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Energy spectra of doubly excited asymmetric (planetary atom) states are found to cons
of vibrorotational series of levels. A fully analytical treatment based on approximate adiabati
separation of fast and slow motions allows us to carry out complete analysis and to reveal som
substantial differences in the origin of vibrorotational structure in atomic and molecular spectra
[S0031-9007(98)06598-3]
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In 1978 Kellman and Herrick [1] found in the calcu
lated energy spectra of doubly excited states (DES) of t
He atom sequences of levels which form vibrorotation
progressions

EKLT ­ vsn2 2 K 2 1d 1 BfLsL 1 1d 2 T2g . (1)

K was interpreted as vibrational quantum number andL
and T as rotational quantum numbers. The underlyin
model represents an atom as an analog of a symme
linear three-atomic molecule. In the configurationeZe the
electrons reside on opposite sides of the atomic nucle
with the chargeZ, being at equal distances from it.

Validity of this model was confirmed by numerous stud
ies of electron density distributions in DES, calculations
expectation values for characteristic operators, and ana
sis of adiabatic potential curves in hyperspherical coord
nates [2–17]. ThesK , T d classification of DES became
a standard approach. It was realized that vibrorotation
spectra in atoms have some unusual features as comp
with their analogs in molecules. For instance, they a
truncated at some values of total orbital momentumL, ex-
hibit high anharmonicity, and show decrease of effecti
momentum of inertiaI ­ 1y2B asL increases along rota-
tional series. The understanding of vibrorotational stru
ture is not yet complete. This is testified, for exampl
by the fact that vibrational frequencyv and rotational
constantB are usually obtained by fitting some calcu
lated set of energy levels (see, for instance, Refs. [1,3,6
Only recently Gerasimovichet al. [16] succeeded in de-
riving some analytical formulas valid for largeZ and large
n1 , n2.

Vibrorotational structure is manifested most clearly i
the intrashell DES with equal principal quantum numbe
of electronsn1 and n2, but is discerned also for the
intershell states with closen1 and n2. Classification
of strongly asymmetric DES (withn1 ¿ n2) has some
special features [18,19]. The vibrorotational energy lev
structure has not been reported for this case.

Recently, considerable attention [20–25] was devot
to the special type of strongly asymmetric DES in whic
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both electrons reside on the same side of atomic nucl
being well separated in radial coordinates. In particul
two versions of adiabatic theory for these states [23,
provide a good agreement with the results of extens
numerical calculations and give important insight into t
nature of theseplanetary atom states. However, onlyS
states were considered in the adiabatic approach as we
in the major part of other studies. This type of asymmet
DES have avoided observation even by the most refi
experimental technique [26]. (It is difficult to populat
these states starting from the low-lying levels.) All of thi
of course, did not favor searching for rotational structur

The present paper extends the adiabatic theory of as
metric DES to the case of nonzero total orbital moment
L. We find vibrorotational series of levels [see formu
(17) below], expose their physical origin, and discuss co
mon features and differences as compared with the m
lecular vibrorotational spectra. By this study we hope
provide some insight into the more complicated proble
of vibrorotational structure in intrashell DES.

The adiabatic approach is developed based on the
servation that the inner electron performsfast motionover
its elliptical orbits. Parameters of the orbitslowlyevolve
in time due to the perturbation by the outer electron,
motion of which is alsoslow. To implement this idea, the
Hamiltonian of two-electron atom is first simplified unde
the assumption that the inner (second) electron has a d
nite principal quantum numbern2,

H ­ 2
Z2

2n2
2

1
1
2

p2
1r 1

l2
1

2r2
1

2
Z
r1

1
1

r12
, (2)

where$r1 and $r2 are electron vectors relative to the atom
nucleus,$r12 ­ $r1 2 $r2, $l1 and $l2 are one-electron orbita
momenta, andp1r is the radial momentum for the oute
electron. The exchange effects are negligible for the as
metric states since the electrons are located mainly
nonoverlapping regions of space. Therefore the electr
can be treated as distinguishable particles, with the s
scripts 1 and 2 assigned to the outer and inner elec
variables, respectively.
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The second step involves averaging of (2) over the fa
motion,

kHl ­ 2
Z2

eff

2n2
2

1 H 0
rad 1 Hs0d

ang , (3)

