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Order from Disorder: Nonmagnetic Impurities in the Spin-Gap Phase of the Cuprates
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We solve the problem oN nonmagnetic impurities in the staggered flux phase of the Heisenberg
model which we assume to be a good mean-field approximation for the spin-gap phase of the
cuprates. The density of states is evaluated exactly in the unitary scattering limit and is proportional
to 1/w IN*(lw|/D), in analogy with the 1D case of doped spin-Peierls and two-leg ladder compounds.
We argue that the system exhibits a quasi-long-range ordét &t0 with instantaneous spin-spin
correlations decreasing as/lnz(niR,-j) for large distanceR;; and we predict enhanced low energy
fluctuations in neutron scattering. [S0031-9007(98)06907-5]

PACS numbers: 74.25.Fy, 74.25.Ha, 74.72.—h, 75.20.Hr

It is now established that the normal phase of thespin systems. Especially in one dimension, doped spin
underdoped cuprates possesses a magnetic gap with taelders [9—12] such as Srg@D; and spin-Peierls [11,13]
same anisotropy as théd-wave superconducting gap. systems such as CuGg@ave been investigated. These
The essential physics of the high- superconductors can systems have in common with the underdoped cuprates
be captured by focusing on the Cu@lanes. A micro- the presence of a gap in the spin excitation spectrum. It
scopic starting point of theoretical analysis is the so-calledhas been shown theoretically as well as experimentally
t-J model. In a slave-boson mean-field formulation, the[14] that Zn doping is also the origin of a strong
system undergoes spin and charge separation: an electrenhancement of AF correlations in the ground state.
in these highly correlated materials is a composite objecThe picture is that the impurity breaks up the singlet,
made of a spifl /2 neutral fermion (spinon) and a spinless leaving behind & = 1/2 local moment. Moments on the
charged boson (holon). The gap in the magnetic excitasame and opposite sublattices interact with ferromagnetic
tions of the normal state can be viewed as a singlet forand antiferromagnetic exchanges, respectively. There is
mation between pairs of neutral fermions in the absencao frustration in this system. The problem has been
of coherence between the holons. We assume that thimapped onto the randosh= 1/2 chain with random sign
mean-field picture captures essentially the initial idea ofnteraction [9] and is believed to exhibit long-range or
Anderson [1] of a resonance valence bond (RVB) groundjuasi-long-range order & = 0. It has been suggested
state for the normal phase of the cuprates. that similar physics may operate in a two dimensional

Substitution of Cu ions in the conduction planes ofdopeds-J model [11].
high-T¢ cuprates by different nonmagnetic ions presents Earlier work has treated the effect of a single nonmag-
an important experimental tool for the study of the metal-netic impurity in thes-flux state [15] and the pairwise
lic state. Unusual effects have been revealed especialipteraction between them [16]. It was found that each
when the materials were doped with Zn. The valence ofmpurity creates a bound state in the pseudogap at
Znis Zr** (d'°) and, compared with the €t case, one 0. Interaction between a pair of impurities leads to a
electron is trapped by an additional positive charge of thdevel splitting between these states given AyR) ~
nucleus, forming a singlet at the Zn site. In the spin-gapl/R In(R).
phase, it is experimentally found by NMR [2-5] experi- Here we solve the problem &f nonmagnetic impuri-
ments that a local magnetic moment of spif2 appears ties in the staggered-flux phase of the Heisenberg model.
on Cu sites neighboring the Zn impurity. We find that the overlap between the bound states leads

In  high-T¢ cuprates the persistence of anti-to a broadening of thé-function peaks and the density of
ferromagnetic (AF) fluctuations in the metallic state states is given exactly by
is probably one of the most striking features. Inelastic
neutron scattering (INS) has established previously the dp(w) = n;i/(lo|In*lw|/D)
existence of an energy gap in the imaginary part of the
dynamical susceptibility in the normal and supercon-(n; being the density of impurities). We also confirm that,
ducting phases of the pure compound [6] (without Zn).because the staggered-flux phase introduces no frustration
Substitution of Zn in Cu@planes shows a striking trans- between the local moments, a quasi-long-range staggered
fer of spectral weight from high to low energies, partially order exists at zero temperature. We present our results
filling the spin gap [7,8]. This is the signature of strongin terms of ax-flux phase even though our conclusions
enhancement of AF correlations in the spin-gap phase. are general for any staggered-flux phase. In our view

