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Phase Control of Spontaneous Emission

E. Paspalakis and P. L. Knight

Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
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We use the phase difference of two lasers with equal frequencies for the control of spontaneous
emission in a four-level system. Effects such as extreme spectral narrowing and selective and total
cancellation of fluorescence decay are shown as the relative phase is varied. [S0031-9007(98)06540-5]

PACS numbers: 32.80.Qk, 32.50.+d

The control of spontaneous emission has attracted much ick(t) = Sker(t) — igrici(t) — igkoca(t).  (4)
attention for many years. For atoms in free space . a is .
. . = 0% = ¢ b l
atomic coherence and quantum interference are the ba%e[f’fﬂo’" Q"f“’ thg()}me | ;LIQO'” .t.W'thd Q"{" Ithe
phenomena for controlling spontaneous emission [l—a | requency for then m) transition due fo laser

) ; - . : , which we assume to be real afi¢p = ¢, — ¢, is the
i?g\'/etrr;?c?r? [rllallfo]po'[%?]t&al gglﬁ)llll;:atgonr:js (t;g-\l,\? ;:Egrswﬁg(\)/zﬁlohase difference of the two lasers, which is used to control

studied the guenching of spontaneous emission usin€ SyStem. Alsod, = w, — wy —  is the detuning
d 9 P aE‘om state|m) (m = 1,2) where the radiative shifts have

an open V-type atom [11], and gave an experiment .
P yp [11] 9 P een omitted,dx = wx — @ + w3 — wo, and I, =

verification of their predictions [12]. 27| gkm|*D(w,,3) is the spontaneous decay rate of state
Here, we study the potential for coherent control in a km m3
y P lm) (m = 1,2), wherek denotes both the momentum

driven quantum system, usirige relative phase between o )
q y b P vector and the polarization of the emitted phot@(w,.3)

two lasers with equal frequencies, = w, = » which tes th de density at f ~ 1)
couple the ground state with the two excited states (seBenOtes the mode density at frequemgys (m = 1,2);p
enotes the alignment of the two dipole moment matrix

Fig. 1). These laser fields may be distinguished by theielement i (p = firs - fusn/| sl [fisl). and plays an
different transition characteristics [13,14]. In this way " ortar?turngie ﬁ1 S gr%ianggas leLrlriissis)zn (’:anceﬁat?i)n [11]
we can obtain efficient control, spectral narrowing, and IF:)or the (lon triJme) SPONANEOUS emission S ectrurﬁ
quenching of spontaneous emission even if we have nork—((s ) we calcuglate : _Fjoo) as S(5) = I | (tp_>
trapping conditions that do not allow control when a single )|2“/2 o ( _C‘I %) We use tlr;e _La ";a?g frans-
laser is used. The use of two lasers makes the system ind%rm mlté;:z)md [131] and the final value theorer?w ‘0 obtain
pendent of restrictions involving matrix elements to satisfy
the trapping condition of Ref. [11]. Phase dependent ef- —g11K(8k) — groL (k)
fects in spontaneous emission spectra were recently studied (5)
in a A-type atom [15] and for an atom near the edge of a h
photonic band gap [16]. The effects of strong bichromaticV"¢"®
excitation in the fluorescence spectrum from a two-level
atom have also been studied [17,18].

We use here the wave function approach, and assume
that the atom is excited to a superposition of stdf@s
[1), [2). We apply the Weisskopf-Wigner theory [2,19]
and obtain the resulting equations for the probability
amplitudes § = 1),

ié‘()(l‘) = Op1c1() + Qpaca(t), (l)

ici(t) = Quoco(t) + (51 - i%)ﬂ(t)

ck(t = ) =

D (k) ’

VI,
TP TS (1), (2)
. VAN Y
ica(t) = Qaoco(t) — ip > ci(?)
FIG. 1. The system under consideration. The ground $fate
r is coupled to the excited stat¢b), |2) by two lasers of equal
+ (52 _ i72>02(t), (3) gte;z:gr;cies. The excited states decay solely to a common
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r VI r
K(8x) = iCO(O)|:QIO(5k — 0y + lf) — iQop— 2j| + icl(0)|:5k(3k — 0y + lf) - |Qoz|2j|

2
L r
- i62(0)|:i5ka 2 910902j|, (6)
r VI r
L(6x) = iC0(0)|:QZO<5k -0+ 171> — iQop 21 2j| - iCl(O)|:i5kP 21 2 Q01920:|
r
+ i02(0)|:3k<5k - 6 + 171> — |Q()1|2:|, (7)

