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Thouless Energy and Correlations of QCD Dirac Eigenvalues
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Eigenvalues and eigenfunctions of the QCD Dirac operator are studied for an instanton liquid par
function. We find that for energy differencesdE below an energy scaleEc, identified as the Thouless
energy, the eigenvalue correlations are given by random matrix theory. The value ofEc shows a weak
volume dependence for eigenvalues near zero and is consistent with a scaling ofEc , 1yL2 in the
bulk of the spectrum in agreement with estimates from chiral perturbation theory thatEcyD ø F2

pL2yp

(with average level spacingD). For dE . Ec the number variance shows a linear dependence. F
the wave functions we find a small nonzero multifractality index. [S0031-9007(98)06623-X]

PACS numbers: 12.38.Lg, 05.45.+b, 11.30.Rd, 12.38.Gc
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Random matrix theories have been applied to ma
aspects of mesoscopic systems (see [1–3] for rec
reviews). In particular, eigenvalue correlations hav
received a great deal of attention in this context. Tw
important energy scales have been identified: (i) t
Thouless energy, defined as the inverse diffusion time
an electron through the sample, i.e.,

Ec ­
h̄D
L2 , (1)

where D is the diffusion constant, and (ii) the energ
h̄yte, wherete is the elastic collision time. Eigenvalue
correlations on a scaledE can then be classified according
to the following three regimes: the ergodic regime fo
dE , Ec, the diffusive or Altshuler-Shklovskii [4] regime
for Ec , dE , h̄yte, and the ballistic regime fordE .

h̄yte (see [5] for recent work on this topic).
The eigenvalue correlations can be measured con

niently by the number variance,S2snd. This statistic is de-
fined as the variance of the number of levels in an interv
that containsn levels on average. In the ergodic regime
eigenvalue correlations are given by the invariant rando
matrix ensembles withS2snd , s2ybp2d logsnd. In the
diffusive regime the situation is more complicated. For
critical system, with a localization length that scales wi
the size of the sample, it is argued [4] thatS2snd ­ xn
(with x , 1), whereas for weaker disorder the expect
tion is thatS2snd , ndy2. For a critical system, the slope
of the number variance has been related to the multifra
tality index of the wave functions [6].

In this Letter we wish to investigate to what exten
such scenarios are realized in QCD. We will investiga
eigenvalues of the Euclidean Dirac operator. Becau
of the UAs1d symmetry they occur in pairs6lk or are
zero. What is of main interest are the eigenvalues ne
zero which, for broken chiral symmetry, are spaced
D ­ pySV (the space time volume is denoted byV ).
This is based on the Banks-Casher formula [7] accordi
to which the order parameter of the chiral phase transitio
S, and the spectral density near zero are related byS ­
prs0dyV . It is therefore natural to define the microscop
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limit, V ! ` with u ­ lVS kept fixed and the associated
microscopic spectral density [8]

rSsud ­ lim
V!`

1
VS

*
r

√
u

VS

!+
. (2)

There is ample evidence from lattice QCD [9,10] an
instanton liquid [11] simulations thatrSsud and other
correlators on the scale of individual level spacings [12
are given by chiral random matrix theory (chRMT), i.e.
RMT’s with the chiral symmetries of the QCD partition
function. However, at scales beyond a few eigenvalu
spacings in both instanton [11] and lattice QCD [9,10
simulations the Dirac eigenvalues near zero show strong
fluctuations than in chRMT. This indicates the presenc
of an energy scale in QCD which may be identified as th
Thouless energy. The interpretation of spontaneous chi
symmetry breaking as a delocalization transition was ma
earlier in [13]. By analogy with the Kubo formula,S plays
the role of the conductivity [13].

