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Vibrorotational Structure in Asymmetric Doubly Excited States
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Energy spectra of doubly excited asymmetric (planetary atom) states are found to consist
of vibrorotational series of levels. A fully analytical treatment based on approximate adiabatic
separation of fast and slow motions allows us to carry out complete analysis and to reveal some
substantial differences in the origin of vibrorotational structure in atomic and molecular spectra.
[S0031-9007(98)06598-3]
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In 1978 Kellman and Herrick [1] found in the calcu- both electrons reside on the same side of atomic nucleus,
lated energy spectra of doubly excited states (DES) of thbeing well separated in radial coordinates. In particular,
He atom sequences of levels which form vibrorotationakwo versions of adiabatic theory for these states [23,24]
progressions provide a good agreement with the results of extensive

_ 2 numerical calculations and give important insight into the

Exir = ol = K = D) + BILIL + 1) = T°1. (1) e of thesglanetary atom states However, onlys
K was interpreted as vibrational quantum number &nd states were considered in the adiabatic approach as well as
and 7 as rotational quantum numbers. The underlyingin the major part of other studies. This type of asymmetric
model represents an atom as an analog of a symmetrlBES have avoided observation even by the most refined
linear three-atomic molecule. In the configuratidfe the  experimental technique [26]. (It is difficult to populate
electrons reside on opposite sides of the atomic nucleuiese states starting from the low-lying levels.) All of this,
with the chargeZ, being at equal distances from it. of course, did not favor searching for rotational structure.

Validity of this model was confirmed by numerous stud- The present paper extends the adiabatic theory of asym-
ies of electron density distributions in DES, calculations ofmetric DES to the case of nonzero total orbital momentum
expectation values for characteristic operators, and analy=. We find vibrorotational series of levels [see formula
sis of adiabatic potential curves in hyperspherical coordi{17) below], expose their physical origin, and discuss com-
nates [2—-17]. ThéK,T) classification of DES became mon features and differences as compared with the mo-
a standard approach. It was realized that vibrorotationdecular vibrorotational spectra. By this study we hope to
spectra in atoms have some unusual features as companeavide some insight into the more complicated problem
with their analogs in molecules. For instance, they aref vibrorotational structure in intrashell DES.
truncated at some values of total orbital momentinex- The adiabatic approach is developed based on the ob-
hibit high anharmonicity, and show decrease of effectiveservation that the inner electron perforfast motionover
momentum of inertid = 1/2B asL increases along rota- its elliptical orbits. Parameters of the orlsibwly evolve
tional series. The understanding of vibrorotational strucin time due to the perturbation by the outer electron, the
ture is not yet complete. This is testified, for example,motion of which is alsslow. To implement this idea, the
by the fact that vibrational frequency and rotational Hamiltonian of two-electron atom is first simplified under
constantB are usually obtained by fitting some calcu- the assumption that the inner (second) electron has a defi-
lated set of energy levels (see, for instance, Refs. [1,3,6]hite principal quantum numbes,

Only recently Gerasimovickt al. [16] succeeded in de- 72 1 2 7 1

.. . . _ 2 1

riving some analytical formulas valid for largeand large H=-—+—-pj,+—S—-——+—, (2
ny ~ na. 2ny; 2 2ri e

Vibrorotational structure is manifested most clearly inwherer; andr, are electron vectors relative to the atomic
the intrashell DES with equal principal quantum numbersnucleus,”;, = | — 2, I; andl, are one-electron orbital
of electronsn; and n,, but is discerned also for the momenta, ang,, is the radial momentum for the outer
intershell states with closa; and n,. Classification electron. The exchange effects are negligible for the asym-
of strongly asymmetric DES (witle; > n,) has some metric states since the electrons are located mainly in
special features [18,19]. The vibrorotational energy levehonoverlapping regions of space. Therefore the electrons
structure has not been reported for this case. can be treated as distinguishable particles, with the sub-

Recently, considerable attention [20—25] was devotedcripts 1 and 2 assigned to the outer and inner electron
to the special type of strongly asymmetric DES in whichvariables, respectively.
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The second step involves averaging of (2) over the fastoefficientsk; in (5) andk; in (7) are simply related,

motion, 1 3
2 K=h+—3=5Z-z""% @
(H) = =25 + Hly + HY,, €) atmy S
2n3 In order to benefit from conservation of the total orbital
, I { 5 momentumL, we change from/; and [, to the new
Hyq = 3 p1r + 3k(ri = ri0)”, (4)  canonical variable¢ and Q
HSy = —3kil? = 3hkaoh,. 5) h+h=20, h-h=2, ®)

