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Quantum Shot Noise at Local Tunneling Contacts on Mesoscopic Multiprobe Conductors

Thomas Gramespacher and Markus Biittiker

Département de Physique Théorique, Université de Genéeve, CH-1211 Genéve 4, Switzerland
(Received 26 May 1998

New experiments which measure the low-frequency shot-noise spectrum at local tunneling contacts
on mesoscopic structures are proposed. The current fluctuation spectrusinglestunneling tip is
determined by local partial densities of states. The current-correlation spectrum bétweeanneling
tips is sensitive to th@ondiagonaldensity of states elements which are expressed in terms of products
of scattering states of the conductor. Such an experiment permits the investigation of correlations of
electronic wave functions. We present specific results for a clean wire with a single barrier and for
metallic diffusive conductors. [S0031-9007(98)07203-2]
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Since the original implementation of scanning tunnelingWith the help of the scattering states,,(x) incident
microscopy (STM) [1], a multitude of related scanningfrom contacta, the LPDOS can be expressed as
probe techniques [2,3] have permitted one to obtain an 1
unprecedented wealth of information on the nanoscopic vix,a) = Z — | ram ()% Q)
scale. lItis the purpose of this paper to present theoretical nea Mam
predictions of the shot noise measured at a point tunnelingor a derivation of this result closely related to the
contact. Shot noise arises due to the quantization of theiscussion given below, we refer to Ref. [6]. The LPDOS
charge in the presence of transport [4]. Measuremenigetermines the charge injected from contactinto a
of the shot noise with a weak tunneling contact (suchregion at positionx in response to an increase of the Fermi
as the tip of a STM) are interesting not only becausenergy of contacte. We can thus refer to a LPDOS also
they would permit one to create a map of the spatiahks the injectivity of contack. The local density of states
distribution of the shot noise but also, as we will show,(LDOS) is the sum of the injectivities of all contacts,
because they permit a measurement of the correlation of(x) = >, v(x,«). Below, as a first step, we show that
wave functions. This is in contrast to conductance ofthe injectivities also determine the shot noise measured
tunneling measurements which are related to density adt a single tunneling contact [see Fig. 1 (only tip 1 is
states and thus to absolute squares of wave functiongresent)].
Below we show that an investigation of the current- |n a second step, we consider two tunneling contacts,
current correlation at two tunneling contacts permits usa four-terminal geometry, and evaluate the correlation of
to also extract information on the phase of an electronighe shot noise measured at these contacts. The correlation
wave function relative to that of another wave function. cannot be expressed with the help of the injectivities
The typical arrangement in which scanning tunneling(which depend only on the absolute square of wave
microscopy is used to investigate surface effects correfunctions) but are determined by nondiagonal (nonlocal)
sponds to a two terminal setup: The sample provides onglements of a density of states operator defined as
terminal and the tip provides the other terminal. In this
case, the tunneling current is proportional to the local den- v(x,x',a) = Z b
sity of statesv(x) at the location of the tip. In this paper mea MVam
we consider a mesoscopic structure that supports a trans-
port current. Thus the sample must already have at least
two contacts which provide a source and sink for the car-
rier current (see Fig. 1). In this case we have to treat Tip1| M3 Hq Tip2
a three-terminal structure, and it depends in general on R
whether one is concerned with the tunneling conductance
from the tip to the right or left contact. Instead of the total My /Tt i Ho
density of states, the tunneling conductance is related to a X X
local partial density of states (LPDOS)x, «) defined
in [5], wherea = 1,2 labels the contacts of the conduc- FIG. 1. Mesoscopic conductor with contacts at potentjals

tor. The DOS of thenth tranverse channel of reservair ~ @Nd#2 and a tunneling contact at potentjal, tip 1. A second
is 1/h ith th locit — (En — EO < tunneling contact tip 2 (dashed lines) at potentialis present
is 1/ va*m wi eve (_)C' YVam = \/ (Er . am)/m ' only for the measurement of the current-correlation spectrum.
wherem™ is the effective electron mas8y is the Fermi  The tunneling tips couple locally with strengthat the points

