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From a numerical study of the magnetohydrodynamic (MHD) equations we show, for the first
in three dimensionssd ­ 3d, that velocity and magnetic-field structure functions exhibit multiscali
extended self-similarity (ESS), and generalized extended self-similarity (GESS). We propose
shell model for homogeneous and isotropic MHD turbulence, which preserves all the inva
of ideal MHD, reduces to a well-known shell model for fluid turbulence for zero magnetic fi
has no adjustable parameters apart from Reynolds numbers, and exhibits the same multi
ESS, and GESS as the MHD equations. We also study the inertial- to dissipation-range cro
[S0031-9007(98)07096-3]
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The extension of Kolmogorov’s work (K41) [1] on flui
turbulence to magnetohydrodynamic (MHD) turbulen
yields [2] simple scaling for velocityv and magnetic-field
b structure functions, for distancesr in the inertial range
between the forcing scaleL and the dissipation scalehd .
Many studies have shown that there are multiscaling
rections to K41 in fluid turbulence [3]. Solar-wind da
[4], numerical studies of two-dimensional MHD [5], an
recent shell-model studies [6,7] of MHD turbulence yie
similar multiscaling. We elucidate this for homogeneo
isotropic MHD turbulence, in the absence of a mean m
netic field, by presenting the first evidence for such mu
scaling in a numerical, pseudospectral study of the M
equations inthree dimensionss3dMHDd. We propose a
shell model with no tunable parameters except Reyn
numbers, study it by an Adams-Bashforth method, sh
it has this multiscaling, and that it reduces to the Gledz
Ohkitani-Yamada (GOY) shell model [8,9] for3d fluid
turbulence ifb ­ 0. To extract multiscaling exponen
we develop the ideas of extended self-similarity (ES
[10,11] and generalized extended self-similarity (GES
[11,12] in both real and wave-vectorskd spaces, used in
fluid turbulence [10–12].

We use the structure functionsS a
p ­ kjasx 1 rd 2

asxdjpl, where a can bev, b, or one of the Elsässe
variablesZ6 ­ v 6 b, x and r are spatial coordinates
and the angular brackets denote an average in the
tistical steady state.S a

p , rz a
p at high fluid and mag-

netic Reynolds numbers Re and Reb , respectively, and fo
the inertial range20hd & r ø L. The extension [2] of
K41 to homogeneous, isotropicMHD turbulencewith no
mean magnetic fieldyieldsz a

p ­ py3. Shell models [6,7]
and solar-wind data [4] have obtained multiscaling
MHD turbulence, i.e.,z a

p ­ py3 2 dza
p , with dza

p . 0
and z a

p nonlinear, monotonically increasing functions
p. Work on fluid turbulence shows [3] an extended
ertial range if we use ESS [10] and GESS [12]: Th
with ESS, in whichz a

p yz
a
3 follows from S a

p , fS a
3 gz a

p yz
a
3 ,

we should expect by analogy that it extends down
0031-9007y98y81(13)y2687(4)$15.00
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r . 5hd (as exploited in some MHD shell models [6,7]
In GESS, which employsGa

p srd ; S a
p srdyfS a

3 srdgpy3 and
postulates a formGa

p srd , fGa
q srdgra

pq , with ra
pq ­ fz a

p 2

pz
a
3 y3gyfz a

q 2 qz
a
3 y3g, it has been suggested [12] fo

fluid turbulence that the apparent inertial range is
tended to the lowest resolvabler; however,k-space GESS
[11] shows a crossover from inertial- to dissipation-ran
asymptotic behaviors.

Our studies yield many interesting results: The m
tiscaling exponents we obtain from 3DMHD and o
shell model agree (Figs. 1a and 1b) andz b

p . z Z1

p *

z Z2

p . z y
p . z b

p lie close to the She-Leveque (SL) pr
diction [13] for fluids sz SL

p ­ py9 1 2f1 2 s2y3dpy3gd,
but z y

p lie below it (Fig. 1c) [14]. The probability dis-
tribution functions (Fig. 1d) fordyasrd ­ yasx 1 rd 2

yasxd anddbasrd ­ basx 1 rd 2 basxd are also differ-
ent. ESS works both with real- andk-space structure func
tions (Fig. 2). To study the latter we postulatek-space
ESS [for real-space structure functions we useS and G
and for theirk-space analogs (not Fourier transforms)S
andG]:

Sa
p ; kjaskdjpl ø Aa

IpsSa
3 dz 0a

p , L21 ø k & 1.5kd ,

Sa
p ; kjaskdjpl ø Aa

DpsSa
3 daa

p , 1.5kd & k ø L ,
(1)

whereaskd is the Fourier transform ofasrd, Aa
Ip andAa

Dp
are, respectively, nonuniversal amplitudes for inertial a
dissipation ranges,kd , h

21
d , and L21 the (molecular)

length at which hydrodynamics breaks down (cf. [11] f
fluid turbulence). The exponentsaa

p andz 0a
p characterize

the asymptotic behaviors of the structure functions
dissipation and inertial ranges. They are universal,
aa

p fi z 0a
p . In our shell modelz 0a

p ­ z a
p , but our data for

3DMHD suggestz 0a
p ­ 2sz a

p 1 3py2dy11 (i.e., Sa
pskd ,

k2sz a
p 13py2d in the inertial range [15]); the difference arise

because of phase-space factors [11].z 0a
p and aa

p seem
universal (the same for all our runs [Table I)];aa

p is close
to, butsystematically lessthan,py3. Thek dependences
© 1998 The American Physical Society 2687
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FIG. 1. (a)–(c) Inertial-range
exponents versusp from typi-
cal 3DMHD and shell-model
runs (Table I) and their com-
parison with the SL formula:
(a) z y

p yz
y
3 , (b) z b

p yz
b
3 , and

(c) z y
p , z b

p , z z1

p , and z z2

p from
SH2. (d) Semilog (base
10) plots of the probability
distributions Psssdyasrdddd and
Psssdbasrdddd with r in the
dissipation range [we average
over 6tey (Table I) and
suppressa since we average
over Cartesian components]; a
Gaussian distribution is shown
for comparison.
u

i
lo
o

ves
ain
of Sa
p follow from that ofSa

3 . We find

Sa
3 ø Ba

I k2z
a
3 29y2, L21 ø k & 1.5kd , (2)

Sa
3 ø Ba

Dkda

exps2cakykdd, 1.5kd & k ø L , (3)

where Ba
I and Ba

D are nonuniversal amplitudes [Equa
tion (2) holds [11] for 3DMHD; for our shell model the
factor9y2 is absent]. Thusall Sa

p , kua
p exps2caaa

pkykdd
for 1.5kd & k ø L, with ua

p ­ aa
pda (cf. [11] for fluid

turbulence). In Eq. (3)da, ca, and kd are not univer-
sal; they depend on whether we use the 3DMHD eq
tions or our shell model. We extract theuniversal part
of the inertial- to dissipation-range crossover via ourk-
space GESS as follows: We first defineGa

p ; Sa
pysSa

3 dpy3;
log-log plots ofGa

p versusGa
q yield curves withuniversal,

but different,slopes for asymptotes in inertial and diss
pation ranges. The inertial-range asymptote has a s
ra

p,q (as in real-space GESS); the dissipation-range
TABLE I. The viscosities and hyperviscositiesny , nb , nyH , and ybH , the Taylor-microscale Reynolds numbers Rel and Rebl,
the box-size eddy-turnover timestey and teb , the averaging timetA, the time over which transients are allowed to decaytt ,
and kd (dissipation-scale wave number) for our 3DMHD runs (kmax ­ 32 for MHD1 and MHD2 andkmax ­ 40 for MHD3) and
shell-model runs SH1–4skmax ­ 225k0d. The step sizesdtd is 0.02 for MHD1–3,2 3 1025 for SH1–2, and1024 for SH3–4.
Note thattey . 8tI the integral time for our 3DMHD runs.

Run ny nyH nb nbH Rel Reml teyydt teyydt ttytey tAytey kmaxykd

MHD1 8 3 1024 7 3 1026 1023 8 3 1026 .24.8 .14.3 .8.8 3 103 .6 3 103 .2 .2.3 .1.83
MHD2 8 3 1024 9 3 1026 8 3 1024 9 3 1026 .24.1 .18.1 .8.8 3 103 .5.6 3 103 .2 .2.3 .1.83
MHD3 8 3 1024 9 3 1026 8 3 1024 9 3 1026 .26 .19.6 .7.9 3 103 .4.8 3 103 .1 .2.2 .2.22

