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Radiation Transfer Model of Self-Trapping Spatially Incoherent Radiation by Nonlinear Media
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JILA, University of Colorado and National Institute of Standards and Technology, and Physics Department,
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(Received 19 June 1998)

We modify the radiation transfer approach, accounting for refraction, and apply this model to the
analysis of propagation of spatially incoherent beams in inertial nonlinear media. For double Gaussian
beams, an oscillatory regime of nonlinear diffraction is revealed. An explicit analysis of the oscillations
was carried out for logarithmic saturating nonlinearity. We show that “big incoherent solitons,” which
possess an arbitrary transverse profile of intensity and exist for a wide class of nonlinear media, are
steady state solutions of the radiation transfer equation. [S0031-9007(98)07197-X]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Jx
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Trapping spatially incoherent laser beams [1] and wh
light [2] by self-induced waveguides in photorefractiv
crystals was demonstrated recently. In contrast to s
trapping by conventional Kerr media where giant las
pulses [3,4] are normally required, these observations
respond to milliwatts and nanowatts power of trapp
light. A new situation regarding conventional photor
fractive spatial solitons [5–7] arose as well. Spatial c
herence is necessary to provide replication of the trap
beam intensity pattern by means of a photorefractive
sponse, which is very slow. However, the crystals [1
didn’t follow fast variations of the incoherent light pa
tern in either time or space, and only responded to tim
averaged local intensity.

The common theoretical approach to the self-trapp
occurs in terms of self-similar solutions of the nonline
wave equation. It is called a spatial soliton [3–7]. For c
herent beams such solutions have been found for var
nonlinear media, including photorefractive crystals [5–
For many of them the areas of stability were analyz
and different revelations of instability were demonstra
[7]. In particular, an oscillatory regime of propagation f
the coherent trapped beam was revealed [7]. A ser
complication appears, however, if one would like to u
similar terms to discuss trapping spatially incoherent lig
The point is that there is no equation that directly appl
when looking for a potential soliton-like solution. Indee
the self-similar profile observed (Refs. [1] and [2]) is th
time-averaged intensity. But the wave equation deals w
amplitudes, i.e., with instantaneous realizations of spec
patterns, which are certainly not self-similar.

Three different models of incoherent self-trapping we
proposed [8–13]. One model operates with a spec
function referred to as a coherent density [8,9]. Us
this technique, a numerical analysis of fine structure
coherence within the evolving nonlinear waveguide w
carried out [9]. The alternative approach treats a lig
induced variation of the refractive index as a multimo
waveguide [10–12]. For a model of logarithmic nonline
media, it was shown that a Guassian beam create
waveguide with transverse modes that after incohe
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superposition give the same Gaussian profile of inten
self-consistently [11]. Few-mode waveguides were la
studied using the same terms [12]. The authors of
paper [13] proposed an original geometric optics appro
utilizing a ray density function [14]. The integral relatio
between local intensity and ray density was pointed ou
a property of invariant propagation. This relation predi
that “big incoherent solitons” can exist for any nonline
medium and at arbitrary transverse profiles of intens
[13]. These three approaches differ but merge well
their final results. They all are in good agreement w
experiments. But even the most general approach [
which was estimated by its authors as “intuitive, advan
predictions” rather than as a quantitative model, tre
the self-similar regime only and requires probably dee
background.

In this Letter we address the following problems. Fir
we point out a local angular spectrum as a relev
characteristic for nonlinear diffraction of an incohere
beam. The local spectrum, coherence density [8,9],
ray density [13] are kindred functions. However, t
angular spectrum is an easily observable characteri
and its spatail evolution can be described in terms o
self-consistent differential equation of the first order th
possesses self-similar solutions. We derive this equa
as a second step of our analyses. Third, we ana
the evolution for Gaussian beams and show that,
general, they demonstrate oscillatory behavior. Expl
expressions for the dynamics of these oscillations
found for a logarithmic saturating nonlinear medium.