. For the planar motion under consideration one Bas=
Here ¢, is the angle between the outer electron vector%L_ The canonical “momentum? is conjugate to the
71 and the direction of perihelium of the inner electron canonical “coordinate’s,, whereas the coordinate con-
elllptlcal orbit (the latter coincides with the time'averagedjugate to the momentu@ does not appear in the Hamil-
inner electron vectokr,)). The analytical averaging is tonian: i.e., it is cyclic.

carried out under the assumption thatny, l»/ny, and  For S states the variablef oscillates around the
@12 are small which leads to the quadratic (harmonic)stationary point¢ = 0. Now we show that for arbitrary
approximation (4) and (5) [note that the variablds [ the situation is similar, but for somé-dependent

and ¢, are implicit in (2)]. The technical details are stationary pointf,. We rewrite (9) in terms of the

thoroughly discussed in Ref. [23]. Here we cite only theqeviations¢ = ¢ — ¢,

analytical formulas for the coefficients,
Iy = ljp + 8¢, L =1l — 8¢,

2 (10)

2% =722 - 3273 + 227, a lip=4y + 9, lyp=—(y — Q),

CZ -7
372/3 | where 1o and Iy are the values of one-electron orbital
k= —(z — 73, ki = — (z — 2'3), momental; and/, at the stationary point. The terff in
16n; 8ny the Hamiltonian (7)
3723 2 2
ky = (z - z'P). (6) T="0 k2 11
8 oh 2 (1)

The first part of the averaged HamiltoniaH,,;, de-  in the new variables reads
scribes radial oscillations of the outer electron near

thg)equilibr_ium sep_araFiomo = an3. The Hamiltonign T = 2%(% + 92— %ki(fo ~ 9y

H;,, describes oscillations of the anglg, accompanied any

by correlated orbital momentum exchange between the 1

electrons. The superscrigh) emphasizes that this ex- + a’n’ (o + Q)8¢ = ki(to — Q)5¢

pression was obtained faf states which correspond to ] |

plane motion withl; = —1, = [ in classical mechanics. + Z (80 — — k| (8¢)%. (12)
Extending the adiabatic scheme to asymmetric DES with 2a%n; 2

nonzero values af, we restrict for simplicity our analysis By imposing the condition that the term linear B¥

to the states which correspond to the plane classical motiop; hishes in (12), one obtains an expression¢for
of electrons. In terms ofK,T) classification these are ’

T = O states. The radial part of the averaged Hamiltonian 0 — 1 <; n k’)Q _ EL (13)
(H) in the simplest approximation is independentIgf O & 4 ! 27"

being given by Eq. (4). The derivation of the effective .

angular Hamiltonian is exactly the same as before excegtnich does not depend on the nucleus chageAt the

for the last step where we had interrelated classical onedt@tionary point we have

a’ny

electron orbital momenta by the formula= —1, valid lio = 3L, g = —2L,
for § states. For arbitrarf one has to distinguish between (14)
2 2 .. . . 1 1
Il andl;, giving a generalization of (5), To = —— 1% — — kI
202} 10 5 f120-
5 1 1
H) = —2r120 5 kil — > kaot, . (7) Thus the angular part of the effective Hamiltoniah)
1

for nonzeroL,

Here the first term is simply a centrifugal potential for the 1 |

outer electron with the orbital momentuin The second HE = BL? — — k(80 — — koo?,,  (15)
and the third terms emerge from averaging of the electron- 2 2

electron interaction operatdy ri, over fast inner electron differs from its L = 0 counterpart (5) only by the
orbital motion under the same assumptions as before. Thehange of variable§¢ < [) and the overall shift byBL>
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with The termBL? in (17) is expected to be related to rotation
9 . 3 132 of the “molecule”Z{e,)e; as a whole. Within classical
B = 2atnd 2k) = gnd (Z —=27).  (16)  mechanics each particle and{e,) has moments of inertia

. . f I, and I, respectively, relative to the infinitely massive
Unexpe;:_te(:_lyB |S}|gent|cal'tok1 (ﬁl)'t traightf dl centerZ. The orbital momenta are expressed,as- 1,2,
Quantization of harmonic oscillators straightforwardly ; -_ L, where the frequency of rotatio is common

leads to the serial formula for the asymmetric DES energ)(ér both particles if the system rotates as a whole. Hence

levels 5 the ratiol, /1, is independent of), or of L, for this type
E. = Z I d<n N l) of motion. From the expression (14) we see that this

ottt 2n3 AT 2 is indeed the case, albeit the ratig/l, = —3 has a
— @ug(na + 1) + BL?, (17) negative value. This suggests that one of the moments of

