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Quantum Shot Noise at Local Tunneling Contacts on Mesoscopic Multiprobe Conductors
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(Received 26 May 1998)

New experiments which measure the low-frequency shot-noise spectrum at local tunneling contacts
on mesoscopic structures are proposed. The current fluctuation spectrum at asingle tunneling tip is
determined by local partial densities of states. The current-correlation spectrum betweentwo tunneling
tips is sensitive to thenondiagonaldensity of states elements which are expressed in terms of products
of scattering states of the conductor. Such an experiment permits the investigation of correlations of
electronic wave functions. We present specific results for a clean wire with a single barrier and for
metallic diffusive conductors. [S0031-9007(98)07203-2]

PACS numbers: 73.20.At, 61.16.Ch, 72.70.+m
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Since the original implementation of scanning tunneli
microscopy (STM) [1], a multitude of related scannin
probe techniques [2,3] have permitted one to obtain
unprecedented wealth of information on the nanosco
scale. It is the purpose of this paper to present theore
predictions of the shot noise measured at a point tunne
contact. Shot noise arises due to the quantization of
charge in the presence of transport [4]. Measureme
of the shot noise with a weak tunneling contact (su
as the tip of a STM) are interesting not only becau
they would permit one to create a map of the spa
distribution of the shot noise but also, as we will sho
because they permit a measurement of the correlatio
wave functions. This is in contrast to conductance
tunneling measurements which are related to density
states and thus to absolute squares of wave functi
Below we show that an investigation of the curren
current correlation at two tunneling contacts permits
to also extract information on the phase of an electro
wave function relative to that of another wave function.

The typical arrangement in which scanning tunneli
microscopy is used to investigate surface effects co
sponds to a two terminal setup: The sample provides
terminal and the tip provides the other terminal. In th
case, the tunneling current is proportional to the local d
sity of statesnsxd at the location of the tip. In this pape
we consider a mesoscopic structure that supports a tr
port current. Thus the sample must already have at l
two contacts which provide a source and sink for the c
rier current (see Fig. 1). In this case we have to tr
a three-terminal structure, and it depends in genera
whether one is concerned with the tunneling conducta
from the tip to the right or left contact. Instead of the to
density of states, the tunneling conductance is related
local partial density of states (LPDOS)nsx, ad defined
in [5], wherea ­ 1, 2 labels the contacts of the condu
tor. The DOS of themth tranverse channel of reservoira

is 1yhyam with the velocityyam ­
p

2sEF 2 E0
amdym? ,

wherem? is the effective electron mass,EF is the Fermi
energy, andE0

am is the threshold energy of the channe
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With the help of the scattering statescamsxd incident
from contacta, the LPDOS can be expressed as

nsx, ad ­
X

m[a

1
hyam

jcamsxdj2. (1)

For a derivation of this result closely related to t
discussion given below, we refer to Ref. [6]. The LPDO
determines the charge injected from contacta into a
region at positionx in response to an increase of the Fer
energy of contacta. We can thus refer to a LPDOS als
as the injectivity of contacta. The local density of state
(LDOS) is the sum of the injectivities of all contact
nsxd ­

P
a nsx, ad. Below, as a first step, we show th

the injectivities also determine the shot noise measu
at a single tunneling contact [see Fig. 1 (only tip 1
present)].

In a second step, we consider two tunneling conta
a four-terminal geometry, and evaluate the correlation
the shot noise measured at these contacts. The correl
cannot be expressed with the help of the injectivit
(which depend only on the absolute square of wa
functions) but are determined by nondiagonal (nonloc
elements of a density of states operator defined as

nsx, x0, ad ­
X

m[a

1
hyam

camsxdc?
amsx0d . (2)

x x�
t tµ

µ µ

µ1

3 4Tip 1 Tip 2

2

FIG. 1. Mesoscopic conductor with contacts at potentialsm1
andm2 and a tunneling contact at potentialm3, tip 1. A second
tunneling contact tip 2 (dashed lines) at potentialm4 is present
only for the measurement of the current-correlation spectr
The tunneling tips couple locally with strengtht at the points
x, respectively,x0 to the wire.
© 1998 The American Physical Society 2763
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We note that these elements are not real but depen
the phase difference which the wave function accumula
between the location of the two tips atx and x0. The
measurement of such a correlation thus permits
determination not only of the absolute square of the w
function but also of the phase of the wave function. In
recent paper, Byers and Flatté suggested a conduct
experiment with two tunneling probes on a surfa
[7]. They found that to second order in the tunneli
strength the current is determined by nondiagonal te
of the Greens functions, i.e., spatial correlations of
wave functions. In a conductance measurement sp
correlations represent a small correction to a domin
first order term. In contrast, in the shot noise experim
proposed here, the wave function correlations provide
leading term. We illustrate our results for two particul
geometries: a ballistic wire which contains a single barr
and a metallic diffusive wire.