Physics of light trapping in the self-focusing med
d´ydI . 0, is as follows. The narrow beam creates
waveguide that can hold light inside its boundaries due
the smooth step of the refractive index between illumina
and dark areas. The confinement is effective if a condit
D´ $ Du2 of total internal reflection [14,15] from wave
guide flanks is satisfied. HereD´ is the susceptibility in-
crement in the waveguide center andDu is a divergence of
the captured beam. The spatially coherent captured be
propagate as the lowest single mode of the induced wa
guide, hence light divergence isDu , lya. This relation
© 1998 The American Physical Society 2683
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specifies the transverse sizea of the beam with respec
to the wavelengthl and the minimal index modulatio
D´ required for self-trapping,D´ $ slyad2 [16]. If the
trapped beam is spatially incoherent,lcoh ø a, the corre-
sponding waveguide is a multimode one. The diverge
is Du , lylcoh, wherelcoh is the transverse size of the c
herence area, and it is not related to the beam sizea. The
guiding efficiency in the multimode case is controlled
the ratioD´yDu2 only. Hence an incoherent self-simil
solution could not specify any transverse size or partic
profile of intensity of the beam [13]. Such a property i
peculiar one among the family of solitons; normally a ty
of medium nonlinearity rigorously controls their particu
shapes [5–7,16,17].

We are interested in a steady state equation for
spatial evolution of the local angular spectrumJsu, r, zd
of the incoherent beamEsR, td exps2ivt 1 ikzd, which
propagates along thez axis in a medium with smoot
optical inhomogeneitieś sRd ­ ´0 1 d´sRd. Here the
s
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central frequencyv and the wave numberk ­ vnyc
are introduced;́ 0 ­ n2 is the spatially uniform part o
the dielectric susceptibility. The equation of interest c
be derived in paraxial approximation using the techniq
found in Refs. [18] and [19].

Any spatially incoherent beam can be treated as a
quence of completely coherent speckle patternsEsRd that
are permanently changing in time,EsR, td. An average
time tcoh of the pattern’s substitution is the coheren
time. We assume thattcoh exceeds the timeLyc that
it takes for photons to pass through the thicknessL of
the medium. From then on, we apply the parabolic w
equation for the slow amplitudeEsR, td that depends ont
as a parameter via boundary profileEsr, z ­ 0, td:

2iks≠Ey≠zd 1 D'E ­ 2svycd2d´sRdEsR, td . (1)

The same equation can be rewritten for the productB ­
Epsr2, z, tdEsr1, z, td of two amplitudes at different point
r1 andr2 of the same cross sectionz as
≠By≠z 2 siykd=r=rB ­ siy2kd svycd2hd´sr1, zd 2 d´sr2, zdjBsr, r, z, td . (2)
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If time averaged, the functionB gives the spatial cor-
relation functionkBsr, rdl. The middle-point coordinate
r ­ sr1 1 r2dy2 corresponds to slow spatial variation
of the average beam intensity; atr ­ 0 it gives just
kjEsrdj2l. The coordinater ­ sr1 2 r2d is responsible
for fast transverse variations of the complex amplitude
realizations of speckle patterns. The local angular sp
trum Jsu , r, zd at the spatial locationsr, zd can be defined
as a Fourier transform over the fast coordinater for the
functionB, which is then averaged over time:

J ­ ksky2pd2
Z Z

d2 rBsr, r, z, td exps2ikurdl .

Being integrated overd2u, this function gives the loca
intensityIsr, zd ­

R
d2uJsr, u , zd.

Variations of optical density are induced by the av
aged intensityIsr, zd, and are slow,jdd´ydrj , d´ya,
while the scale of decorrelation forkBsrdl is much
smaller, lcoh ø a. Then the increment ofd´ between
two points in the right-hand side of Eq. (2) can b
replaced byr ? =rd´. After this substitution, Fourier
transforming, and averaging Eq. (2), one has modified
radiation transfer equation

≠J
≠z

1

µ
u ?

≠J
≠r

∂
1

1
2´0

µ
≠d´

≠r
?

≠J
≠u

∂
­ 0 , (3)

which takes into account the refraction at smooth pro
d´sr, zd. The equation obtained seems to be gene
enough. It is derived ford´ from a general origin
and is applicable for both linear and nonlinear med
The only requirements for its derivation arejd´j ø 1,
jDuj ø 1, and lcohya ø 1, which are all very common
in optics. If the dispersion ofd´svd is negligible, this
equation is applicable to the case of white light. T
coefficients there do not depend on wavelength, and
r
-

e

l

.

e

can derive Eq. (3) for each narrow frequency bandwi
where Eq. (1) can be applied and simply sum the resu
This summing gives the proper result in the steady s
even for nonlinear case since the medium response is
averaging.

