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Order from Disorder: Nonmagnetic Impurities in the Spin-Gap Phase of the Cuprates

Catherine Pépin and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 26 February 1998)

We solve the problem ofN nonmagnetic impurities in the staggered flux phase of the Heisenberg
model which we assume to be a good mean-field approximation for the spin-gap phase of the
cuprates. The density of states is evaluated exactly in the unitary scattering limit and is proportional
to 1yv ln2sjvjyDd, in analogy with the 1D case of doped spin-Peierls and two-leg ladder compounds.
We argue that the system exhibits a quasi-long-range order atT ­ 0 with instantaneous spin-spin
correlations decreasing asniy ln2sniRijd for large distancesRij and we predict enhanced low energy
fluctuations in neutron scattering. [S0031-9007(98)06907-5]

PACS numbers: 74.25.Fy, 74.25.Ha, 74.72.–h, 75.20.Hr
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It is now established that the normal phase of
underdoped cuprates possesses a magnetic gap wit
same anisotropy as thed-wave superconducting gap
The essential physics of the high-TC superconductors ca
be captured by focusing on the CuO2 planes. A micro-
scopic starting point of theoretical analysis is the so-ca
t-J model. In a slave-boson mean-field formulation, t
system undergoes spin and charge separation: an ele
in these highly correlated materials is a composite ob
made of a spin1y2 neutral fermion (spinon) and a spinle
charged boson (holon). The gap in the magnetic exc
tions of the normal state can be viewed as a singlet
mation between pairs of neutral fermions in the abse
of coherence between the holons. We assume that
mean-field picture captures essentially the initial idea
Anderson [1] of a resonance valence bond (RVB) grou
state for the normal phase of the cuprates.

Substitution of Cu ions in the conduction planes
high-TC cuprates by different nonmagnetic ions prese
an important experimental tool for the study of the met
lic state. Unusual effects have been revealed espec
when the materials were doped with Zn. The valence
Zn is Zn21 sd10d and, compared with the Cu21 case, one
electron is trapped by an additional positive charge of
nucleus, forming a singlet at the Zn site. In the spin-g
phase, it is experimentally found by NMR [2–5] expe
ments that a local magnetic moment of spin1y2 appears
on Cu sites neighboring the Zn impurity.

In high-TC cuprates the persistence of an
ferromagnetic (AF) fluctuations in the metallic sta
is probably one of the most striking features. Inelas
neutron scattering (INS) has established previously
existence of an energy gap in the imaginary part of
dynamical susceptibility in the normal and superco
ducting phases of the pure compound [6] (without Z
Substitution of Zn in CuO2 planes shows a striking trans
fer of spectral weight from high to low energies, partia
filling the spin gap [7,8]. This is the signature of stron
enhancement of AF correlations in the spin-gap phase

On the theoretical side, impurity-induced momen
have been studied for a variety of quantum disorde
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spin systems. Especially in one dimension, doped s
ladders [9–12] such as SrCu2O3 and spin-Peierls [11,13
systems such as CuGeO3 have been investigated. The
systems have in common with the underdoped cupr
the presence of a gap in the spin excitation spectrum
has been shown theoretically as well as experiment
[14] that Zn doping is also the origin of a stron
enhancement of AF correlations in the ground sta
The picture is that the impurity breaks up the sing
leaving behind aS ­ 1y2 local moment. Moments on th
same and opposite sublattices interact with ferromagn
and antiferromagnetic exchanges, respectively. Ther
no frustration in this system. The problem has be
mapped onto the randomS ­ 1y2 chain with random sign
interaction [9] and is believed to exhibit long-range
quasi-long-range order atT ­ 0. It has been suggeste
that similar physics may operate in a two dimensio
dopedt-J model [11].

Earlier work has treated the effect of a single nonm
netic impurity in thep-flux state [15] and the pairwis
interaction between them [16]. It was found that ea
impurity creates a bound state in the pseudogap atv ­
0. Interaction between a pair of impurities leads to
level splitting between these states given byDsRd ,
1yR lnsRd.

Here we solve the problem ofN nonmagnetic impuri-
ties in the staggered-flux phase of the Heisenberg mo
We find that the overlap between the bound states le
to a broadening of thed-function peaks and the density
states is given exactly by

drsvd ­ niysjvj ln2jvjyDd

(ni being the density of impurities). We also confirm th
because the staggered-flux phase introduces no frustr
between the local moments, a quasi-long-range stagg
order exists at zero temperature. We present our re
in terms of ap-flux phase even though our conclusio
are general for any staggered-flux phase. In our v
the quasi-long-range order found for thep-flux phase
at half filling accounts for the general enhancement
© 1998 The American Physical Society 2779
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antiferromagnetic correlations found by INS experimen
in the underdoped compounds.