H 0
rad ­

1
2 p2

1r 1
1
2 ksr1 2 r10d2, (4)

Hs0d
ang ­ 2

1
2 k1l2 2

1
2 k2w2

12 . (5)

Here w12 is the angle between the outer electron vect
$r1 and the direction of perihelium of the inner electro
elliptical orbit (the latter coincides with the time-average
inner electron vectork$r2l). The analytical averaging is
carried out under the assumption thatl1yn2, l2yn2, and
w12 are small which leads to the quadratic (harmoni
approximation (4) and (5) [note that the variablesl2

and w12 are implicit in (2)]. The technical details are
thoroughly discussed in Ref. [23]. Here we cite only th
analytical formulas for the coefficients,

Z2
eff ­ Z2s2 2 3Z22y3 1 2Z21d, a ­

2
Z 2 Z1y3 ,

k ­
3Z2y3

16n6
2

sZ 2 Z1y3d4, k1 ­
1

8n4
2

sZ 2 Z1y3d2,

k2 ­
3Z2y3

8n2
2

sZ 2 Z1y3d2. (6)

The first part of the averaged Hamiltonian,H 0
rad, de-

scribes radial oscillations of the outer electron ne
the equilibrium separationr10 ­ an2

2. The Hamiltonian
Hs0d

ang describes oscillations of the anglew12 accompanied
by correlated orbital momentum exchange between t
electrons. The superscripts0d emphasizes that this ex-
pression was obtained forS states which correspond to
plane motion withl1 ­ 2l2 ; l in classical mechanics.

Extending the adiabatic scheme to asymmetric DES w
nonzero values ofL, we restrict for simplicity our analysis
to the states which correspond to the plane classical mot
of electrons. In terms ofsK, Td classification these are
T ­ 0 states. The radial part of the averaged Hamiltoni
kHl in the simplest approximation is independent ofL,
being given by Eq. (4). The derivation of the effectiv
angular Hamiltonian is exactly the same as before exc
for the last step where we had interrelated classical on
electron orbital momenta by the formulal1 ­ 2l2 valid
for S states. For arbitraryL one has to distinguish between
l2
1 andl2

2 , giving a generalization of (5),

HsLd
ang ­

l2
1

2r2
10

2
1
2

k0
1l2

2 2
1
2

k2w2
12 . (7)

Here the first term is simply a centrifugal potential for th
outer electron with the orbital momentuml1. The second
and the third terms emerge from averaging of the electro
electron interaction operator1yr12 over fast inner electron
orbital motion under the same assumptions as before. T
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coefficientsk1 in (5) andk0
1 in (7) are simply related,

k0
1 ­ k1 1

1

a2 n4
2

­
3

8n4
2

sZ 2 Z1y3d2. (8)

In order to benefit from conservation of the total orbita
momentumL, we change froml1 and l2 to the new
canonical variables, andQ

l1 1 l2 ­ 2Q, l1 2 l2 ­ 2, , (9)

For the planar motion under consideration one hasQ ­
1
2 L. The canonical “momentum”, is conjugate to the
canonical “coordinate”w12, whereas the coordinate con-
jugate to the momentumQ does not appear in the Hamil-
tonian; i.e., it is cyclic.

For S states the variable, oscillates around the
stationary point, ­ 0. Now we show that for arbitrary
L the situation is similar, but for someL-dependent
stationary point,0. We rewrite (9) in terms of the
deviationd, ; , 2 ,0,

l1 ­ l10 1 d,, l2 ­ l20 2 d, ,

l10 ; ,0 1 Q, l20 ; 2s,0 2 Qd ,
(10)

where l10 and l20 are the values of one-electron orbital
momental1 andl2 at the stationary point. The termT in
the Hamiltonian (7)

T ­
l2
1

2r2
10

2 k0
1

l2
2

2
(11)

in the new variables reads

T ­
1

2a2n4
2

s,0 1 Qd2 2
1
2

k0
1s,0 2 Qd2

1
1

a2n4
2

s,0 1 Qdd, 2 k0
1s,0 2 Qdd,

1
1

2a2n4
2

sd,d2 2
1
2

k0
1sd,d2. (12)