We limit our analysis in this Letter to the case
cylindrical symmetry,Jsr, u , zd ­ Jsr , u, zd, wherer ­
jrj, u ­ juj, since it is relevant to the experiments [1,2
We begin with self-similar solutions, and assume th
both d´srd andJsr, ud do not depend onz. The general
solution of the resulting equation can be expressed a
function of the only scalar parameteru, Jsr , ud ­ Jsud,
and

usr, ud ­ fd´srdy´0 2 u2gyu2
0 . (4)

Here, bothJsud andu
2
0 should be specified by analysis o

particular cases.
One can begin with the factorization of the angular a

spatial dependencies. A general form of the factoriz
self-similar solution of Eq. (3) is

Jsu, rd ­ J0 expf2suyu0d2 1 d´srdys´0u2
0dg

since the only option is to useJsud as an exponent;J0

and u
2
0 are constants. This solution can be applied

either a nonlinear or a linear medium that contains
smooth overr and constant overz variation d´srd; for
the nonlinear case it was found earlier (see Ref. [1
Thus, only the Guassian shape of the angular spectrum
incoherent light provides factorization, i.e., the unifor
angular characteristics of radiation over the whole cr
section. Otherwise, spatial and angular dependen
cannot be separated.

The factorized solution demonstrates the known eff
of light concentration in areas of larger susceptibil



VOLUME 81, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 28 SEPTEMBER1998

n
it
ity

o

hi

tr

n
o

a
5)
ac
lf

o
n
el
de
th

ns

t

io

be
n

ls

la
he

-

i
a

h
-

m
le

ws
ig

be
.

ing

on

i-
her

e

r

-

that
one

ut

for
em

l
a-

n

t

ur
d´ . 0. For the linear medium, the parametersJ0 and
u0 can be arbitrary at anyd´srd chosen. For instance, i
the regions of negative variations of the optical dens
d´ , 0, the antiguiding effect occurs: The intens
can drop exponentially in the centerr ­ 0 if D´yu

2
S ,

s21d. Both guiding and antiguiding behaviors do n
specify any profile in the solutiond´srd, but linear self-
similar propagation requires nevertheless perfect matc
intensity tod´srd asIsrd ~ expfd´srdys´0u

2
Sdg.

For the nonlinear case, one can integrate the spec
obtained over the solid angled2u ­ pdu2 to find the local
intensityIsrd that creates the waveguided´srd. A result
given for the factorized solution is a relation betweenI and
d´,

d´ ­ D lnsIyItd , (5)

where D ­ ´0u
2
0 and It is some constant—a saturatio

intensity. The relation should hold true irrespective
the particular transverse dependenciesIsrd andd´srd, and
specifies, hence, a type of medium nonlinearity, which
lows for this solution. Thus, the nonlinearity in Eq. (
is the only law of medium response which maintains f
torized self-similar propagation. The condition of se
similarity in the nonlinear case is that the divergenceu0
should precisely match the particular amplitude of the n
linearity, u0 ­ uS ­ sDy´0d1y2. If this is the case, the
any profile of the waveguide satisfies a condition of s
consistent superposition [10–12] for its transverse mo
In particular, dark and bright solitons [5–7] represent
far limits of the factorized solution atd´s0d . 0 and
d´s0d , 0, respectively; they can be permanently tra
formed (one into another) without changing the sign ofD.

Integration of Jsud over the solid angle gives, a
arbitrary nonlinear response, the local intensityIsrd for
self-similar solutions in the form

Isrd ­ pu2
0

Z d´srdy´0u
2
0

2`

Jsuddu . (6)

Equation (6) should be identical to the material relat
between the variationd´ and the local intensityI that
induces this variation. The functionJsud is, thus, specific
for any given type of self-focusing nonlinearity. It can
easily found by differentiating the reversed depende
Isd´d as Jsd´y´0d ­ s´0ypddIydsd´d [13]. Two other
examples can be derived from Eq. (6) (and found a
in Ref. [13]). For the Kerr media,d´ ­ ´2I, one has a
steplike solution,Jsud ­ s´0yp´2d at u . 0 andJsud ­
0 at u , 0. This corresponds to the uniform cone angu
spectrum; its half-width varies in space following t
local intensityumaxsrd ­ f´2Isrdy´0g1y2, andIsrd can be
arbitrary again.