In the absence of impurities, the Hubbard model

H ­ 2t
X

ki,jl,s
scy

i cj 1 H.c.d 1 U
X

i

ni"ni# (1)

for Uyt ¿ 1 at half filling may be canonically trans-
formed and projected into the nondoubly occupied su
space to become theS ­ 1

2 AF Heisenberg model

HAF ­ 2J
X
ki,jl

X
s,s0

c
y
iscjsc

y
js0cis0 , (2)

whereJ ­ 4t2yU. The mean-field approach assumes
nonzero expectation value forxij ­ kcy

iscjsl, which is
a link variable of aUs1d lattice gauge field coupled
to the remaining fermionsxij ­ expfi

Rj
i A ? dlg. We

parametrize thep-flux phase by takingxij ­ xeiuij ,
where uij ­ 2uji and uij ­ 0 if i, j k x, and 1

p

2 if
Ri,j k y.

Dividing the square lattice into two sublat
tices A and B, the mean-field Hamiltonian can
be diagonalized via the canonical transformatio
cA

k ­ ck,0 1 ck,1 and cB
k ­ eiwk sck,0 2 ck,1d, with

eiwk ­ scoskx 1 i coskydy
p

cos2 kx 1 cos2 ky , lead-
ing to HMF ­

P
k[BZ,a­0,1 EK s21dac

y
k,ack,a, where

the summation overk extends over the full Bril-
louin zone and the constant terms have been omitt
6Ek ­ 6

p
cos2 kx 1 cos2 ky are the quasiparticle eigen

values that will be linearized around the four node
s6 p

2 , 6
p

2 d.
The impurities are treated as repulsive scalar potent

randomly distributed on the lattice

Himp ­ V0

NX
i0­1

c
y
i0

ci0 . (3)

We assume that the unitary limitsV0 ¿ 1d is physical
because the electrons on Cu sites are really trapped by
impurities in experimental realizations.

We define the Green’s functionGaa0

kk0 sivnd ­
2kTtck,astdcy

k0,a0s0dlvn , where the brackets k lvn

denote the Fourier transform in Matsubara freque
cies. Note that no impurity averaging has bee
made. The bare propagators for quasiparticles sati
G0

k,asivnd ­ 1yfivn 2 s21daEkg.
The equation of motion for the Green’s function can b

closed algebraically: it involvesN unknown propagators
(corresponding to the scattering by each impurity) th
can be evaluated self-consistently. This leads us to
following T -matrix equation:

Gaa0

kk0 sivnd ­ G0
k,adk,k0da,a0

1
X
i,j

G
0
k,asRidTijsivndG0

k0,a0s2Rjd , (4)

where G
0
k,asRid ­ G0

k,a expsik ? Rid if Ri belongs to
sublatticeA andG

0
k,asRid ­ G0

k,a expsik ? Ri 2 iwkd if
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Ri belongs to sublatticeB. The T matrix is given by
T̂ ­ 2V0M̂21, where M̂ is the matrix that closes th
equations of motion.M̂ is a N 3 N matrix (N is the
number of impurities) each entry of which correspon
to the scattering from one impurity to another. It can
written by blocks as

M̂ ­

"
ÂNy2 B̂Ny2
tB̂Ny2 D̂Ny2

#
, (5)

where Â and D̂ describe the scattering by impurities
the same sublattice and̂B is the scattering by impuritie
in different sublattices. We have noted in indices
rank of the matrices which is roughlyNy2 but the
solution works for any macroscopic number of impurit
in each sublattice. Dividing again in the same way e
sublattice into two subsublatticesA1, A2 and B1, B2, we
define the coefficientsÂij ­ dij 1 V0Asivn, Rijd, if
Ri andRj belong to the same subsublattice andÂij ­ 0
when Ri and Rj belong to different subsublattice
B̂ij ­ V0B sivn, Rijd and D̂ij ­ Âij . Two impurities
in the same sublattice are related by the propag
Asivn, Rijd ­ N 21

P
k,n G0

k,nsivnd expsik ? Rijd, with
N as the number of sites in the lattice. When tw
impurities are in different sublattices, they are related
Bsivn, Rijd ­ N 21

P
k,n G0

k,nsivnd s21dn exps2iwk 1

ik ? Rijd. Because of the symmetries of thep-flux
phase, there is no interaction between two subsublat
that belong to the same sublattice.

The coefficientsAsivn, Rijd and B sivn, Rijd are
given by

Asivn, Rd .
4ivn

pD2 K0

µ
Rjvnj

D

∂
FAsRd ,

whereFAsRd ­ 1
2 fcosspRxd 1 1g andK0 is the modified

Bessel function of rank zero;

Bsivn, Rd . 4i expfiQ2 ? R 1 iwgFBsRd
4ivn

pD2

3 K1sRjvnjyDd ,

with

Q2 ­ s p

2 , p

2 d, FBsRd ­
1
2 f1 2 cosspRxdg exps22iwd,

w being the angle betweenR andx [16].
In the regime whereRijjvnj ø D, Aijsivn, Rd ,

4ypD2ivn ln jRvnyDj. This logarithmic structure is
characteristic of the system of Dirac fermions in 2D.
is the origin of the breakdown of the usual perturbat
expansions [17]: logarithmic divergences will inde
appear in all orders in the diagrammatic expansi
making it necessary to resum the whole series of diagr
in order to control any calculation.