By imposing the condition that the term linear ind,
vanishes in (12), one obtains an expression for,0

,0 ­
1
k1

µ
1

a2n4
2

1 k0
1

∂
Q ­

5
2

L , (13)

which does not depend on the nucleus chargeZ. At the
stationary point we have

l10 ­ 3L, l20 ­ 22L ,

T0 ­
1

2a2n4
2

l2
10 2

1
2

k0
1l2

20 .
(14)

Thus the angular part of the effective HamiltoniankHl
for nonzeroL,

HsLd
ang ­ BL2 2

1
2

k1sd,d2 2
1
2

k2w2
12 , (15)

differs from its L ­ 0 counterpart (5) only by the
change of variable (d, $ l) and the overall shift byBL2
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B ­
9

2a2n4
2

2 2k0
1 ­

3

8n4
2

sZ 2 Z1y3d2. (16)

Unexpectedly,B is identical tok0
1 (8).

Quantization of harmonic oscillators straightforwardl
leads to the serial formula for the asymmetric DES ener
levels

En2nr naL ­ 2
Z2

eff

2n2
2

1 vrad

µ
nr 1

1
2

∂
2 vangsna 1 1d 1 BL2, (17)

wherenr andna are quantum numbers for oscillators (4
and (15), and the frequencies are

vrad ­ 2vang ­

p
3

4n3
2

Z1y3sZ 2 Z1y3d2. (18)

In the spirit of semiclassical approximation one replac
L2 in (17) byLsL 1 1d.

To interpret (17) we compare our atomic system wi
the three-atom moleculeABC, where, as conventional,
only nucleiA, B, C are shown in the notation; the molecu
lar electrons are implicit, being effectively excluded from
consideration of vibrorotational motion by averaging th
full Hamiltonian over fast motion of electrons (Born
Oppenheimer approximation). In the same sense we h
to denote ourlinear molecule asZke2le1, whereke2l is
a “quasiparticle” characterized by slow variables of th
inner electron (orbital momentuml2 and direction of peri-
helium k $r2l), which remain after averaging over fast inne
electron motion.

The first term in the spectral formula (17) is a constan
the second term corresponds to the stretching vibrat
of Zke2le1 molecule (valence mode). Namely, the oute
electron radial coordinate oscillates with the frequen
vrad around the equilibrium separationr1 ­ r10. Detailed
discussion of both these contributions in case ofS states
[23] remains valid for arbitraryL under consideration.

The third term deserves more comment. It describ
the bending vibration of ourZke2le1 molecule. The angle
w12 between the outer electron vector$r1 and the direction
of perihelium of the inner electron elliptical orbitk$r2l os-
cillates with the frequencyvang around zero value. The
canonically conjugate variable (momentum)d, oscillates
around zero with the same frequency and1

2 p phase shift.
As seen from (10), this implies orbital momentum ex
change between the electrons, i.e., oscillation ofl1 and
l2 aroundl10 andl20, respectively. These oscillations ar
shifted in phase byp to satisfy the constraintl1 1 l2 ­ L
imposed by the total orbital momentum conservation. T
“equilibrium” (or stationary point) valuesl10 and l20 are
linearly shifted (14) asL varies along the rotational series
but the oscillation frequencyvang (18) remains the same
(in the harmonic approximation).

The frequencies of the stretching and bending vibratio
are in an integer ratiovradyvang ­ 2:1. The implications
of this “Fermi resonance” were already discussed [23];
the refined adiabatic theory [24] the ratio is distorted.
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The termBL2 in (17) is expected to be related to rotation
of the “molecule”Zke2le1 as a whole. Within classical
mechanics each particlee1 andke2l has moments of inertia
I1 and I2, respectively, relative to the infinitely massive
centerZ. The orbital momenta are expressed asl1 ­ I1V,
l2 ­ I2V, where the frequency of rotationV is common
for both particles if the system rotates as a whole. Henc
the ratiol1yl2 is independent ofV, or of L, for this type
of motion. From the expression (14) we see that th
is indeed the case, albeit the ratiol10yl20 ­ 2

3
2 has a

negative value. This suggests that one of the moments
inertia is negative.

