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Thouless Energy and Correlations of QCD Dirac Eigenvalues
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Eigenvalues and eigenfunctions of the QCD Dirac operator are studied for an instanton liquid partition
function. We find that for energy differencé& below an energy scalg., identified as the Thouless
energy, the eigenvalue correlations are given by random matrix theory. The valiyeshbws a weak
volume dependence for eigenvalues near zero and is consistent with a scalihg~ol /L? in the
bulk of the spectrum in agreement with estimates from chiral perturbation theori that~ F21.2/m
(with average level spacing). For 6E > E. the number variance shows a linear dependence. For
the wave functions we find a small nonzero multifractality index. [S0031-9007(98)06623-X]

PACS numbers: 12.38.Lg, 05.45.+b, 11.30.Rd, 12.38.G¢c

Random matrix theories have been applied to manyjimit, V — o« with u = AVX kept fixed and the associated
aspects of mesoscopic systems (see [1-3] for recemnicroscopic spectral density [8]

reviews). In particular, eigenvalue correlations have 1 "
received a great deal of attention in this context. Two ps(u) = lim Vs <p<ﬁ>> (2)
important energy scales have been identified: (i) the =

Thouless energy, defined as the inverse diffusion time ofhere is ample evidence from lattice QCD [9,10] and
an electron through the sample, i.e., instanton liquid [11] simulations thaps(x) and other
iD correlators on the scale of individual level spacings [12]
> (1) are given by chiral random matrix theory (chRMT), i.e.,
L RMT’s with the chiral symmetries of the QCD patrtition
where D is the diffusion constant, and (ii) the energy function. However, at scales beyond a few eigenvalue
h/7., wherer, is the elastic collision time. Eigenvalue spacings in both instanton [11] and lattice QCD [9,10]
correlations on a scal®E can then be classified according simulations the Dirac eigenvalues near zero show stronger
to the following three regimes: the ergodic regime forfluctuations than in chRMT. This indicates the presence
O0E < E., the diffusive or Altshuler-Shklovskii [4] regime of an energy scale in QCD which may be identified as the
for E. < 6E < /7., and the ballistic regime foBE >  Thouless energy. The interpretation of spontaneous chiral
i/7. (see [5] for recent work on this topic). symmetry breaking as a delocalization transition was made

The eigenvalue correlations can be measured convearlierin[13]. By analogy with the Kubo formul, plays
niently by the number variancg,(n). This statistic is de- the role of the conductivity [13].
fined as the variance of the number of levels in an interval Because of the chiral symmetry of the Dirac operator
that contains: levels on average. In the ergodic regime,and its spontaneous breaking, the eigenvalue correlations
eigenvalue correlations are given by the invariant randonmear zero in the ergodic domain are given by the chiral
matrix ensembles wittE,(n) ~ (2/B7*)log(n). Inthe ensembles[8,14]. Thisisthe domain where pion loops can
diffusive regime the situation is more complicated. For abe ignored. Its boundary is thus given by [15,16] a valence
critical system, with a localization length that scales withquark mass scale:. where the mass of the associated
the size of the sample, it is argued [4] ti&i(n) = yn  Goldstone boson,/m.B (according to the PCAC relation
(with y < 1), whereas for weaker disorder the expecta-B = 3 /F2, whereF,, is the pion decay constant), is of
tion is that3,(n) ~ n?/2. For a critical system, the slope the order of the inverse linear dimension of the box. This
of the number variance has been related to the multifracelation can be rewritten as [17]
tality index of the wave functions [6]. 1

In this Letter we wish to investigate to what extent Me = pra- 3)
such scenarios are realized in QCD. We will investigat
eigenvalues of the Euclidean Dirac operator. Becau
of the U,(1) symmetry they occur in pairsA; or are
zero. What is of main interest are the eigenvalues ne
zero which, for broken chiral symmetry, are spaced
A = 77/2V (the space time volume is denoted BbY. )
This is based on the Banks-Casher formula [7] according g0 = Me _ QLZ. %)
to which the order parameter of the chiral phase transition, A ™
>, and the spectral density near zero are relate®@by  Here,g. plays the role of the dimensionless conductivity.
7p(0)/V. ltis therefore natural to define the microscopic Another discussion of"; in terms of the conductivity is

E. =

Sqt is therefore tempting to interprdt/B as the diffusion
Constant. Becaus8 is large on a hadronic scal® (=
1660 MeV), the diffusion constant is relatively small.

a&\y\/ith eigenvalue spacind = 7 /XV, this condition can
De rewritten in dimensionless form as
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given in [18]. In lattice QCD, for an Malattice, this such that the unfolded spectrum has unit average level
relation readsg, = F2a>/N/m. On al6* lattice with  spacing. All our spectral observables are calculated with
a lattice spacing of 0.2 fm this results in a dimensionlesshe unfolded spectrum.
Thouless energy of about one level spacing. The above In Figs. 1 and 2 we show the number variartgn)
discussion was for sea quark masses much less than thersusn for various total numbers of instantons with
valence quark mass scale.. Further subtleties arise in instanton densityv/V = 1. The chGUE result fok,(n)
the quenched limit (see [19] for more details). [10] is depicted by the solid curve. In both figures, the
The chiral random matrix theories fa¥, massless upper figure (with only two volumes) is a blown-up version
quarks in the sector of topological chargeare defined of the lower figure. In Fig. 13,(n) is calculated for
by the partition function [8,14] the interval starting at = 0. Figure 2 represents the
5 0w\ _ . number variance in the bulk of the spectrum obtained from
ZN,y = fDW deth<l.WJr 0 >e nBTrVIWIW) - (5)  an interval that is symmetric about the average positive
unfolded eigenvalue. In both cases we observe a clear

whereW is an X (n + v) matrix. The parameteln is  yansition pointn. below which the number variance is
identified as the dimensionless volume of space time. "@iven by RMT. In Fig. 1, the value of the crossover

this paper we only C_onsider the chirgl Gaussian Unita%oint, n. ~ 2, depends only weakly on the total number
ensemble (ChGUE) with complex matrix elemeMss = of instantons (or the volume). This is not in agreement

