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Theta Dependence in the LargeN Limit of Four-Dimensional Gauge Theories
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The u dependence of pure gauge theories in four dimensions can be studied using a duality of
N gauge theories with string theory on a certain spacetime. Via this duality, one can argue tha
every u, there are infinitely many vacua that are stable in the largeN limit. The true vacuum, found
by minimizing the energy in this family, is a smooth function ofu except atu ­ p where it jumps.
This jump is associated with spontaneous breaking ofCP symmetry. Domain walls separating adjacent
vacua are described in terms of wrapped six-branes. [S0031-9007(98)07077-X]

PACS numbers: 11.15.Pg, 11.25.Hf, 12.38.Aw
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In weak coupling, the dependence of four-dimension
gauge theories on the theta angle is computed via insta
tons. An instanton or anti-instanton contribution is pro
portional to exps28p2yg2d exps6iud. For example, in
spontaneously broken gauge theories, in which instanto
have a characteristic maximum size, and a characteris
effective coupling, theu dependence is determined by an
instanton expansion.

For unbroken asymptotically free gauge theories, th
situation is rather different. In such theories, at th
classical level, instantons come in all sizes. The infrare
behavior of the instanton gas is difficult to understand, an
it is not clear what effective description should be use
at long wavelengths to describe the theta dependence
other aspects of the physics.

One sharp way to pose the question is to consid
the largeN limit of an SUsNd gauge theory [1]. The
large N limit is an important avenue for understanding
the dynamics of pure gauge theory, or gauge theo
with a small number of light quark flavors, in four
dimensions. The largeN limit is attained by taking
N ! ` with l ­ g2N fixed. Thus the amplitude for
an instanton or anti-instanton of definite size is weighte
by a factor of exps28p2Nyld, and it appears that
instanton effects would vanish exponentially forN !
`. However, there are a variety of reasons to believ
that, because of infrared divergences, this is not s
sssIn contrast, N ­ 4 super-Yang-Mills theory, which
is scale invariant rather than asymptotically free, doe
not have these infrared divergences, and does ha
exponentially smallu-dependent effects, which can be
computed via instantons [2]. These instantons are relat
to the anti–de Sitter/conformal field theory (AdS/CFT
correspondence to21-branes [3].ddd For example, if light
quarks are included, then theu dependence can be seen
in current algebra [4,5], by reinterpreting some old pre
QCD computations [6]. One can show that if chira
symmetry breaking survives in the largeN limit, then so
does the theta dependence. Moreover, the most plaus
interpretation of how the solution of the U(1) problem o
QCD fits into the1yN expansion implies that in the pure
0031-9007y98y81(14)y2862(4)$15.00
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gauge theory, theu dependence of the ground state ener
is present to leading order in1yN [7]. (An explanation
of exactly what is meant by “leading order” will emerg
below.) These arguments suggest that, as in some t
dimensional models where somewhat similar questio
can be asked [8,9], theu dependence of pure gaug
theory in four dimensions (with or without a small numb
of matter fields in the fundamental representation of t
gauge group) is present in the leading order of the1yN
expansion.

If so, one can draw an interesting deduction about
form of the theta dependence [5]. In any theory wi
N 3 N matrix fields Fi, the largeN limit is obtained
by taking a Lagrangian of the form

LsFid ­ NSsFi ; wad , (1)

whereS is independent ofN and thewa are parameters
such as bare masses and coupling constants. With
normalization in (1), the largeN limit is obtained by
keepingwa fixed asN ! `.