On the theoretical side, impurity-induced momentsthe quasi-long-range order found for theflux phase
have been studied for a variety of quantum disorderedt half filling accounts for the general enhancement of
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antiferromagnetic correlations found by INS experimentsR; belongs to sublatticés. The T matrix is given by
in the underdoped compounds. T = —VoM~!', where M is the matrix that closes the
In the absence of impurities, the Hubbard model equations of motion. M is a N X N matrix (V is the
" number of impurities) each entry of which corresponds
H=-1 (cic; +He) + U ngmy (1) 1o the scattering from one impurity to another. It can be

iy i written by blocks as
for U/t > 1 at half filing may be canonically trans- i B
formed and projected into the nondoubly occupied sub- VI = |:ng/2 DN/Z :| (5)
space to become the = 1 AF Heisenberg model N2 P2
AF " " whereA and D describe the scattering by impurities in
H™ =—J Z Z CioCjoCjo’Cia’> (2 the same sublattice anill is the scattering by impurities

(i.j) o0

in different sublattices. We have noted in indices the
whereJ = 4:>/U. The mean-field approach assumes aank of the matrices which is roughly/2 but the
nonzero expectation value fof;; = <c;r0cj(,), which is  solution works for any macroscopic number of impurities
a link variable of aU(l) lattice gauge field coupled in each sublattice. Dividing again in the same way each
to the remaining fermiong;; = exdi /I A - dl]. We  sublattice into two subsublattices, A, and By, By, we
parametrize ther-flux phase by takingy; = yxe'?s,  define the coefficientsA;; = §;; + Vo A(iw,, Ry)), if
where 6;; = —6; and 6;; = 0 if i,j [l x, and +7 if R; andR; belong to the same subsublattice a?npl =0
Rijlly. when R; and R; belong to different subsublattices.
Dividing the square lattice into two sublat- B;; = VoB(iw,, R;;) and D;; = A;;. Two impurities
tices A and B, the mean-field Hamiltonian can in the same sublattice are related by the propagator
be diagonalized via the canonical transformationA(iw,,R;;) =N "1, G,?,n(iwn)exp(ik - R;j), with
= Yro + Yy and k= e (o — 1), with N as the number of sites in the lattice. When two
e'¥* = (cosk, + icosky)/\/cos2 k. + coS k,y, lead- impurities are in different sublattices, they are related by
ing to Hyr = Xepz a=01EK(_1)al//lj,a¢k,a, where  Bliw, Rij) = N 715, Giyliw,) (—1)"exp(—igy +
the summation overk extends over the full Bril- ik - R;). Because of the symmetries of the-flux
louin zone and the constant terms have been Omitted)’hase, there is no interaction between two subsublattices
+E, = ++/codk, + cos k, are the quasiparticle eigen- that belong to the same sublattice.
values that will be linearized around the four nodes The coefficients A(iw,,R;;) and B(iw,.R;) are

(x3,%£5). given by
The impurities are treated as repulsive scalar potentials . 4iw, Rlwal\ ;4
randomly distributed on the lattice Aliwy,R) = Y K0< D )q) (R),
N
Himp = Vo > clei. (3) Where®4(R) = ilcod7R,) + 1]andK, is the modified
io=1 Bessel function of rank zero;

We assume that the unitary lim{%, > 1) is physical
because the electrons on Cu sites are really trapped by Zn
impurities in experimental realizations.
We define the Green’s functionG,‘j‘k?"(iw,,) = )
—<TTl//k’a(T)l,[/1;[-/’a/(O)>wn, where the brackets (),, with
denote the Fourier transform in Matsubara frequen- Q2 = (2.3), ®%(R) = 1[I — codmR,)]exp(—2i¢),
cies. Note that no impurity averaging has been, peing the angle betwedr andx [16].
m(f):\de. The bare propagators for quasiparticles satisfy | the regime whereR;;|lw,| < D, A;i(iw, R) ~
Gialioy) = 1/liw, — (=D*E]. _ 4/mD% w,In|Rw,/D|. This logarithmic structure is
The equation of motion for the Green’s function can becharacteristic of the system of Dirac fermions in 2D. It
closed algebraically: it involves/ unknown propagators s the origin of the breakdown of the usual perturbative
(corresponding to the scattering by each impurity) thakypansions [17]: logarithmic divergences will indeed
can be evaluated self-consistently. This leads us to thSppear in all orders in the diagrammatic expansion,
following T-matrix equation: making it necessary to resum the whole series of diagrams
G (iwn) = GY oSk krPa.ar in order to control any calculation. _
Here we take a nonperturbative approach and directly
+ 5 Gl (R)Tij(i0,)Glw(~R;), (4) invert the matrix#7. We notice thatdy,, approaches
i unity in the limit of low frequencies. We use