Another example is saturable nonlinearityd´sId ­
D´mfsIyIsdysI 1 IyIsdg. It is relevant to the drift re
sponse used in the experiments [1,2] if anisotropy
neglected [5–7]. It could also be interesting for sim
lar experiments with resonant gases or with saturable
sorbers. A condition for the time-averaging response t
is that the coherence timetcoh lies in between a popula
y,
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tion relaxation timeIyg and a dephasing timeIydv for
a saturated optical transition. This self-similar spectru
is not factorized for this solution, and the arbitrary profi
d´srd is also allowed. But, it should fitd´srd in this case
as

J ­ Isyspu2
0d hsu2yu2

0d 1 fD´m 2 d´srdgyD´mj22,

where u
2
0 ­ D´my´0. At self-trapping into a bright

soliton, the divergence in the center is lower, but gro
toward the edges. Thus, all of the profiles for the b
incoherent solitons obtained in Ref. [13] turn out to
steady state solutions of the radiation transfer equation

We will illustrate the potential of Eq. (3) for the
simplest case of a “double-Gaussian” beam [19], look
for a solution evolving overz in the form

J ­ J0 expf2aszdr2 2 bszd sr ? ud 2 gszdu2g . (7)

This corresponds to the local Gaussian distributi
Isr, zd ­ fpJ0ygg expf2r2ya2g of intensity at a beam
radiusaszd ­ sa 2 b2y4gd21y2 that carries total power
W0 ­ p2J0a2yg. The waveguide profile can be approx
mated for this case as a parabolic one, neglecting hig
order terms over the parameterfryaszdg2. Then, for any
type of nonlinearity, the last coefficient in Eq. (3) can b
presented as2pszdr, wherep ­ s1yad2fsIy´0ddd´ydIg
is taken in the pointr ­ 0. One has three equations fo
three variables as a result of this approximation:

daydz ­ pb, dbydz ­ 2spg 2 ad,

dgydz ­ 2b .

The integralga 2 b2y4 ­ const of this system repre
sents a conservation of the beam powerW0, and, since a
z dependence of the parameterp ­ psa, b, gd is not ex-
plicit, this system can be treated as a Hamiltonian one
possesses periodic orbits in its phase space. Hence
has to look for oscillating solutions of this system.

For the nonlinearity in Eq. (5) the waveguide turns o
to be a precisely parabolic shape,p ­ sDy´0da22szd, and
the system above is precise. It makes sense to look
explicit expressions for this particular case. This syst
can be reduced then to a single equation,

d2gydz2 1 2ac lnsgygcd ­ 0 , (8)

where ac ­ s1 2 jdya2
0 and gc ­ u

22
S s1 2

jd expfjys1 2 jdg can be expressed via a minima
radiusa0 of the oscillating beam and the only control p
rameterj of the problem. This value,0 , j , 1, relates
the maximal beam divergenceumax to the divergence
uS ­ sDy´0d1y2, which provides self-similar propagatio
for the nonlinearity [Eq. (5)],umax ­ uSys1 2 jd1y2.

At j ! 0, Eq. (8) results in the self-similar solution tha
corresponds to the beam of an arbitrary radiusa0 and the
constant divergenceuS . At j ø 1 both the divergence
uszd and the radiusaszd oscillate at a small relative
amplitude j, but keep the productaszduszd constant.
Oscillations are around this self-similar solution, and occ
at a spatial periodDz0 ­ sa0yuSdp

p
2. For largerj the
2685
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FIG. 1. (a) Minimum and maximum divergence for th
oscillating solution of Eq. (8) normalized at theuS versus
the control parameterj. (b) Corresponding dependencies
maximum and minimum beam radius for the same solution.

oscillations are nonlinear, and the period grows asDz >
Dz0 expfsjy2dys1 2 jdg; oscillation swings are illustrate
in Fig. 1.

For self-similar solutions of Eq. (3), precise matchi
beam divergence to the medium response and spe
boundary conditions are required. Both are rather h
to implement in experiments. We thus suppose that
oscillating solutions are observed, and the amplitude
the oscillations is controlled by a matching accuracy.

In conclusion, we propose the radiation transfer
proach for theoretical analysis of nonlinear self-trapp
effects for incoherent radiation. We have shown that
incoherent solitons, which exist for any time-averag
self-focusing nonlinearity and do not specify any partic
lar shape of beam intensity, correspond to steady s
solutions of the radiation transfer equation, and we h
found spatially oscillating solutions for a double Gauss
beam in logarithmic saturable nonlinearities.
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