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Radiation Transfer Model of Self-Trapping Spatially Incoherent Radiation by Nonlinear Media
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We modify the radiation transfer approach, accounting for refraction, and apply this model to the
analysis of propagation of spatially incoherent beams in inertial nonlinear media. For double Gaussian
beams, an oscillatory regime of nonlinear diffraction is revealed. An explicit analysis of the oscillations
was carried out for logarithmic saturating nonlinearity. We show that “big incoherent solitons,” which
possess an arbitrary transverse profile of intensity and exist for a wide class of nonlinear media, are
steady state solutions of the radiation transfer equation. [S0031-9007(98)07197-X]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Jx

Trapping spatially incoherent laser beams [1] and whitesuperposition give the same Gaussian profile of intensity
light [2] by self-induced waveguides in photorefractive self-consistently [11]. Few-mode waveguides were later
crystals was demonstrated recently. In contrast to selfstudied using the same terms [12]. The authors of the
trapping by conventional Kerr media where giant lasempaper [13] proposed an original geometric optics approach
pulses [3,4] are normally required, these observations coutilizing a ray density function [14]. The integral relation
respond to milliwatts and nanowatts power of trappedbetween local intensity and ray density was pointed out as
light. A new situation regarding conventional photore-a property of invariant propagation. This relation predicts
fractive spatial solitons [5—7] arose as well. Spatial co-that “big incoherent solitons” can exist for any nonlinear
herence is necessary to provide replication of the trappechedium and at arbitrary transverse profiles of intensity
beam intensity pattern by means of a photorefractive refl3]. These three approaches differ but merge well in
sponse, which is very slow. However, the crystals [1,2]their final results. They all are in good agreement with
didn't follow fast variations of the incoherent light pat- experiments. But even the most general approach [13],
tern in either time or space, and only responded to timewhich was estimated by its authors as “intuitive, advances
averaged local intensity. predictions” rather than as a quantitative model, treats

The common theoretical approach to the self-trappinghe self-similar regime only and requires probably deeper
occurs in terms of self-similar solutions of the nonlinearbackground.
wave equation. Itis called a spatial soliton [3—7]. For co- In this Letter we address the following problems. First,
herent beams such solutions have been found for variouse point out a local angular spectrum as a relevant
nonlinear media, including photorefractive crystals [5—7].characteristic for nonlinear diffraction of an incoherent
For many of them the areas of stability were analyzedbeam. The local spectrum, coherence density [8,9], and
and different revelations of instability were demonstrateday density [13] are kindred functions. However, the
[7]. In particular, an oscillatory regime of propagation for angular spectrum is an easily observable characteristic,
the coherent trapped beam was revealed [7]. A seriouand its spatail evolution can be described in terms of a
complication appears, however, if one would like to useself-consistent differential equation of the first order that
similar terms to discuss trapping spatially incoherent lightpossesses self-similar solutions. We derive this equation
The point is that there is no equation that directly appliesas a second step of our analyses. Third, we analyze
when looking for a potential soliton-like solution. Indeed, the evolution for Gaussian beams and show that, in
the self-similar profile observed (Refs. [1] and [2]) is thegeneral, they demonstrate oscillatory behavior. Explicit
time-averaged intensity. But the wave equation deals witlexpressions for the dynamics of these oscillations are
amplitudes, i.e., with instantaneous realizations of speckléund for a logarithmic saturating nonlinear medium.
patterns, which are certainly not self-similar. Physics of light trapping in the self-focusing media,