diw,

B(iw,, R) = 4iexdiQ, - R + ip]PE(R)
D2

X Kl(lenl/D),

where g,?’a(R,-) = Gl?,a exp(ik - R;) if R; belongs to

B(iwy, Rix)B(iwn, Rij) ~ In(lw,|R;;/D) S, (6
sublatticed and G;, (R;) = G, explik - R; — ig;) if % (ion, Rir) Bliwon, Riy) (loulRij/D) ©
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where S is a N/2 X N/2 matrix satisfyings,;; = 1 if _ - .
Rij < D/|w,| a/nd 0 e/lsewhere. Thfg rr?atgix product AF(D) = —2Tf0 dedp(e)in(l + 77
'BB > 1. After taking the limitVy — o, we invert the o445 to a specific heaty (T) ~ 1/In%(1/T) and a low
matrix M by blocks: A temperature entropy(7) ~ 1/In(1/T). However, the
Flio,) = [ AQI g1 } @ entropy vanishes very sI_owa with temperature.
B 0 We address now the important question of long-range

Impurities interact onIyAif they are on different sublattices.order in the system by computing the instantaneous
We have supposed thatis a square matrix but the proof correlations <Si+5f> = |imT_>0+<Si+(T)SJT 0). It is

can easily be generalized for a nonsquare one [18]. FoTy — i <Gl Lo
We proceed to evaluate the additional densityeasy to show thats; S; ) = limy—-(Giy(1)Gji (= 7)),
h o _ where G;;(7) is the Fourier transform in real space and
of states &p(w) = —71Im>,,0G (@ + i),  complex time of the exact Green's function of Eq. (4).

where 6G is the part of the Green's function in \we verify that this two-spin correlation is staggered.
Eq. (4) due to |mpur|t|(1-:‘s. It can be read from |t ; and j belong to the same sublatticéGj(iw,) =
Eq. (4) that dp(w) = —7IMTr(T3/dwM), so that 3 A(iw,, Ri)TuB (i, R;) which owing to (7)
Splw) = —%Im d/dw(InDetB). The idea is now simply renormalizes the bare Green’s function:
to evaluate this trace without exactly calculating thedG;j(iw,) = —n; A(iw,,R;;). Wheni and j belong

T matrix (6). We know that Det = 1/2Det(’BB) to different sublattices, there is one nontrivial guan-
and we use the logarithmic form dfBB (6) to get tity 8Gij(iwy) = X Aliwn, Ri)Tiy Aliw,, Ry)).
DetB~%f(|w|)InN(|a)|/D), where f is a prefactor A simplification is obtained after noticing that
which does not depend on the numbérof impurites. A = B~'(dB/diw,), which leads to

The logarithmic structure of the problem that invalidates . R a0

the usual perturbative expansions has been used here 8Gij(iwn) = (9B/9iwn) (95/diwy). (10)
to factorize the leading divergence in the evaluation ofwriting 0B%/diw, = 2B(dB/diw,) and evaluating
Det’BB). Since the prefactoy(|w|) does not depend this product with the use of Eq. (6), we show that
on N, its contribution to the density of states will be 93%/9iw, ~ [0In(|w,|/D)/diw,] §. Here again we
negligible in the thermodynamic limit. Hence in the ther- have factorized the logarithmic divergence i and
modynamic limit and after analytic continuation, we getshown that the derivative with respect taw, acts

Sp(w) = —% Im a% (InIn|%) and per unit of volume, mainly on this factorized logarithm. ~Consequently
1 n; aB™%/diw, ~ [0(1/In(|®,|/D))diw,] S~'.  We now
dp(w) = 20| IR2(Jo|/D) + (7/2)? (8)  make an approximation for the inverse &f We take