SH1 1029 0 1029 0 .4.6 3 108 .7.8 3 108 .107 .6 3 106 .50 .450 .25

SH2 1028 0 1028 0 .4.3 3 107 .6.5 3 107 .107 .6 3 106 .50 .450 .28

SH3 1026 0 2 3 1026 0 .4 3 106 .3 3 106 .2 3 106 .106 .500 .2500 .210

SH4 4 3 1026 0 1026 0 .1.2 3 105 .1 3 106 .106 .1.7 3 106 .500 .3000 .211
2688
-

a-

-
pe
ne

has a slopevasp, qd ; faa
p 2 py3gyfaa

q 2 qy3g. These
slopes are universal, but not the points at which the cur
move away from the inertial-range asymptote. To obt
a universal crossover scaling function[different for each
sp, qd pair because of multiscaling] we define logsHa

pqd ;
Da

pq logsGa
pd and logsHa

qpd ; Da
qp logsGa

q d; the scale fac-
tors Da

pq ­ Da
qp are nonuniversal,but plots of logsHa

pqd
versus logsHa

qpd, for both 3DMHD and our shell model,
collapse onto auniversal curvewithin our error bars for
all k, Rel, and Rebl (Fig. 3).

The MHD equations are [2]

≠Z6

≠t
1 sZ7 ? =dZ6 ­ n1=2Z6 1 n2=2Z7

2 =pp 1 f6, (4)

where n6 ; sny 6 nbdy2, ny and nb are, respectively,
fluid and magnetic viscosities,pp ; fp 1 sb2y8pdg,
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FIG. 2. Log-log plots (base 10) ofSa
10 versusSa

3 showing k
space ESS for 3DMHD with (a)a ­ v and (b)a ­ b. Insets
illustrate real-space ESS for 3DMHD and ESS for our sh
model; the lines show the inertial-range asymptotes (a f
points on the right correspond to forcing scales and are
used for inertial-range fitting).

with p the pressure, the densityr ­ 1, f6 ; sf 6 gdy2,
and f and g are the forcing terms in the equations fo
≠vy≠t and≠by≠t. We assume incompressibility and us
a pseudospectral method [11] to solve Eq. (4) numerica
We force the first twok shells, use a cubical box with side
LB ­ 2p, periodic boundary conditions, and643 modes
in runs MHD1 and MHD2 and803 modes in run MHD3
(Table I). We include fluid and magnetic hyperviscositie
nyH and nbH [i.e., the term2sny 1 nyHk2dk2 in the
equation for≠vskdy≠t and the term2snb 1 nbHk2dk2

in the equation for≠bskdy≠t] [16]. For time inte-
gration we use an Adams-Bashforth scheme (ste
size dt). We use Rel ­ yrmslyny, Rebl ­
ll
w
ot

y.

s

p-

FIG. 3. GESS log-log plots (base 10) ofHy
9,6 versusHy

6,9 and
(inset) Hb

9,6 versus Hb
6,9 showing the inertial- to dissipation

range crossover; lines are inertial-range asymptotes.

brmslynb , ly ­ f
R`

o Eyskd dky
R`

o k2Eyskd dkg1y2, lb ­
f
R

`

o Ebskd dky
R

`

o k2Ebskd dkg1y2, Eyskd , Sy
2 skdk2, and

Ebskd , Sb
2 skdk2. Parameters for runs MHD1–3 ar

given in Table I, wheretea ; LByarms is the box-size
eddy-turnover time for fielda andtA the averaging time;
initial transients are allowed to decay over a periodtt.
We use quadruple-precision arithmetic; results from o
643 and803 runs are not significantly different.

The Richardson-cascade picture suggests that the m
tiscaling behavior in turbulence might arise in simplifie
dynamical models with a reduced number degrees of fr
dom arranged hierarchically. Shell models of turbulen
[3,8], which cannot be derived from the Navier-Stok
equation, but build in the cascade and all conservat
laws, achieve this reduction with complex scalar velo
ties in a logarithmically discretizedk space; they obtain
large Rel and exponents in agreement with experimen
Similar shell models for MHD turbulence have been pr
posed earlier [6,7,17], but there isno MHD shell model
that enforcesall ideal 3DMHD invariantsand which re-
duces to the GOY shell model for fluid turbulence, wh
magnetic-field terms are suppressed. We present su
model and show that it yieldsz a

p in agreement with those
we obtain for 3DMHD. Our shell-model equations

dz6
n

dt
­ ic6

n 2 n1k2
nz6

n 2 n2k2
nz6

n 1 f6
n (5)