energy, andt? is the threshold energy of the channel. x, respectivelyx’ to the wire.
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YamPo, ). (2)
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We note that these elements are not real but depend &V = u; — u, at the two contacts of the wire and set the
the phase difference which the wave function accumulateslectrochemical potential at the tip; = [v(x, u; +
between the location of the two tips atandx’. The  »(x,2)u.]/v(x) such that the average current into the
measurement of such a correlation thus permits thép vanishes [6]. With the two-terminal tip-to-sample
determination not only of the absolute square of the waveonductance g = u,) G(x) = (e?/h)4m vy, lt1*v(x),
function but also of the phase of the wave function. In awhere v;, is the LDOS of the isolated tip, we find, at
recent paper, Byers and Flatté suggested a conductanzero temperature and in linear response to the applied
experiment with two tunneling probes on a surfacepotentials, the shot-noise spectrum
[7]. They found that to second order in the tunneling (x.1)
strength the current is determined by nondiagonal terms S33 = 2eG(x)V2 —— (1 - (€]
of the Greens functions, i.e., spatial correlations of the v(x)
wave functions. In a conductance measurement spatiglhus the noise is determined byx, 1), the injectivity of
correlations represent a small correction to a dominantontact1 at the coupling pointx in the wire [Eq. (1)].
first order term. In contrast, in the shot noise experimenFor small potential differences all densities have to be
proposed here, the wave function correlations provide theaken at the Fermi energy. Equation (4) suggests that
leading term. We illustrate our results for two particularthe ratio v(x,1)/v(x) plays the role of an effective
geometries: a ballistic wire which contains a single barriellocal distribution function. It is an exact quantum me-
and a metallic diffusive wire. chanical quantity which contains information on the car-
There has been continued strong interest in the shater propagation from contadtall the way to the point of
noise of mesoscopic samples [4]. Since the initial ex-observation. This is in contrast to the distribution func-
periments [8], the development of highly sensitive and actions used in the semiclassical Boltzmann equation ap-
curate measurement techniques [9] has permitted a cloggoach [4,13,14] which contain no phase information. We
comparison between experimental techniques and thegow illustrate Eq. (4) for the case of a ballistic one chan-
retical predictions [4,10,11]. Itis thus justified to assumenel conductor with a5 barrier atx = 0 leading to the
that similar techniques can be applied to the shot-noisgransmission probability" = 0.7 and reflection probabil-

s

v(x)

measurement at tunneling contacts. ity R = 0.3. The injectivity of the left contact is

Our theoretical starting point is a general formula which 1
expresses the shot noise in mesoscopic multiprobe cory(x, 1) = [ hy [1+ R+ 2JR cod2kpx + ¢)] x < 0,
ductors in terms of quadrupoles of scattering matrices w ! x>0

[11]. The spectrum of the current correlations in two con- (5)
tacts a and B of a mesoscopic multiprobe conductor is \ypere 4 is the phase acquired by reflected particles.
defined as the Fourier transform of the current-current corp;g injectivity together with the LDOS and the current
relator, Sap(w) = [ dt e'(AlLa(t + 10)Alg(19)), Where e ations, is shown in Fig. 2.

Ala(1) = 1a(t) — (I4(1)) is the fluctuation of the current  Ag 5 function of the tip positionx, the fluctuation
in contacte away from its time average. In the low- ¢hactrum

frequency limit the correlation spectrum can be expressed T 1
in terms of the current matriXs, (@) = 1,84504y — Sz« T\ 1 — — (6)

+ _ / 2 1+ 1 — Tco2kpx + ¢)
S«5(E)sqy(E) and the Fermi functiongs(E) of the elec-
tron reservoirs [11],

2e2
Sap = 752[ dE Tt[As, (a)Ays(B)] fs(1 — fy).
y

@ 2?7

Here, s, is the submatrix of the scattering matrix of S |
the sample which describes scattering from all channels 1 .7
of contact 8 into the channels of contaet. We use
Eqg. (3) to find the fluctuation spectrum of the current
at the tunneling tip,S33, as shown in Fig. 1 (only tip 1
is present). The tip couples locally at a pointto the
wire with a coupling strength. We use the Hamiltonian
formulation of the scattering matrix [12] to expand theFIG. 2. Spatial variation of the current fluctuations and
scattering matrix of the full system (wire and tip) to L(P)DOS of a ballistic wire with & barrier with transmission
the lowest order in the coupling strength The current  Probability 7 = 0.7. The distancer is measured relative to
fluctuations in the tip can then be expressed with the helthe barrier at = 0. The injectivity of the left contack(x, 1)

. ) : ashed line) and the LDO%(x) (dotted line) are measured in
of the scattering matrices of the two isolated systems anghits of 1/4v. The solid line is the current fluctuation spectrum
the coupling constant. We assume an applied voltage S;; [Eq. (6)].
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shows an oscillating behavior with the period of halfidentify the exchange correlations, i.e., the effect due to
a Fermi wavelengthr = 27 /kr. If we average this the quantum mechanical indistinguishability of particles
spectrum over one oscillation period, we fi(€k3).. «  [11]. Exchange effects in metallic diffusive conductors
T(1 — /T /2). Note that this differs from the fluctuation with wide contacts are the subject of Refs. [14] and
spectrum that would be measured at a massive contadf,7]. Ballistic cavities with four tunneling contacts are
Si1 =« T(1 — T). The dependence ogT instead of7  investigated in Ref. [18]. An experiment by Liet al.
has its origin in the interference of incident and reflected19] measures exchange effects in an open ballistic
waves. Itis tempting to say that the fluctuations in the tipstructure. AT = 0 and in linear response to the applied
reflect directly the intrinsic fluctuations in the wire. Note, biaseV = u — wo, we find for the correlation spectrum
however, that even though a perfect ballistic wife=€ 1)  at the two tunneling tips the following:
shows no shot noise the current in a tip which probes such o2
a wire would fluctuate. FofF = 1, the right-hand side of S34 =2 N eV167T4VtiplVtip2|t|4SA,B,Ca (8)
Eg. (6) does not vanish but ig'2. _ _ o