Now instead, the most general renormalizable L
grangian for gauge fields in four dimensions takes t
form

L ­
N
4l

Tr FmnFmn 1
u

16p2 emnab Tr FmnFab . (2)

The normalization is chosen so thatu is an angular
variable. The general recipe of (1) would tell us to s
u ­ Nc and keepc fixed for N ! `. In the largeN
limit, the vacuum energyE is proportional toN2 (as the
number of degrees of freedom is of that order). So
expectEscd ­ N2hscd for some functionh which should
have a limit asN ! `. In terms ofu, that means

Esud ­ N2hsuyNd . (3)

In addition,E must obey

Esud ­ Esu 1 2pd . (4)

These conditions are, however, practically incompatib
a smooth function ofuyN cannot be invariant tou !

u 1 2p unless it is constant.
© 1998 The American Physical Society
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The most plausible way out seems to be [5] thatEsud is
a multibranched function because of many candidate v
uum states that all become stable (but not degenerate)
N ­ `. Such behavior occurs in many two-dimension
models [10] (including [9] some with1yN expansions that
raise issues like those we are discussing here). In thekth
vacuum, the energy would be

Eksud ­ N2hssssu 1 2pkdyNddd . (5)

The truly stable vacuum would be found, for eachu, by
minimizing Ek with respect tok. The actual vacuum
energy would be therefore

Esud ­ N2 min
k

hssssu 1 2pkdyNddd . (6)

This function is periodic inu, but (if h is not constant) it is
not smooth—at some value ofu there is a jump between
two different “branches.”

Under aCP transformation, one hasu ! 2u. So in
particularCP is a symmetry if and only ifu equals 0 or
p. Hencehsud ­ hs2ud. Note thatCP acts byk ! 2k
at u ­ 0, and byk ! 21 2 k at u ­ p.

Moreover, Esud has its absolute minimum atu ­ 0,
because precisely atu ­ 0 the integrand of the Euclidean
space path integral is real and positive.sssAt u ­ 0 all
contributions to the path integral receive positive weigh
at u fi 0, this is not so because the instanton factor iseiu .
The Euclidean space path integral in volumeV computes
expf2VEsudg, so Esud is minimized by maximizing the
Euclidean space path maximal, which happens wh
the weights are all positive.ddd If the vacuum is unique
at u ­ 0, then the minimum in (6) occurs fork ­ 0
(otherwisek and2k would both contribute). Moreover,
one expects thatd2hydu2 fi 0 at u ­ 0 because of
arguments involving the U(1) problem in the theor
with quarks [7], or simply because of the absence of
symmetry that would make this quantity vanish. If so, w
can sethsud ­ Cu2 1 . . . , whereC is positive and the
higher order terms do not contribute to (6) in leading ord
in 1yN . Thus, one conjectures that the largeN structure
of the vacuum energy is

Esud ­ C min
k

su 1 2pkd2 1 Os1yNd , (7)

with some constantC. This function exhibits a nonanaly-
ticity at u ­ p, which we associate with a jump betwee
two vacua (withk ­ 0 andk ­ 21) and the spontaneous
breaking ofCP invariance.

The computation.—In what dynamical approximation
to gauge theory can one hope to check the ideas that w
just reviewed? All known approaches to the dynamics
four-dimensional gauge theory in which one can exhib
any of the difficult properties like confinement and th
mass gap involve replacing the theory by a simpl
theory which is hoped to be in the same universal
class. There are several candidates for what the simp
theory can be. One candidate is lattice gauge theo
This framework makes it possible to compute a gre
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deal, especially upon using computer simulation to g
away from the strong coupling limit. But it is not very
convenient for discussing theu dependence, particularly
if one wishes to probe issues in which the invarian
under u ! u 1 2p is important. Another possibility
is to consider the realization of four-dimensional gau
theory viaM-theory five-branes [11], where again, at th
cost of replacing the theory of interest by a simplifie
version that is hopefully in the same universality clas
one can demonstrate the mass gap and confinement.
will instead study the problem in yet a third framewor
in which one can exhibit the mass gap and confinem
in the context of a simplified version of four-dimension
gauge theory. This involves a circle of ideas connec
with the correspondence between conformal field the
and quantum gravity on anti–de Sitter space [12–14].