S,-;l = (lw,|/D)U;;. For all j inside a circle of radius

Note that /-, 8p(w)dw = ni/2; there are thus as D /|lw,| around the point, U;; is a random configuration
many states created at zero energy as impurities in the

system. For one impurity alone [15,16],8alike bound of =1 so thaty, Ui; ~ D/lw,|. In addition, all of the
state is created ab = 0. If the impurities were totally points j situated in the external boundary of this circle

uncorrelated, we would fin&V 8§ functions atw = 0. have U;; = —1//m. ElsewhereU;; = 0. The main

Here we see clearly the overlap of impurity states Whichdifficulty in the inversion ofS is that two circles of radius
leads to a broadening of thiefunctions. It is interesting D/lﬁ"ltﬁemer.ﬁd arolund FNOdPO'n:%t%d] very closebto ¢
to compare this density of states with the one found forea(r:] e?o S(r)evf\?'c'gr\wltesr %pt’h:?ng]s%ng : o? Ssar&eo?éjgr; tgr 0
one dimensional spin-gap systems such as spin-Peierl Zero. Ici ! '_1 J P

[13] and two-leg ladder [9—11] systems wheip (w) ~ ifferentiate the sum8,, SiSy; and., SikSy; we have
1/lw|In*(lw|/D). It is also worth noticing that the very thlis ytsed The ex_tnegrplal blj)u_ndatrﬁ/_ of the circle to c?mpen—
same form of the density of states as Eq. (8) has beeffc ''> VOIUME I = LSING IS INVErse we pertorm

obtained in another apparently unrelated problem [19] fome eva{uatmn of Eq' (1%)' "t] orderttto .take Into account
reasons which are not clear to us so far. e vertex corrections due to scattering processes, we

In our method, we in fact calculate exactly manyperform the average over disorder after having evaluated

thermodynamic quantities. For instance, the uniformthe product of the two Green's functions. We find that,

magnetic susceptibility is given by atT = 0,
ni

> 1
x(T) = Bfo dﬁp(s)m- IN2(n,R;;) + (/2)2

From the asymptotic behavior afp(s) at small ¢  for impurities in different sublatticesN nonmagnetic im-
we find that at low temperatureg(T’) ~ n;/2T In(1/T),  purities randomly distributed in a-flux phase stabilize
which can be interpreted as a Curie-like behavior with aa quasi-long-range staggered order. This result has to
vanishing Curie constar(7T) = n;/2In(1/T). be compared with the pure-flux instantaneous corre-

The free energy lations which decay algebraically ih/R* [20] at zero

9) (878;7) ~ (11)
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temperature. Physically we understand what happens dyom the commensurated vectdrs, 7). We believe that
introducing impurities one after another. For one impu-instead of quasi-long-range AF order, this mechanism
rity, a local moment with§ = 1/2 is created in the vicin- may give rise to an incommensurate quasi-long-range
ity [15]. Under on-site repulsion, two impurities interact order. Furthermore, it is likely that the finite frequency
via an effective Heisenberg exchanffe= J(R)S; - S,, response integrated ovegrspace will not be that different
with J(R) ~ 1/RIn(R) if they are located on different from that given by Eg. (12), which may explain the
sublattices. However, two impurities located on the samenhancement of AF correlations observed in Zn doped
sublattice do not interact [16]. In our model, even thoughYBaCuO by neutron scattering [7,8]
the on-site repulsion is treated at the mean-field level, the It is a pleasure to acknowledge useful discussions
one particle wave function remains commensurate witlwith J. Brinckmann, C. Mudry, Yu Lu, H. Fukuyama,
sublattices. This supports the intuition that no frustrationN. Nagaosa, A. Furusaki, T.K. Ng, and C. Castellani.
will be introduced in the model when a macroscopic num-One of us (C.P.) is deeply indepted to E. Kowalski for
ber of impurities interact with each other. This effect isgreat help with linear algebra and complex analysis. This
the origin of the quasi-long-range order that we find. work is supported by NSF Grant No. DMR-9523361 and
A similar picture is obtained for the ladder or spin- (C.P.) by a Bourse Lavoisier.
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