There has been continued strong interest in the s
noise of mesoscopic samples [4]. Since the initial e
periments [8], the development of highly sensitive and
curate measurement techniques [9] has permitted a c
comparison between experimental techniques and th
retical predictions [4,10,11]. It is thus justified to assum
that similar techniques can be applied to the shot-no
measurement at tunneling contacts.

Our theoretical starting point is a general formula whi
expresses the shot noise in mesoscopic multiprobe
ductors in terms of quadrupoles of scattering matri
[11]. The spectrum of the current correlations in two co
tacts a and b of a mesoscopic multiprobe conductor
defined as the Fourier transform of the current-current c
relator, Sabsvd ­

R
dt eivtkDIast 1 t0dDIbst0dl, where

DIastd ­ Iastd 2 kIastdl is the fluctuation of the curren
in contact a away from its time average. In the low
frequency limit the correlation spectrum can be expres
in terms of the current matrixAdgsad ­ 1adaddag 2

sy
adsEdsagsEd and the Fermi functionsfdsEd of the elec-

tron reservoirs [11],

Sab ­
2e2

h

X
dg

Z
dE TrfAdgsadAgdsbdg fds1 2 fgd .

(3)

Here, sab is the submatrix of the scattering matrix o
the sample which describes scattering from all chann
of contact b into the channels of contacta. We use
Eq. (3) to find the fluctuation spectrum of the curre
at the tunneling tip,S33, as shown in Fig. 1 (only tip 1
is present). The tip couples locally at a pointx to the
wire with a coupling strengtht. We use the Hamiltonian
formulation of the scattering matrix [12] to expand th
scattering matrix of the full system (wire and tip)
the lowest order in the coupling strengtht. The current
fluctuations in the tip can then be expressed with the h
of the scattering matrices of the two isolated systems
the coupling constantt. We assume an applied voltag
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eV ­ m1 2 m2 at the two contacts of the wire and set t
electrochemical potential at the tipm3 ­ fnsx, 1dm1 1

nsx, 2dm2gynsxd such that the average current into t
tip vanishes [6]. With the two-terminal tip-to-samp
conductance (m1 ­ m2) Gsxd ­ se2yhd4p2ntipjtj2nsxd,
where ntip is the LDOS of the isolated tip, we find, a
zero temperature and in linear response to the app
potentials, the shot-noise spectrum

S33 ­ 2eGsxdV2
nsx, 1d
nsxd

µ
1 2

nsx, 1d
nsxd

∂
. (4)

Thus the noise is determined bynsx, 1d, the injectivity of
contact1 at the coupling pointx in the wire [Eq. (1)].
For small potential differences all densities have to
taken at the Fermi energy. Equation (4) suggests
the ratio nsx, 1dynsxd plays the role of an effective
local distribution function. It is an exact quantum m
chanical quantity which contains information on the c
rier propagation from contact1 all the way to the point of
observation. This is in contrast to the distribution fun
tions used in the semiclassical Boltzmann equation
proach [4,13,14] which contain no phase information. W
now illustrate Eq. (4) for the case of a ballistic one cha
nel conductor with ad barrier atx ­ 0 leading to the
transmission probabilityT ­ 0.7 and reflection probabil-
ity R ­ 0.3. The injectivity of the left contact is

nsx, 1d ­

(
1

hy f1 1 R 1 2
p

R coss2kFx 1 fdg x , 0
1

hy T x . 0
,

(5)

where f is the phase acquired by reflected particl
This injectivity together with the LDOS and the curre
fluctuations, is shown in Fig. 2.