use the complex, scalar Elsässar variablesz6
n ;

syn 6 bnd, and discrete wave vectorskn ­ koqn,
for shells n; c6

n ­ fa1knz7
n11z6

n12 1 a2knz6
n11z7

n12 1

a3kn21z7
n21z6

n11 1 a4kn21z6
n21z7

n11 1 a5kn22z7
n21z6

n22 1

a6kn22z7
n21z6

n22gp, which ensuresz1
n , z2

n , k21y3 is
a stationary solution in the inviscid, unforced lim
2689
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[6–9] and preserves then1, Z1 $ n2, Z2 symmetry
of 3DMHD. We fix five of the parameters,a1 2 a6,
by demanding that our shell-model analogs of the
tal energy f;

P
nsjynj2 1 jbnj2dy2g, the cross helicity

f; 1y2
P

nsynbp
n 1 yp

nbndg, and the magnetic helicity
f;

P
ns21dnjbnj2ykng be conserved if n6 ­ 0 and

f6
n ­ 0; while enforcing the conservation of energ

we also demand [18] that the cancellation of ter
occurs as in 3DMHD. We fix the last parameter
demanding that, ifbn ­ 0 for all n, our model reduces
to the GOY model, with the standard parameters
that enforce conservation laws. Finallya1 ­ 7y12,
a2 ­ 5y12, a3 ­ 21y12, a4 ­ 25y12, a5 ­ 27y12,
a6 ­ 1y12, and q ­ 2. We solve Eq. (5) numerically
by an Adams-Bashforth scheme (step sizedt), use
25 shells, force the firstk shell [11], setko ­ 224 ­
1ys2Lsd, where Ls is the box size, and useEy ­
Sy

2 skndykn, ly ­ s2pykod f
P

n Sy
2 skndy

P
n k2

nSy
2 skndg1y2,

lb ­ s2pykod f
P

n Sb
2 skndy

P
n k2

nSb
2 skndg1y2, yrms ­

fko
P

n Sy
2 skndypg1y2, and brms ­ fko

P
n Sb

2 skndypg1y2.
Parameters for our four runs SH1–SH4 are given
Table I. These use double-precision arithmetic, but
have checked in representative cases that our results
not affected if we use quadruple-precision arithme
As in the GOY model the structure functionsSpsknd
oscillate weakly withkn because of an underlying thre
cycle [9,18]. These oscillations can be removed eit
(a) by using ESS or (b) by using the structure fun
tions

Pa
n,p ­ kImfanan11an12 1 an21anan11y4gpy3l [9].

Method (a) yieldsz a
p yz

a
3 , which we find are universal

Method (b) gives exponentsz a
p . These have a mild

dependence on Rel and Rebl but this goes away if we
consider the ratiosz a

p yz
a
3 , as in the GOY model [11];

thus the asymptotes in our ESS and GESS plots h
universal slopes.

The Navier Stokes equation (3DNS) follows fro
3DMHD if b ­ 0 or, equivalently, Rebl ­ 0. However,
if we start with Rebl . 0, the steady state is characteriz
by the MHD exponents and RelyRebl . Os1d (i.e., an
equipartition regime) [19]. Since our MHD shell mod
reduces to the GOY model as Rebl ! 0, we use it
(and not costly 3DMHD) to study the fluid turbulence
MHD turbulence crossover: A small initial value of Rebl

yields a transient with GOY-model exponents, but fina
the system crosses over to the MHD turbulence ste
state [18].

In summary, we have shown that structure functions
3DMHD turbulence display multiscaling, ESS, and GES
with exponents and probability distributions differe
from those in fluid turbulence. Our new shell model (
gives the same exponents as 3DMHD and (b) redu
to the GOY model as Rebl ! 0. Our ESS and GESS
uncover a universal crossover from inertial- to dissipatio
range asymptotics. It would be interesting to comp
our results with experiments, but with caution: (i) sola
wind data might yield exponents different from ou
because of the presence of a mean magnetic field
2690
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compressive effects [20]; (ii) the inertial- to dissipatio
range crossover might not apply to the solar wind beca
a hydrodynamic description might break down in t
dissipation range [20]. However, our results should ap
to MHD systems with an equipartition regime [2]. Th
agreement ofz b

p with the SL formula is interesting bu
we believe, fortuitous since vorticity organizes itself in
filamentary structures [13] in fluid turbulence but in
sheetlike structures in 3DMHD (we have checked this
our study).
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