As a second example, we investigate a metallic diffusiveVith »iip being the LDOS in tipr and

wire. The diffusive wire extends from = 0tox = L, 1 * ?
and has a widttW much smaller than its length. For Sa=-2| > hvy, Yim P, (0 | ©)
the ensemble averaged quantities, the diffusion can then mel " 5
be considered to be one dimensional. Furthermore, we as- 1 .
sume thaky! > 1 with the elastic mean free path« L. Sp= -2 ZZ hvay Yo ()3, () | (10)
The ensemble averaged injectivities of the two contacts of "< )
the wire are in the diffusive region [5}(x, 1) = vy Lx .= -2 Z Z 1 Gam W (x))
and v(x,2) = vy 7, where vy = m*/27h* is the two- ¢ S e v, AT
dimensional density of states and is the effective elec- ’ |
tron mass. In particular, the injectivities are independent of =S, + S — 4 Z P
the transverse coordinate. Using these densities in Eq. (4) net hEvimvan
ives a parabolic dependence of the fluctuation spectrum "
on the tin position, P X Rl (03, (0, (oD} (1)

) These equations, together with Eq. (4), are the main
S33 % x(L — x)/L" (M) results of this Letter. Herel,.(x) is the scattering state
Note that if we average this spectrum over the entire wiraescribing an incoming electron in chanmelof contact
(from x = 0 to x = L) this leads to a noise spectrum « which is scattered into all channels of both contacts of
which is one-third of that measured at a tunneling contacthe wire. The sums are over all open channels in contact
of a perfect ballistic wire. Again, we have the surprising1, respectively, contact 2.
similarity to the well-known one-third reduction of the shot To arrive at these results which express the noise
noise at an isolated metallic diffusive conductor [13,15,16]correlations in terms of scattering states, we proceed as
Next we investigate the spectrusy, of the correlations follows: We express the scattering matrix in Eq. (3) in
of the currents in two tips which couple at positions terms of the Greens function of the four-probe sample
and x’ to a wire [Fig. 1 (tip 1 and tip 2 are present)]. (wire and tips) and the coupling matrix which couples
Again, we can start from the general formula, Eq. (3),the ideal leads to the mesoscopic sample. We expand
and expand the scattering matrix of the entire systenthe Greens function to first order in the weak links
to the lowest order in the coupling strength The between the tips and the wire. The scattering states
result for the correlation spectrum depends in generadre finally related to the Greens function of the sample
on the electrochemical potentials at all four contactsand the coupling matrix between the leads and the
of the system. Here, we specialize to three differensample by a Lippmann-Schwinger equation. Note that,
configurations of the applied voltages. We call thesewith the help of the injectivity operator Eq. (2), we can
configurations experimentd, B, and C. All potentials express Egs. (9)—(11) in the following compact form:
are held at the equilibrium valye,. In experimentd, we Sy = —2|v(x,x’, 1)|?, Sz = —2|v(x,x’,2)|?, and S¢ =
raise the potential of the left contact of the wire (contact—2|»(x,x’, 1) + »(x,x’,2)|%.
1) to the elevated valug:, so that current is injected  We now use the results [Egs. (9)—(11)], to investigate
into the system through this contact. In experimént the current correlations for the diffusive wire discussed
we raise only the potential of the right contact of theabove. We are interested in the correlations averaged
wire (contact 2) to the values, all others are held at over impurity configurations. For the averaging proce-
the equilibrium potentiajug. In experimentC we raise dure we assume that the distance between the two tips
simultaneously the potentials of both sides of the wireand between each tip and the boundaries of the diffusive
(contacts 1 and 2) to the valye. Comparison of the region is much larger than the elastic mean free gath
correlations of experimentsg, B, and C permits one to We express the wave functions in terms of four Greens
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functions and use the diagram technique to average thé&/e have shown that, for a metallic diffusive wire, the ex-
products of Greens functions [20]. It turns out that, forchange term always gives a negative contribution to the
all three experiments, the strongest contribution to the aveorrelation spectrum (enhances the effect) which can be
eraged quantity comes from diagrams which contain fouas high ag0% of the total correlation spectrum.

diffusons [17]. Diagrams with two and three diffusons We thank Ya. M. Blanter for his advice on the use of
are small ag/L, respectively(//L)*>. With the abbrevia- the diagram technique for metallic diffusive conductors.
tiona(x,x’) = 1/3[(x — x’)*> — 2x/(L — x)],theleading This work was supported by the Swiss National Science
order terms are Foundation.
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