. It thus exists

logo)
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FIG. 3. Dynamical phase diagram: Stress vs a for
FIG. 2. Stressr vs shear rate for different values ofx. different values of the shear raje
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FIG. 4. Behavior of the characteristic frequeney, vs « at
constant peak amplitudes of the shear.
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