D(8k) = 6k|:<5k -6 + l%) <6k — 6 + l%) + p2F1F2/4:|

r r VI
- |:|QOI|2<5k — & + lf) + |Qoz|2<5k -6 + 171>:| + iPle[Qonz + Q01Q2]. (8)

Initially, we suppose lasew, drives only the|0) < | it does not depend on the laser intensity. In Fig. 2 we
[1) transition and lasemw, drives only the|0) < |2)  show the spontaneous emission spectrum of an atom ini-
transition, so thatQ}, = Q& = 0. We are interested tially in the ground state for four different phase values
in conditions that will trap population in the system. with atomic parameters that satisfy Eq. (11). The im-
The usual approach is to diagonalize the Hamiltonian oportance of the relative phase in the control of sponta-
Egs. (1)—(3) and search for positive (or zero) solutionseous emission is now obvious, as the spectrum is clearly
of its characteristic equatigD(A) = 0]. There are two double peaked fob¢ = 0, but for §¢ = = /10 a very
distinct conditions for population trapping The first narrow central peak appears. Increasing the phase dif-
gives a zero root to the characteristic equation and occurferences ¢, the spectrum becomes clearly triple peaked
if for §¢ = 7 /2. However, for6¢ = 7 the central peak
b \2 a2 _ is suppressed. The cancellation of the central peak for
81(Q0)" + 820" = 0, ©) 8¢ = 0 is an effect of quantum interference [11]. How-
[2(Q8)* + T1(Q5)? — 2pT 11,0808 co§sp] = 0. ever, in this case, by changing the phase plifferahc;ﬁe
we can produce extreme spectral narrowing for phases
(10)  around 8¢ = 0 and strong suppression of the central

These are obtained by setting the constant part of the€ak foré¢ = 7. The extreme narrowing of the cen-
characteristic equation to zero. From Eq. (10) we obtaintral peak, as observed in Fig. 2(b), occurs for parameters
; b which slightly differ from those which satisfy the trapping
peogsgl= =1, V0§ = =JT105. (1) congition (11). This is associated with the slow decay of
The second part of Eqg. (11) can be satisfied by appropri-
ately choosing the laser intensities such thdt//I, = @) (b)
+JT1 A /T2 Aoty as Q! = A,,.+/T;, wherel, is the 02
intensity of laserw; (or its generalization for a multi-
photon transition). The first part of Eq. (11) is both  §,
and phase dependent and is satisfied only i =1 and &
8¢ = 0, 7. Substituting Eq. (11) into Eq. (9), with the
addition that(Sz — 61 = wy = wy — w; We find that, 42 DettL)lningz 4 -4 2 Det(l),lningz
if Eg. (11) is satisfied, the zero root of the characteris- © )
tic equation occurs when the lasers are tuned such that 08
61 = —Twy/(I'y + I'y) andd, = Thwy /(T + T). o3
This condition, Eq. (11), will lead to steady state popu-
lation trapping in the system. If the system is ini-
tially in the ground stated(0) = 1, a,(0) = a>(0) = 0] . .
then thf asy;nptotic populations as— oo ar% give2n by * 2 pefining® ¢ “* 7 Deflining®
Py = wy;/(w3 + 8Q2), Py = Py = 4Q%w) /(w3 + i : :
8022, whenQ§, = Q5 = Q, '} = I',. Related results E:ﬁ’s)z'fojrgasf?;%n?? im'FSS'O?)fpi%ﬁb“)z('%arzltrag
have been obtained with a single laser excitation [11]pr,, 5, = _‘§2 — _2%1, aﬁd p - 1. 2Om (a)mgd, - 0,21(b)
however, in that case Eq. (11) is more restrictive sinced¢ = 0.1, (c) §¢ = 0.5, and (d)6¢ = .
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one of the dressed states of the atom, as analyzed by Zhou @ ®
and Swain in the context of resonance fluorescence us- %% 08
ing a closed V-type atom [9]. In the dressed state picture Sozs Sos
the scheme of Fig. 1 can be seen as being three differenﬁfﬁ, 50-4
dressed states decaying to sti®e The widths of these o1 P02
dressed states depend crucially on the relative phase o — ol — NS N
In particular, for Fig. 2(b) the width of the dressed state Detlning Detuning
which is responsible for the central peak scale$das) 20 © g @
in the regime of6¢ ~ 0, a result that is obtained after _ i £ 02
making a Taylor expansion aboéith = 0, explaining the g, £,
extreme narrowing observed. a -3
In the above case the two excited states were well 0a
separatedw,; # 0). In the case that the upper states are  °—7—= Delmng?  ° 2 Detning’

degeneratdw,; = 0) there is a second, new, condition
for population trapping This condition will produce FIG.3. The same as Fig. 2 but with, = 6, = wy = 0.