To get to the specific issues of interest here as quic
as possible, we will begin as in Sect. 4 of [15] wit
type IIA superstring theory onM ­ R4 3 S1 3 R5,
with N parallel four-branes whose world volume i
V ­ R4 3 S1 3 x; herex is a point inR5. We assume
that the “spin structure” is such that fermions chan
sign in going around theS1. Then the theory on the
branes is at low energies a pure UsNd gauge theory in
four dimensions. It follows from the general AdSyCFT
correspondence that the largeN behavior of the SUsNd
part of this gauge theory can be studied by studyi
weakly coupled string theory on the supergravity s
lution X which these branes generate. Topologica
X ­ R4 3 D 3 S4, whereD is a two-dimensional disk.
The change in topology fromM to X is crucial (along
with the fact thatX is a smooth manifold without branes)
both in the explanations of confinement and the mass
in [15] and in the discussion below of theu dependence.
The metric ofX is

ds2 ­
8p

3
hl3

4X
i­1

sdxid2 1
8

27
hlp

µ
l2 2

1
l4

∂
dc2

1
8p

3
hl

dl2

l2 2 1yl4 1
2p

3
hldV2

4 . (8)

Here xi are coordinates onR4, l and c (with 1 #

l # `, 0 # c # 2p) are polar coordinates onD (note
that l ­ 1 is the origin of the polar coordinates, th
“center” of D), and dV

2
4 is the metric of a unit four-

sphere. h is a parameter which determines how far o
is from conventional four-dimensional gauge theory; f
h ¿ 1, the string theory onX can be studied via long
wavelength supergravity, while asymptotically free gau
theory is expected to emerge in the opposite limith ! 0.
In the present paper, we work in an approximation
long wavelength supergravity, so to compare with gau
theory, we must assume that the system has no ph
transition as a function ofh.

How can we includeu in the formulation of gauge
theory via four-branes? This can be done quite sim
2863
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by including the U(1) gauge field that arises in type IIA
superstring theory from the Ramond-Ramond sect
We will in this paper denote that field asa, and its
field strength asfij ­ ≠iaj 2 ≠jai. Let us reconsider
type IIA superstring theory onM ­ R4 3 S1 3 R5

with the wrapped four-branes of world volumeV . The
low energy world volume effective Lagrangian of th
four-branes has a term

DL ­
Z

V
a ^

Tr F ^ F
8p2 . (9)

(The most familiar manifestation of this term is tha
instantons on the four-brane are charged with respect
a—they carry zero-brane charge.) HereF is the UsNd
field strength. We now modify the type IIA vacuum s
thatf ­ 0, but Z

S1
a ­ ua (10)

is possibly nonzero. (The left hand side is gauge-invaria
modulo 2pZ, so we interpretua as an angle.) At low
energies in four dimensions, (9) reduces to a theta term
the gauge theory action, and the four-dimensional Yan
Mills theta angle is

u ­ ua . (11)

What we have done so far is just learn how to includ
u in the four-brane description of four-dimensional gaug
theory. Now we go over to the dual description in term
of supergravity (or string theory) onX. In doing so, we
must bear in mind that the parameters of the theory a
determined by specifying the type IIA vacuum far awa
from the branes, that is at largel, and then the behav-
ior at small l is determined by the supergravity equa
tions onX (or, if h is small, the full string theory onX)
and encodes the behavior of the gauge theory. For
ample, in the original description with branes onM we
assumed thatf ­ 0. In the dual description onX, the
analogous statement is thatf ­ 0 for l ! `. Likewise,
(10) should be interpreted to mean that

R
S1 a ­ ua ­ u

if the integral is taken at largel. If we combine these
conditions (plus Stokes’ theorem

R
D f ­ liml!`

R
S1 a,

where
R

D f is, of course, defined as
R

D dl dc flc), we
learn that

R
D f ­ ua ­ u mod2pZ. The 2pZ indeter-

minacy arises because the left hand side is a well-defin
real number, butu is an angle. HenceZ