inertia is negative.
In order to test consistency of this unusual interpreta-
tion and to develop it further let us look at how the term
Orad = 20gng = £33 z\3(z — 73y, (18) BL? = 7o in the energy is formed. According to (14), it
4n; contains two contributions. The first one comes from the
In the spirit of semiclassical approximation one replacegingular (centrifugal) part of the outer electron kinetic en-
L?in (17) by L(L + 1). ergy and could be written aS1,//; with the momentum
To interpret (17) we compare our atomic system withof inertia I, = r7,. The latter corresponds to the outer
the three-atom moleculdBC, where, as conventional, electron residing at the distaneg = an3 from the nu-
only nucleiA, B, C are shown in the notation; the molecu- cleus. This very transparent classical picture allows us,
lar electrons are implicit, being effectively excluded from by the way, to find the frequency of classical rotation for
consideration of vibrorotational motion by averaging theL state:Q) = 1,0/, = 3L/r%.
full Hamiltonian over fast motion of electrons (Born-  The second term ifl, (14), being rewritten aél%o/lg,
Oppenheimer approximation). In the same sense we haw®rresponds to the negative momentum of ineftia=
to denote outinear molecule asZ({e;)e;, where(e,) is  —1/kj of the particle(e,). It originates from the averag-
a “guasiparticle” characterized by slow variables of theing of the electron-electron interactidrir;, over the fast
inner electron (orbital momentui and direction of peri- motion. Note thatno /,-dependent contribution comes
helium(7,)), which remain after averaging over fast inner from the inner electron kinetic energyndeed, the princi-
electron motion. pal guantum numbet;, is presumed to be conserved, and
The first term in the spectral formula (17) is a constantthe inner electron unperturbed energ)z2/2n§ does not
the second term corresponds to the stretching vibratiodepend ori, (due to orbital degeneracy of energy levels in
of Z{e,)e; molecule (valence mode). Namely, the outerCoulomb field). Using the formulas (6) and (8) we find
electron radial coordinate oscillates with the frequencythe ratio7,/I, = —% in agreement with the discussion
wr,q around the equilibrium separation = rjo. Detailed above. Negative values d§ have a nontrivial dynamic
discussion of both these contributions in case§ aftates  origin. When the “particle’(e,) is “rotated” around the
[23] remains valid for arbitrary. under consideration. centerZ, it undergoes some changes in internal structure.
The third term deserves more comment. It describeJhis is seen, for instance, from the fact that the shape of
the bending vibration of ouZ{e;)e; molecule. The angle the inner electron elliptical orbit at the stationary point
@12 between the outer electron vectgrand the direction  characterized by the eccentricitey= /1 — (l20/n2)? is
of perihelium of the inner electron elliptical orlif;) 0s-  changed with increasing. This is in variance with the
cillates with the frequencw,,, around zero value. The conventional image of particle rotation around the center
canonically conjugate variable (momentusY) oscillates  when it is assumed that its inner structure does not depend
around zero with the same frequency é’mﬂ phase shift. on the rotational frequencf2.
As seen from (10), this implies orbital momentum ex- The situation for asymmetric states could be compared
change between the electrons, i.e., oscillation,oénd  with that for intrashell DES where, according to Watanabe
I, aroundlyy andlyg, respectively. These oscillations are and Lin [3], the rotational constar® has a “dominating
shifted in phase byr to satisfy the constrairit + I, = L contribution from bielectronic repulsion instead of kinetic
imposed by the total orbital momentum conservation. Theenergy.” In our case although the contribution from
“equilibrium” (or stationary point) valueg;, andl,, are  electron-electron interaction is appreciable (and negative),
linearly shifted (14) ad. varies along the rotational series, the kinetic energy contribution prevails.
but the oscillation frequency,,, (18) remains the same  There is yet another notable feature related to the
(in the harmonic approximation). particular character of the particle;). Namely, a con-
The frequencies of the stretching and bending vibrationsentional linear ABC molecule possesses two different
are in an integer rati@,q/ w.ng = 2:1. The implications  stretching vibrational modes, whereas @{e;)e; system
of this “Fermi resonance” were already discussed [23]; irhas only one. The other degree of freedom is “lost” for vi-
the refined adiabatic theory [24] the ratio is distorted. brorotational motion being extinguished by the averaging
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wheren, andn, are quantum numbers for oscillators (4)
and (15), and the frequencies are
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over fast variable. The latter is analogous to electronic
motion in ABC molecule and produces a nonoscillator
quantum numbet;.

The rotational series (17) are truncated by the obvi-
ous “kinematic” constraint,y = (n, — 1), hencelL =
%(nz — 1). Moreover, we can anticipate that noticeable
distortions in rotational series could appear even for lower
values ofL. Indeed, the present development essentially
uses the harmonic approximation for the bending vibra- 6]
tion (as indicated above, the assumption thdi, and
I,/ny are small is intrinsic for the derivation). The anhar-
monicity is known to be appreciable for this mode [23].
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