As a function of the tip positionx, the fluctuation
spectrum

S33 ~ T

√
1 2

T
2

1

1 1
p

1 2 T coss2kFx 1 fd

!
(6)

x/λF

-1 0 1

1/
hv

0

1

2

3

FIG. 2. Spatial variation of the current fluctuations a
L(P)DOS of a ballistic wire with ad barrier with transmission
probability T ­ 0.7. The distancex is measured relative to
the barrier atx ­ 0. The injectivity of the left contactnsx, 1d
(dashed line) and the LDOSnsxd (dotted line) are measured i
units of1yhy. The solid line is the current fluctuation spectru
S33 [Eq. (6)].
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shows an oscillating behavior with the period of ha
a Fermi wavelengthlF ­ 2pykF . If we average this
spectrum over one oscillation period, we findkS33lave ~

T s1 2
p

T y2d. Note that this differs from the fluctuatio
spectrum that would be measured at a massive con
S11 ~ T s1 2 T d. The dependence on

p
T instead ofT

has its origin in the interference of incident and reflec
waves. It is tempting to say that the fluctuations in the
reflect directly the intrinsic fluctuations in the wire. Not
however, that even though a perfect ballistic wire (T ­ 1)
shows no shot noise the current in a tip which probes s
a wire would fluctuate. ForT ­ 1, the right-hand side of
Eq. (6) does not vanish but is1y2.

As a second example, we investigate a metallic diffus
wire. The diffusive wire extends fromx ­ 0 to x ­ L,
and has a widthW much smaller than its lengthL. For
the ensemble averaged quantities, the diffusion can
be considered to be one dimensional. Furthermore, we
sume thatkFl ¿ 1 with the elastic mean free pathl ø L.
The ensemble averaged injectivities of the two contact
the wire are in the diffusive region [5]nsx, 1d ­ n0

L2x
L

and nsx, 2d ­ n0
x
L , where n0 ­ m?y2p h̄2 is the two-

dimensional density of states andm? is the effective elec-
tron mass. In particular, the injectivities are independen
the transverse coordinate. Using these densities in Eq
gives a parabolic dependence of the fluctuation spect
on the tip position,

S33 ~ xsL 2 xdyL2. (7)

Note that if we average this spectrum over the entire w
(from x ­ 0 to x ­ L) this leads to a noise spectru
which is one-third of that measured at a tunneling cont
of a perfect ballistic wire. Again, we have the surprisi
similarity to the well-known one-third reduction of the sh
noise at an isolated metallic diffusive conductor [13,15,1

Next we investigate the spectrumS34 of the correlations
of the currents in two tips which couple at positionsx
and x0 to a wire [Fig. 1 (tip 1 and tip 2 are present)
Again, we can start from the general formula, Eq. (
and expand the scattering matrix of the entire syst
to the lowest order in the coupling strengtht. The
result for the correlation spectrum depends in gene
on the electrochemical potentials at all four conta
of the system. Here, we specialize to three differ
configurations of the applied voltages. We call the
configurations experimentsA, B, and C. All potentials
are held at the equilibrium valuem0. In experimentA, we
raise the potential of the left contact of the wire (conta
1) to the elevated valuem, so that current is injected
into the system through this contact. In experimentB
we raise only the potential of the right contact of t
wire (contact 2) to the valuem, all others are held a
the equilibrium potentialm0. In experimentC we raise
simultaneously the potentials of both sides of the w
(contacts 1 and 2) to the valuem. Comparison of the
correlations of experimentsA, B, and C permits one to
ct,

h

n
s-

f

f
4)
m

e

t

.

,

l

t

t

identify the exchange correlations, i.e., the effect due
the quantum mechanical indistinguishability of particl
[11]. Exchange effects in metallic diffusive conducto
with wide contacts are the subject of Refs. [14] a
[17]. Ballistic cavities with four tunneling contacts a
investigated in Ref. [18]. An experiment by Liuet al.
[19] measures exchange effects in an open balli
structure. AtkT ­ 0 and in linear response to the applie
biaseV ­ m 2 m0, we find for the correlation spectrum
at the two tunneling tips the following:

S34 ­ 2
e2

h
eV16p4ntip1ntip2jtj

4SA,B,C , (8)

with ntipa being the LDOS in tipa and

SA ­ 22

É X
m[1

1
hy1m

c1msxdc?
1msx0d

É2
, (9)

SB ­ 22

É X
n[2

1
hy2n

c2nsxdc?
2nsx0d

É2
, (10)

SC ­ 22

É X
a­1,2

X
m[a

1
hyam

camsxdc?
amsx0d

É2
­ SA 1 SB 2 4

X
m[1
n[2

1
h2y1my2n

3 Rehc1msxdc?
2nsxdc?

1msx0dc2nsx0dj . (11)

These equations, together with Eq. (4), are the m
results of this Letter. Here,camsxd is the scattering state
describing an incoming electron in channelm of contact
a which is scattered into all channels of both contacts
the wire. The sums are over all open channels in con
1, respectively, contact 2.