. . _ 2 .
2) and a Gaussian potential(x) = X°x. In this case it the theoretical expectation (4) that ~ F2\/V/mx
ps(u) and all other correlation functions have been derived,, tour dimensions. FoN/V = 1 fm~* the value ofn,

analytically [10,14,20]. We note only that in the bUlk Of for N instantons is given byc ~ 0.07\/N which is on the
the spectrum the correlations are given by the invarianhger of the results found in Fig. 1. However, in the bulk
RMT's. It can be shown [21,22] that, fgB = 2, ps(u)  (f the spectrum (Fig. 2), the value of is consistent with a

and other correlators do not depend on the poteftia). /7 scaling but the numerical constant appears to be larger

The application of chRMT to QCD has been put on ahap the above estimate. This result is in agreement with
firm foundation by these and other universality proofs [23—

25]. Whether or not QCD is in this universality class is
a dynamical question that can only be proven by explicit 7
numerical simulations. N = 128

Our calculations will be performed using the instanton 08 - N =512
liquid model. In this model the gauge field configurations - chGUE
are given by a superposition of instantons. The Euclidean
QCD partition function is then approximated by o

Zinst = ] DQ det™' (D + m)e S, (6) AN

-l

0.6

where the integral is over the collective coordinates of

the instantons and the Dirac operator is denotedDby 02

For each instanton we hau@ collective coordinates (for

three colors). The Yang-Mills action is denoted $y. 0

The fermion determinant is evaluated in the space of the n

fermionic zero modes of the instantons. In our calculations

we use the standard instanton dengityV = 1 (in units

of fm~1). For further discussion of this partition function,

which obeys the flavor and chiral symmetries of the QCD

partition function, we refer to [26]. =
The partition function (6) is evaluated by means of N

a Metropolis algorithm. We perform on the order of

10 000 sweeps for each set of parameters. The eigenvalues

and eigenvectors of the Dirac operator are calculated

by means of standard diagonalization procedures. In

this Letter we restrict ourselves Wy = 0. This is a .

natural choice because our results are compared with ideas o

from disordered mesoscopic systems where no fermion 0~

: 4 ) 0 10 20 30 40 50
determinant is present, and, moreover, it allows us to study n

much larger volumes. . . FIG. 1. The number varianc®,(n) versusn approximation
In order to separate the fluctuations of the eigenvaluefyr an interval starting atA = 0. The total number of

from the average spectral density, the spectrum is unfoldeidstantons is denoted hy.

(@}
-
N
.
@
—
(@)

N

w
NTTTT
0 zZzzz |
=
[GLRAVEE N @)}
— OV
lAVEer N0 B
| I

QI
a
3|

Zo(

)
I
|

T T T
Ll

,_.
I
|

T T

269



VOLUME 81, NUMBER 2 PHYSICAL REVIEW LETTERS 13JLy 1998

the finding that correlations of lattice QCD eigenvaluespicted in Fig. 3 (upper). The general impression is that the
are given by RMT up to distances of more than 100 wave functions are extended with an inverse participation
spacings [12,27]. ratio that is not too different from the random matrix re-

Beyond the crossover point the number variance showsult (full line). The eigenfunctions corresponding to small
a linear behavior with a slopg = 0.08 for eigenvalues and large eigenvalues appear to be somewhat more local-
near zero angy = 0.04 in the bulk of the spectrum. The ized. A more definitive result for the character of the wave
downward trend of the curves for larger valuesnofs a  functions follows from the scaling behavior 6f(A) with
well understood finite size effect. This prevents us fromthe volume. A double logarithmic plot @¥1,(A) versus
saying more about the ballistic regime, an energy scale aV is shown in Fig. 3 (lower). Results are given for both
roughly the inverse distance between instantons. the energy intervalf.1,0.2] (open circles) and0.7, 0.8]

In the ergodic regime we expect that eigenvalue correffull circles). The first region corresponds to a part of the
lations are given by the chiral random matrix ensemblesspectrum where the number variance shows a linear behav-
Indeed, both the microscopic spectral density up to twaor for the volumes shown in Fig. 1, and the second region
level spacings and the nearest neighbor spacing distribworresponds to the bulk of the spectrum. The multifractal-
tion are in perfect agreement with the chGUE. ity index 7 is defined by [6]

The number of significant components of the wave

function is measured b icipati [ [ L~ vl (8)
y the participation ratio. Its inverse
is defined as According to [6] the value ofy = 2yd (where y is
the slope of the linear piece in the number variance) in
L(A) = <Z |¢k()t)|4>. (7)  the critical domain. From the volume dependencd,of
k shown in Fig. 3 (lower) we find values faf/d of about

The (1) are the normalizedv-component eigenfunc- 0.02 and 0.04 for the intervald.1,0.2] and [0.7,0.8],
tions (corresponding to eigenvaligof the Dirac operator respectively. These values are well below the theoretical
in the space of the fermionic zero modes of the individuakesult of2y. Apparently, our ensemble of instantons is
instantons. Results fa¥l,(A) as a function ofA are de-
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FIG. 3. The inverse participation ratio time¥ versus the
FIG. 2. The number varianc®,(n) versusn in the bulk of  corresponding Dirac eigenvalues (upper), and the scaling
the spectrum. behavior versuv (lower) for two energy intervals.
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