In order to test consistency of this unusual interpreta
tion and to develop it further let us look at how the term
BL2 ­ T0 in the energy is formed. According to (14), it
contains two contributions. The first one comes from th
angular (centrifugal) part of the outer electron kinetic en
ergy and could be written as12 l2

10yI1 with the momentum
of inertia I1 ­ r2

10. The latter corresponds to the outer
electron residing at the distancer10 ­ an2

2 from the nu-
cleus. This very transparent classical picture allows u
by the way, to find the frequency of classical rotation fo
L state:V ­ l10yI1 ­ 3Lyr2

10.
The second term inT0 (14), being rewritten as12 l2

20yI2,
corresponds to the negative momentum of inertiaI2 ­
21yk0

1 of the particleke2l. It originates from the averag-
ing of the electron-electron interaction1yr12 over the fast
motion. Note thatno l2-dependent contribution comes
from the inner electron kinetic energy. Indeed, the princi-
pal quantum numbern2 is presumed to be conserved, and
the inner electron unperturbed energy2Z2y2n2

2 does not
depend onl2 (due to orbital degeneracy of energy levels in
Coulomb field). Using the formulas (6) and (8) we find
the ratio I1yI2 ­ 2

3
2 in agreement with the discussion

above. Negative values ofI2 have a nontrivial dynamic
origin. When the “particle”ke2l is “rotated” around the
centerZ, it undergoes some changes in internal structur
This is seen, for instance, from the fact that the shape
the inner electron elliptical orbit at the stationary poin
characterized by the eccentricitye ­

p
1 2 sl20yn2d2 is

changed with increasingL. This is in variance with the
conventional image of particle rotation around the cente
when it is assumed that its inner structure does not depe
on the rotational frequencyV.

The situation for asymmetric states could be compare
with that for intrashell DES where, according to Watanab
and Lin [3], the rotational constantB has a “dominating
contribution from bielectronic repulsion instead of kinetic
energy.” In our case although the contribution from
electron-electron interaction is appreciable (and negative
the kinetic energy contribution prevails.

There is yet another notable feature related to th
particular character of the particleke2l. Namely, a con-
ventional linearABC molecule possesses two differen
stretching vibrational modes, whereas ourZke2le1 system
has only one. The other degree of freedom is “lost” for vi
brorotational motion being extinguished by the averagin
287
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over fast variable. The latter is analogous to electron
motion in ABC molecule and produces a nonoscillato
quantum numbern2.

The rotational series (17) are truncated by the obv
ous “kinematic” constraintl20 # sn2 2 1d, henceL #
1
2 sn2 2 1d. Moreover, we can anticipate that noticeabl
distortions in rotational series could appear even for low
values ofL. Indeed, the present development essentia
uses the harmonic approximation for the bending vibr
tion (as indicated above, the assumption thatl1yn2 and
l2yn2 are small is intrinsic for the derivation). The anhar
monicity is known to be appreciable for this mode [23]
However, anharmonic corrections are beyond the scope
the present study. We only emphasize that the vibration
quanta are of order,n23

2 , whereas the rotational quan-
tum is parametrically smaller (,n24

2 ). Of course, there
are many other contributions of the same order,n24

2 , re-
sponsible for anharmonicity. In the present study we sele
only that which isL dependent and thus generates the r
tational level structure.

Applicability of the adiabatic approach to vibrationa
stretching and bending motions is governed by a sm
value of the ratiovradyvorb where characteristic orbiting
frequency for the inner electron isvorb ­ Z2yn3

2. This
parameter is as small as 0.075 forZ ­ 2, but increases
with Z attaining a value 0.32 forZ ­ 5. This is a
manifestation of the well known fact that for largeZ
the relative role of electron-electron repulsion decreas
in comparison with electron-nucleus attraction and hen
the correlation effects become less important.

To summarize, we have found vibrorotational structur
in the spectra of asymmetric DES. This case is uniqu
since it allows analytical and complete treatment withi
harmonic approximation. As in the theory of molecula
spectra, our approach is based on approximate separa
of fast and slow motions in the system. In both cases t
difference of time scales alone is responsible for the syste
stability and regular character of the energy spectrum
Some important features reflect specifics of the atom
system as compared with the molecule, such as negat
effective moment of inertia for one of constituent “atoms
and the “loss” of one stretching mode.
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