Three different models of incoherent self-trapping werede/dI > 0, is as follows. The narrow beam creates a
proposed [8—-13]. One model operates with a specifisvaveguide that can hold light inside its boundaries due to
function referred to as a coherent density [8,9]. Usingthe smooth step of the refractive index between illuminated
this technique, a numerical analysis of fine structure ofind dark areas. The confinement is effective if a condition
coherence within the evolving nonlinear waveguide was\e = A#? of total internal reflection [14,15] from wave-
carried out [9]. The alternative approach treats a lightguide flanks is satisfied. Hetke is the susceptibility in-
induced variation of the refractive index as a multimodecrement in the waveguide center akd is a divergence of
waveguide [10—12]. For a model of logarithmic nonlinearthe captured beam. The spatially coherent captured beams
media, it was shown that a Guassian beam creates @opagate as the lowest single mode of the induced wave-
waveguide with transverse modes that after incohererguide, hence light divergenceAs® ~ A/a. This relation
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specifies the transverse sizeof the beam with respect central frequencyw and the wave numbek = wn/c
to the wavelength and the minimal index modulation are introducedg, = n? is the spatially uniform part of
Ae required for self-trappingAe = (A/a)? [16]. If the the dielectric susceptibility. The equation of interest can
trapped beam is spatially incohereht,, < a, the corre- be derived in paraxial approximation using the technique
sponding waveguide is a multimode one. The divergencéound in Refs. [18] and [19].
isA6 ~ A/l.on, Wherel., is the transverse size of the co-  Any spatially incoherent beam can be treated as a se-
herence area, and it is not related to the beameiz&€he  quence of completely coherent speckle pattdf(R) that
guiding efficiency in the multimode case is controlled byare permanently changing in timg&(R, ). An average
the ratioAs/A6? only. Hence an incoherent self-similar time 7.,, of the pattern’s substitution is the coherence
solution could not specify any transverse size or particulatime. We assume that.,, exceeds the timd./c that
profile of intensity of the beam [13]. Such a property is ait takes for photons to pass through the thicknésef
peculiar one among the family of solitons; normally a typethe medium. From then on, we apply the parabolic wave
of medium nonlinearity rigorously controls their particular equation for the slow amplitudg(R, ) that depends on
shapes [5-7,16,17]. as a parameter via boundary proffiér,z = 0, r):

We are interested in a steady state equation for the . _ 2
spatial evolution of the local angular spectrui®,r, z) 2ik(0E/0z) + ALE = ~(0/c)'8e(RER, ). (1)
of the incoherent bearB (R, ) exp(—iwt + ikz), which  The same equation can be rewritten for the prodiiet
propagates along the axis in a medium with smooth E*(r,,z,1)E(ry,z, t) of two amplitudes at different points
optical inhomogeneitieg(R) = gy + de(R). Here the | r; andr; of the same cross sectignas

9Bz — (i/k)VeV,B = (i/2k) (w/c)48e(r.z) — 8&(rs. 2)}B(r. p,2.1). )

If time averaged, the functio® gives the spatial cor- can derive Eqg. (3) for each narrow frequency bandwidth
relation function{B(r, p)). The middle-point coordinate where Eq. (1) can be applied and simply sum the results.
r = (r; + ry)/2 corresponds to slow spatial variations This summing gives the proper result in the steady state
of the average beam intensity; at= 0 it gives just even for nonlinear case since the medium response is time
(lE(r)|>). The coordinatep = (r; — r») is responsible averaging.

for fast transverse variations of the complex amplitude for We limit our analysis in this Letter to the case of
realizations of speckle patterns. The local angular speaylindrical symmetry,J(r,0,z) = J(r,0,z), wherer =

trum J(@,r, z) at the spatial locatiofr, z) can be defined |[r|, # = |6], since it is relevant to the experiments [1,2].
as a Fourier transform over the fast coordinatéor the ~ We begin with self-similar solutions, and assume that

function B, which is then averaged over time: both 6(r) andJ(r, ) do not depend on. The general
) ) solution of the resulting equation can be expressed as a
J =((k/2m) f[ d” pB(r,p,z,t)exp(—ikOp)). function of the only scalar parameter J(r, 8) = J(u),