Here we take a nonperturbative approach and dire
invert the matrixM̂. We notice thatÂNy2 approaches
unity in the limit of low frequencies. We useX

k

B sivn, RikdB sivn, Rkjd , lnsjvnjRijyDd Ŝ , (6)
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where Ŝ is a Ny2 3 Ny2 matrix satisfyingSij ­ 1 if
Rij , Dyjvnj and 0 elsewhere. The matrix produ
t B̂B̂ ¿ 1. After taking the limitV0 ! `, we invert the
matrix M̂ by blocks:

T̂ sivnd ­

∑
0 tB̂21

B̂21 0

∏
. (7)

Impurities interact only if they are on different sublattice
We have supposed thatB̂ is a square matrix but the proo
can easily be generalized for a nonsquare one [18].

We proceed to evaluate the additional dens
of states drsvd ­ 2

1
p Im

P
k,a dGaa

kk sv 1 idd,
where dG is the part of the Green’s function in
Eq. (4) due to impurities. It can be read from
Eq. (4) that drsvd ­ 2

1
p Im TrsT̂≠y≠vM̂d, so that

drsvd ­ 2
2
p Im ≠y≠vsln DetB̂d. The idea is now

to evaluate this trace without exactly calculating t
T matrix (6). We know that Det̂B ­ 1y2 DetstB̂B̂d
and we use the logarithmic form oftB̂B̂ (6) to get
DetB̂ , 1

2 fsjvjd lnN sjvjyDd, where f is a prefactor
which does not depend on the numberN of impurities.
The logarithmic structure of the problem that invalidat
the usual perturbative expansions has been used
to factorize the leading divergence in the evaluation
DetstB̂B̂d. Since the prefactorfsjvjd does not depend
on N , its contribution to the density of states will b
negligible in the thermodynamic limit. Hence in the the
modynamic limit and after analytic continuation, we g
drsvd ­ 2

N
p Im ≠

≠v sln ln j
v

D jd and per unit of volume,

drsvd ­
1

2jvj

ni

ln2sjvjyDd 1 spy2d2 . (8)

Note that
R`

2` drsvddv ­ niy2; there are thus as
many states created at zero energy as impurities in
system. For one impurity alone [15,16], ad-like bound
state is created atv ­ 0. If the impurities were totally
uncorrelated, we would findN d functions atv ­ 0.
Here we see clearly the overlap of impurity states wh
leads to a broadening of thed functions. It is interesting
to compare this density of states with the one found
one dimensional spin-gap systems such as spin-Pe
[13] and two-leg ladder [9–11] systems wheredrsvd ,
1yjvj ln3sjvjyDd. It is also worth noticing that the very
same form of the density of states as Eq. (8) has b
obtained in another apparently unrelated problem [19]
reasons which are not clear to us so far.

In our method, we in fact calculate exactly man
thermodynamic quantities. For instance, the unifo
magnetic susceptibility is given by

xsT d ­ b
Z `

0
d´drs´d

1

2 cosh2s b´

2 d
. (9)

From the asymptotic behavior ofdrs´d at small ´

we find that at low temperaturesxsT d , niy2T lns1yT d,
which can be interpreted as a Curie-like behavior with
vanishing Curie constantCsT d ­ niy2 lns1yT d.

The free energy
.

re
f

e

r
rls

n
r

a

DFsT d ­ 22T
Z `

0
d´drs´d lns1 1 e2b´d

leads to a specific heatCV sT d , 1y ln2s1yT d and a low
temperature entropySsT d , 1y lns1yT d. However, the
entropy vanishes very slowly with temperature.

We address now the important question of long-ran
order in the system by computing the instantaneo
correlations kS1

i S2
j l ­ limt!01 kS1

i stdS2
j s0dl. It is

easy to show thatkS1
i S2

j l ­ limt!01 kG"
ijstdG#

jis2tdl,
whereGijstd is the Fourier transform in real space an
complex time of the exact Green’s function of Eq. (4
We verify that this two-spin correlation is staggere
If i and j belong to the same sublattice,dGijsivnd ­P

kl Asivn, RikdTklB sivn, Rljd which owing to (7)
simply renormalizes the bare Green’s functio
dGijsivnd ­ 2niAsivn, Rijd. When i and j belong
to different sublattices, there is one nontrivial qua
tity dGijsivnd ­

P
kl Asivn, RikdTklAsivn, Rljd.