two real roots for the characteristic equation of the!n (@) 8¢ =0, (b) 8¢ =057, (¢) ¢ =097, and (d)
Hamiltonian andlead the system to total population -

trapping, if the atom is initially in the ground state. In appears atéy = 0. An exception is the case when
this case the atom will oscillate in a superposition of stateg)§, = Qf, andl', = I', [see Fig. 3(a)].

|0),11), [2) totally immune to any decay to staf8) due Let us now suppose that each of the lasers can cou-
to total destructive quantum interference between the twgle both of the excited states. Trapping conditions simi-
transition paths(|0)2:[1) — [3)) and (0)22[2) — [3)).  lar to Egs. (11) and (12) can be derived but this will be
This condition is discussed elsewhere. In Fig. 4 we show the phase de-

pcogdep] = =1, T, Q4 = 7JT,0L, (12) Pendence of the spontaneous emission spectrum for two
values ofp # 1, and the system initially in the ground

and can be satisfied by choosing the laser intensitieigie  The parameters chosen lead to steadv state pop-
such thaty7, /T, = FvT2Apa/VT1 Ao InFig. 3we jation trappﬁng in the system i6¢ = 0 and)llv =1 PP
present the fluorescence spectra for atomic paramete{é(tension of condition Eq. (11)]. The behavior of the
that satisfy Eq. (12) and the atom initially in the ground g0 s similar in both cases as the spectrum is triple
state. For these parameters, the spectrum is dOUbl?eaked foré = 0 but as the phase increases towards
peaked foré¢ =0, but for 6¢ = /2 a zero value . the central peak dominates and the spectrum becomes
appears foréx = 0. Furthermore, the system shows gjngle peaked. If a single laser is used for the exci-
extreme linewidth narrowing for phases around and  (ation [11], for p = 0 (orthogonal matrix elements) no
complete spontaneous emission cancellation for everyyncellation of spontaneous emission is observed. How-
vacuum modealue to total population trapping fa¥¢ = ever, in this case the two side peaks fw = 0 dis-

. In Fig. 3(c) the widths of the two dressed statesappear toward$¢ = 7. Obviously, in the case when
responsible for the two side peaks are found to_be th?zgl = 0k, 084 = b, and 56 = m there is no net
same and scale ar — 8¢)* when 8¢ =~ m which  fe|g applied to the atom. Then, the atom will re-

explains the narrowing. - main in the ground state if it is initially in the ground

_ From Egs. (5)-(8) withp = 1 and the atom initially  ga1e or will behave as Agarwal [2] and others [3,20]
in the ground state we can easily obtain an analyticajescriped if it is initially in a superposition of the
formu_lfaé(;)or C(l)((tth_) ). tThe';' in the norlldegﬁ;?erate two excited states. Furthermore, in Fig. 5 we plot the
case lfog = 0 thé spectrum nas a zero value if = gpontaneous emission spectrum for arbitrary atomic pa-
(613vT2 Q0 + 8:3T1045)/ (VT Q6 + VT2 Q) and rameters andp = 1 for two different values ofé¢.

spontaneous emission is completely cancelled fofrhe phase effect is also obvious here. The zeros in
this specific vacuum mode. An exception is

the case when 8, = —8, = wx/2, Q& = Qb,

and I'y =T,, where the 6 term factors from
both numerator and denominator and cancels [set
Fig. 2(a)]. If now 6¢ = 7 the zero appears aly =
(81VT2 Q6 — 3T Q6)/ (VT2 Q6 — VT Q6 (for
VI, 08 # JT7Q8), with the exception when
6= —01 = w21/2, le = —ng, and Fl = Fz.

In the degenerate cas&, = 6, = §, a zero always
appears in the spectrum &k = 9, independent of the kG 4. $(5,) as a function of6¢ for Qi = Q% = T» =
values of the Rabi frequencies, decay rates, and relative,, 0¢, = Q% = 0.75T,, w,; = 2T, and8, = —8, = —T
phase. An example of this is Fig. 3(b) where the zerdn (a) p = 0.5 and (b)p = 0.
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