To arrive at these results which express the no
correlations in terms of scattering states, we proceed
follows: We express the scattering matrix in Eq. (3)
terms of the Greens function of the four-probe sam
(wire and tips) and the coupling matrix which coupl
the ideal leads to the mesoscopic sample. We exp
the Greens function to first order in the weak linkst
between the tips and the wire. The scattering sta
are finally related to the Greens function of the sam
and the coupling matrix between the leads and
sample by a Lippmann-Schwinger equation. Note th
with the help of the injectivity operator Eq. (2), we ca
express Eqs. (9)–(11) in the following compact form
SA ­ 22jnsx, x0, 1dj2, SB ­ 22jnsx, x0, 2dj2, and SC ­
22jnsx, x0, 1d 1 nsx, x0, 2dj2.

We now use the results [Eqs. (9)–(11)], to investig
the current correlations for the diffusive wire discuss
above. We are interested in the correlations avera
over impurity configurations. For the averaging proc
dure we assume that the distance between the two
and between each tip and the boundaries of the diffus
region is much larger than the elastic mean free patl.
We express the wave functions in terms of four Gree
2765
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functions and use the diagram technique to average
products of Greens functions [20]. It turns out that, f
all three experiments, the strongest contribution to the
eraged quantity comes from diagrams which contain f
diffusons [17]. Diagrams with two and three diffuson
are small aslyL, respectively,slyLd2. With the abbrevia-
tion asx, x0d ­ 1y3fsx 2 x0d2 2 2x0sL 2 xdg, the leading
order terms are

SA ­
SC

2
sL 2 xd2 1 sL 2 x0d2 1 asx, x0d

L2 , (12)

SB ­
SC

2
x2 1 x02 1 asx, x0d

L2 , (13)

SC ­ 22
sm?d2

sp h̄2d2N
L
l

xsL 2 x0d
L2 ­ 24

nsx, 2dnsx0, 1d
g

,

(14)

whereg ­
l

2L N is the Drude conductance andN ­ kFW
is the number of channels. Here, we assumed that tip
positioned to the left of tip 2. At once we see that, ev
after averaging over the impurity configurations, the res
of experimentC is not just the addition of experimentsA
andB. In fact, it is interesting to determine the strength
the exchange termSX ­ SC 2 SA 2 SB. In general, this
expression depends on the two coordinatesx andx0. We
investigate it closer for the special case where the tips
placed symmetrically around the center of the wire,Ly2,
i.e., tip 1 is placed at a distancedy2 to the left of the center
and tip 2 is placed at the same distancedy2 to the right of
the center. As a function of the distanced between the
tips the relative strength of the exchange term is

SX

SC
­

1
3

"
2 1

d
L

2 2

µ
d
L

∂2
#

. (15)

Interestingly, this function reaches its maximum not wh
the tips are closest but at the finite distanced ­ Ly4
(which is still large compared tol). Its maximal value
is sSXySCdmax ­ 17y24. For any two tip positionsx and
x0, the exchange termSX is always negative and therefor
enhances the current correlations. An enhancemen
the current correlations by the exchange term was a
predicted for a chaotic cavity with four tunneling co
tacts [18].

In conclusion, we have shown that noise measurem
at local tunnel junctions can reveal considerably more
formation about the electronic structure of a mesosco
system than is accessible to pure conductance mea
ments. In the case of a single tip the shot noise is de
mined by an effective local distribution function,nsx,ad

nsxd .
Especially interesting are the current correlation sp
tra of two tips. For the three suggested experime
Eqs. (9)–(11), they depend directly on the phase-carry
amplitudes of the wave functions. These experiments
be used to demonstrate the importance of the excha
correlation due to the indistinguishability of the electron
2766
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We have shown that, for a metallic diffusive wire, the e
change term always gives a negative contribution to
correlation spectrum (enhances the effect) which can
as high as70% of the total correlation spectrum.

We thank Ya. M. Blanter for his advice on the use
the diagram technique for metallic diffusive conducto
This work was supported by the Swiss National Scien
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