A simplification is obtained after noticing tha
Â ­ B̂21s≠B̂y≠ivnd, which leads to

dGijsivnd ­ s≠B̂y≠ivnd s≠B̂22y≠ivnd . (10)

Writing ≠B̂2y≠ivn ­ 2B̂s≠B̂y≠ivnd and evaluating
this product with the use of Eq. (6), we show th
≠B̂2y≠ivn , f≠ lnsjvnjyDdy≠ivng Ŝ. Here again we
have factorized the logarithmic divergence in̂B2 and
shown that the derivative with respect toivn acts
mainly on this factorized logarithm. Consequent
≠B̂22y≠ivn , f≠sss1y lnsjvnjyDdddd≠ivng Ŝ21. We now
make an approximation for the inverse ofŜ. We take
Ŝ21

ij ­ sjvnjyDdUij. For all j inside a circle of radius
Dyjvnj around the pointi, Uij is a random configuration
of 61 so that

P
j Uij , Dyjvnj. In addition, all of the

points j situated in the external boundary of this circ
have Uij ­ 21y

p
p. ElsewhereUij ­ 0. The main

difficulty in the inversion ofŜ is that two circles of radius
Dyjvnj centered around two pointsi andj very close to
each other will overlap, leading to the same number
nonzero coefficients in the linesi andj of Ŝ. In order to
differentiate the sums

P
k SikS21

ki and
P

k SikS21
kj we have

thus used the external boundary of the circle to comp
sate its volume inŜ21. Using this inverse we perform
the evaluation of Eq. (10). In order to take into accou
the vertex corrections due to scattering processes,
perform the average over disorder after having evalua
the product of the two Green’s functions. We find tha
at T ­ 0,

kS1
i S2

j l ,
ni

ln2sniRijd 1 spy2d2 , (11)

for impurities in different sublattices.N nonmagnetic im-
purities randomly distributed in ap-flux phase stabilize
a quasi-long-range staggered order. This result has
be compared with the purep-flux instantaneous corre-
lations which decay algebraically in1yR4 [20] at zero
2781
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temperature. Physically we understand what happens
introducing impurities one after another. For one imp
rity, a local moment withS ­ 1y2 is created in the vicin-
ity [15]. Under on-site repulsion, two impurities intera
via an effective Heisenberg exchangeH ­ JsRdS1 ? S2,
with JsRd , 1yR lnsRd if they are located on differen
sublattices. However, two impurities located on the sa
sublattice do not interact [16]. In our model, even thou
the on-site repulsion is treated at the mean-field level,
one particle wave function remains commensurate w
sublattices. This supports the intuition that no frustrati
will be introduced in the model when a macroscopic nu
ber of impurities interact with each other. This effect
the origin of the quasi-long-range order that we find.

A similar picture is obtained for the ladder or spin
Peierls cases except that in these cases the instantan
spin correlation decreases exponentially with density,
flecting the fact that interactions between local mome
fall exponentially with the distance. Here the instan
neous correlations on different sublattices are proportio
to the density of impurities because a pair of impu
ties interact via an effective exchangeJsRd , 1yR lnsRd.
We suggest that the logarithmic decay in (11) is due
quantum fluctuations at zero temperature even tho
the precise power in the logarithm may depend on o
approximation.

What would be observed if a neutron scatte
ing experiment would be performed on this sy
tem? We have computed here the structure fac
SsQ, Vd ­ 1yN

P
q x 00sQ, Vd integrated around

sp , pd. For two points i and j in different sublat-
tices, x

00
ijsQ, Vd is expressed asx 00

ijsQ, V 1 idd ­

1yspbd
R

V

0 dv Im Gijsv 2 V 1 idd Im Gjisv 1 idd.
Using the same tricks as before for the instantane
correlation function, we show that at low frequencies

SsQ, Vd ,
ni

V ln4 jVyDj
. (12)

Even though we do not have true long-range order
the system [which would have led toSsQ, Vd ­ dsVd],
neutron scattering experiments would see a divergenc
the integrated staggered structure factor at low frequ
cies, signaling a strong enhancement of antiferromagn
correlations.

The situation will change for experimental system
with finite oxygen doping. If we take as a theoretic
starting point thed-wave RVB ground state, the effec
of oxygen doping will be to move the nodes away fro
the four pointss6py2, 6py2d in the fermion spectrum.
Excitations from node to node will then slightly diffe
2782
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from the commensurated vectorssp , pd. We believe that
instead of quasi-long-range AF order, this mechan
may give rise to an incommensurate quasi-long-ra
order. Furthermore, it is likely that the finite frequen
response integrated overq-space will not be that differen
from that given by Eq. (12), which may explain th
enhancement of AF correlations observed in Zn do
YBaCuO by neutron scattering [7,8]
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