Being integrated over?d, this function gives the local
intensityI(r,z) = [ d*0J(r,0,z). u(r,0) = [8&(r)/eo — 6%1/65. 4
Variations of optical density are induced by the aver-
aged intensityl (r,z), and are slow|dde/dr| ~ S¢&/a,
while the scale of decorrelation fo{B(p)) is much
smaller, l.on << a. Then the increment obe between
two points in the right-hand side of Eq. (2) can be
replaced byp - V.8e. After this substitution, Fourier
transforming, and averaging Eq. (2), one has modified the J(0,r) = Joexd—(8/60)* + 8&(r)/(£063)]
radiation transfer equation

Here, both/(«) and 63 should be specified by analysis of
particular cases.

One can begin with the factorization of the angular and
spatial dependencies. A general form of the factorized
self-similar solution of Eq. (3) is

since the only option is to usé(x) as an exponenti,
9 + <0 . ﬂ) + 1 (@ . ﬂ) -0 A3) and 6} are constants. This solution can be applied to
9z ar 2¢p \ dr 00 ’ either a nonlinear or a linear medium that contains the
which takes into account the refraction at smooth profilesmooth overr and constant ovet variation d&(r); for
de(r,z). The equation obtained seems to be generahe nonlinear case it was found earlier (see Ref. [13]).
enough. It is derived for6e from a general origin Thus, only the Guassian shape of the angular spectrum for
and is applicable for both linear and nonlinear mediaincoherent light provides factorization, i.e., the uniform
The only requirements for its derivation af8s| < 1,  angular characteristics of radiation over the whole cross
[Af| < 1, and/.n/a < 1, which are all very common section. Otherwise, spatial and angular dependencies
in optics. If the dispersion obe(w) is negligible, this cannot be separated.

equation is applicable to the case of white light. The The factorized solution demonstrates the known effect
coefficients there do not depend on wavelength, and onef light concentration in areas of larger susceptibility
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8e > 0. For the linear medium, the parameteisand tion relaxation timel//y and a dephasing timg/éw for
6o can be arbitrary at an§e(r) chosen. For instance, in a saturated optical transition. This self-similar spectrum
the regions of negative variations of the optical densityjs not factorized for this solution, and the arbitrary profile
de < 0, the antiguiding effect occurs: The intensity d&(r) is also allowed. But, it should fif(r) in this case
can drop exponentially in the center= 0 if Ae/67 < as
(=1). Both guiding and antiguiding behaviors do not _ 2\ (02 /02 _ -2
specify any profile in the solutiode(r), but linear self- S = L/ (@0 {(0°/00) + [Aen = de(r)]/Aem} ™,
similar propagation requires nevertheless perfect matchinghere 65 = Ae,,/eo. At self-trapping into a bright
intensity tode(r) asl(r) « exr{ag(r)/(goeg)], soliton, the divergence in the center is lower, but grows
For the nonlinear case, one can integrate the spectrutaward the edges. Thus, all of the profiles for the big
obtained over the solid angt# = 7wd6? to find the local ~ incoherent solitons obtained in Ref. [13] turn out to be
intensity () that creates the waveguide:(r). A result Steady state solutions of the radiation transfer equation.

given for the factorized solution is a relation betweemnd We will illustrate the potential of Eg. (3) for the
Se, simplest case of a “double-Gaussian” beam [19], looking
5e = Aln(I/1,), (5) for a solution evolving over in the form