D
f ­ u 1 2pk (12)

for some integerk.
Maxwell’s equations for thef field have a normalizable

zero mode in which the only nonzero component is

flc ­
6

l7 . (13)

The normalization has been chosen so that
R

D f ­ 2p.
Hence, we can find a solution of (12) obeying Maxwell’
2864
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equations in the simple form

flc ­ su 1 2pkd
3

pl7 . (14)

The back reaction on the geometry produced by thisf
field is negligible in the limit thatN goes to infinity with
fixed u 1 2pk. The reason for this is that the classica
action of the spacetime is of orderN2 (like the vacuum
energy of the largeN gauge theory to which it is dual).
The kinetic energy of thef field is of relative order1yN2

as it is simply Z
d10x

p
g fijfij , (15)

with no factors ofN or of the string coupling constant.
So to lowest order in1yN , we obey (12) and the classical
equations of motion simply by solving forf in the fixed
spacetimeX.

The u and k dependent part of the vacuum energy i
found by evaluating (15) withf as given in (14). It thus
takes the form foreseen in the introduction:

Eksud ­ Csu 1 2pkd2, (16)

with some positive constantC that is independent ofN .
The vacuum energy for givenu is obtained by minimizing
this with respect tok,

Esud ­ C min
k

su 1 2pkd2. (17)

We have obtained precisely the structure anticipated
the introduction. For givenu, there are infinitely many
vacua, labeled by the choice of an integerk. The vacuum
energyEsud is a smooth function ofu except atu ­ p,
where there is a jumping between two solutions (k ­
0 and k ­ 21). This jumping represents spontaneou
breaking ofCP at u ­ p.

Finally, we should check that the vacua labeled byk are
all stable forN ! ` and find a framework for estimating
their lifetime for finite N . The essential point is to
describe the domain wall separating vacua with adjace
values ofk. The decay of ak vacuum involves nucleation
of a “bubble” with a smaller value ofju 1 2pkj and
hence a lower energy density; this bubble is bounded by
domain wall. If the energy per unit area of such a doma
wall is large forN ! `, then thek-vacua have lifetimes
that go to infinity forN ! `.

In fact, the domain wall is constructed simply by
compactifying a type IIA six-brane on theS4 factor in
X ­ R4 3 D 3 S4. Let w be a point inD and letC be
a codimension one surface inR4 given by, say,x3 ­ 0
(with x3 one of the space coordinates). Consider a six
brane whose world volume isQ ­ C 3 w 3 S4. The
value of k jumps by 61 in crossing such a six-brane
(the sign depends on orientations and on the directio
of crossing the six-brane). The defining property of
type IIA six-brane is that ifE is a two-surface that
has linking number 1 with the six-brane world volume
then

R
E f ­ 2p. In the present case, we can take
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E ­ D1 2 D2, where D1 and D2 are copies ofD that
are respectively to the “left” or “right” ofC. (In other
words,Di ­ yi 3 D 3 z, wherez is a point inS4, and
theyi are points inR4 to the left or right ofC.) SoZ

D1

f 2
Z

D2

f ­ 62p , (18)

and this means thatk jumps by 61 in crossing the
six-brane. The domain wall is thus not an ordinar
soliton, as one might naively have thought, but
D-brane. In particular, color flux tubes associated wi
quark confinement can terminate on the boundar
between different vacua, just as they can terminate [1
on chiral domain walls inN ­ 1 supersymmetric gauge
theory in four dimensions. (Both kinds of domain wa
involve a2p jump in u.)

Now the energy density of a type IIA six-brane is fo
weak coupling of order1ylst (lst is the type IIA string
coupling constant), and, as a result, in the largeN limit
it is of order N . An instanton describing the decay of
k-vacuum can be constructed as a sort of six-brane bub
and has an action that grows as a power ofN . So the
lifetime of a k-vacuum, for any givenk, is exponentially
long for N ! `.
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