— 2 2
where A = g062 and I, is some constant—a saturation 7 = Joexd—a()r® = B(2)(r - 6) — y(2)67]. (7)
intensity. The relation should hold_ true irrespective ofThis corresponds to the local Gaussian distribution
the particular transverse dependendies andde(r), and  [(r,z) = [7Jy/y]exd —r2/a?] of intensity at a beam
specifies, hence, a type of medium nonlinearity, which alradiusa(z) = (a« — B2/4y)~'/2 that carries total power
lows for this solution. Thus, the nonlinearity in Eq. (5) w, = #2Jya%/y. The waveguide profile can be approxi-
is the only law of medium response which maintains facmated for this case as a parabolic one, neglecting higher
torized self-similar propagation. The condition of self- order terms over the paramefer/a(z)]>. Then, for any
similarity in the nonlinear case is that the divergemge type of nonlinearity, the last coefficient in Eq. (3) can be
should precisely match the particular amplitude of the nonpresented as-p(z)r, wherep = (1/a)*[(I/&0)dS¢/dI]
linearity, 6y = 65 = (A/eo)!/2. If this is the case, then s taken in the point = 0. One has three equations for

any profile of the waveguide satisfies a condition of selfthree variables as a result of this approximation:
consistent superposition [10—12] for its transverse modes.

In particular, dark and bright solitons [5—7] represent the da/dz = pB,  dB/dz=2py — a),
far limits of the factorized solution af<(0) > 0 and dy/dz = —pB.
de(0) < 0, respectively; they can be permanently trans-

. a4 . )
formed (one into another) without changing the sigm\of ;;rgr?tsmatlec?(;?ls)grlvati (;Bn é ? thecggztmOf ;\r;;sgﬁgen;":(e:gr:
Integration of J(u) over the solid angle gives, at P ' '

arbitrary nonlinear response, the local intendity) for ~ * dependence of the parameer= p(a, §,7) is not ex-
e : : plicit, this system can be treated as a Hamiltonian one that
self-similar solutions in the form

56(r)/ s possesses periodip orbits in it's phase space. Hence one
1(r) = mggf J(u)du . (6)  hasto look for oscillating solutions of this system.
—o0 For the nonlinearity in Eqg. (5) the waveguide turns out

Equation (6) should be identical to the material relationto be a precisely parabolic shage= (A/g¢)a 2(z), and
between the variatiode and the local intensity that  the system above is precise. It makes sense to look for
induces this variation. The functiol(x) is, thus, specific explicit expressions for this particular case. This system
for any given type of self-focusing nonlinearity. It can be can be reduced then to a single equation,
easily found by differentiating the reversed dependence 2 )
1(5¢) asJ (8¢ /o) = (so/m)dl/d(S¢) [13]. Two other dy/dz" + 2acIn(y/ye) = 0, (8)
examples can be derived from Eq. (6) (and found alsavhere  a. = (1 — &)/a§ and  y. = 6521 —
in Ref. [13]). For the Kerr mediaje = e,1, one has a ¢&)exdé/(1 — £€)] can be expressed via a minimal
steplike solution,/(u) = (go/7ey) atu > 0 andJ(u) = radiusag of the oscillating beam and the only control pa-
0 atu < 0. This corresponds to the uniform cone angularrameteré of the problem. This valud) < ¢ < 1, relates
spectrum; its half-width varies in space following thethe maximal beam divergencé.,x to the divergence
local intensityfmax (r) = [£21(r)/e0]"/?, andI(r) can be 65 = (A/ey)!/2, which provides self-similar propagation
arbitrary again. for the nonlinearity [EQ. (5)]fmax = Os/(1 — &)V

Another example is saturable nonlinearitys(l) = At ¢ — 0, Eq. (8) results in the self-similar solution that
Ae,[(I/1,)/(I + 1/1I)]. It is relevant to the drift re- corresponds to the beam of an arbitrary radiysnd the
sponse used in the experiments [1,2] if anisotropy isonstant divergencés. At ¢ < 1 both the divergence
neglected [5-7]. It could also be interesting for simi-#(z) and the radiusa(z) oscillate at a small relative
lar experiments with resonant gases or with saturable alamplitude &, but keep the product:(z)#(z) constant.
sorbers. A condition for the time-averaging response the@scillations are around this self-similar solution, and occur
is that the coherence time,, lies in between a popula- at a spatial period\zy = (ao/0s)7~/2. For largeré the
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