Because of the chiral symmetry of the Dirac operato
and its spontaneous breaking, the eigenvalue correlatio
near zero in the ergodic domain are given by the chir
ensembles [8,14]. This is the domain where pion loops c
be ignored. Its boundary is thus given by [15,16] a valenc
quark mass scalemc where the mass of the associate
Goldstone boson,

p
mcB (according to the PCAC relation

B ­ SyF2
p , whereFp is the pion decay constant), is of

the order of the inverse linear dimension of the box. Th
relation can be rewritten as [17]

mc ­
1

BL2 . (3)

It is therefore tempting to interpret1yB as the diffusion
constant. BecauseB is large on a hadronic scale (B ø
1660 MeV), the diffusion constant is relatively small.
With eigenvalue spacingD ­ pySV , this condition can
be rewritten in dimensionless form as

gc ­
mc

D
­

F2
p

p
L2. (4)

Here,gc plays the role of the dimensionless conductivity
Another discussion ofFp in terms of the conductivity is
© 1998 The American Physical Society
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given in [18]. In lattice QCD, for an Na4 lattice, this
relation readsgc ­ F2

pa2
p

Nyp. On a 164 lattice with
a lattice spacing of 0.2 fm this results in a dimensionle
Thouless energy of about one level spacing. The abo
discussion was for sea quark masses much less than
valence quark mass scalemc. Further subtleties arise in
the quenched limit (see [19] for more details).

The chiral random matrix theories forNf massless
quarks in the sector of topological chargen are defined
by the partition function [8,14]

Z
b
Nf ,n ­

Z
DW detNf

µ
0 iW

iWy 0

∂
e2nb Tr V sWyWd, (5)

whereW is a n 3 sn 1 nd matrix. The parameter2n is
identified as the dimensionless volume of space time.
this paper we only consider the chiral Gaussian unita
ensemble (chGUE) with complex matrix elementsW (b ­
2) and a Gaussian potentialV sxd ­ S2x. In this case
rSsud and all other correlation functions have been derive
analytically [10,14,20]. We note only that in the bulk o
the spectrum the correlations are given by the invaria
RMT’s. It can be shown [21,22] that, forb ­ 2, rSsud
and other correlators do not depend on the potentialV sxd.
The application of chRMT to QCD has been put on
firm foundation by these and other universality proofs [23
25]. Whether or not QCD is in this universality class i
a dynamical question that can only be proven by explic
numerical simulations.

Our calculations will be performed using the instanto
liquid model. In this model the gauge field configuration
are given by a superposition of instantons. The Euclide
QCD partition function is then approximated by

Zinst ­
Z

DV detNf sD 1 mde2SYM , (6)

where the integral is over the collective coordinates
the instantons and the Dirac operator is denoted byD.
For each instanton we have12 collective coordinates (for
three colors). The Yang-Mills action is denoted bySYM.
The fermion determinant is evaluated in the space of t
fermionic zero modes of the instantons. In our calculatio
we use the standard instanton densityNyV ­ 1 (in units
of fm21). For further discussion of this partition function
which obeys the flavor and chiral symmetries of the QC
partition function, we refer to [26].

The partition function (6) is evaluated by means o
a Metropolis algorithm. We perform on the order o
10 000 sweeps for each set of parameters. The eigenva
and eigenvectors of the Dirac operator are calculat
by means of standard diagonalization procedures.
this Letter we restrict ourselves toNf ­ 0. This is a
natural choice because our results are compared with id
from disordered mesoscopic systems where no ferm
determinant is present, and, moreover, it allows us to stu
much larger volumes.

In order to separate the fluctuations of the eigenvalu
from the average spectral density, the spectrum is unfold
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such that the unfolded spectrum has unit average lev
spacing. All our spectral observables are calculated wi
the unfolded spectrum.

In Figs. 1 and 2 we show the number varianceS2snd
versus n for various total numbers of instantons with
instanton densityNyV ­ 1. The chGUE result forS2snd
[10] is depicted by the solid curve. In both figures, the
upper figure (with only two volumes) is a blown-up version
of the lower figure. In Fig. 1,S2snd is calculated for
the interval starting atl ­ 0. Figure 2 represents the
number variance in the bulk of the spectrum obtained from
an interval that is symmetric about the average positiv
unfolded eigenvalue. In both cases we observe a cle
transition pointnc below which the number variance is
given by RMT. In Fig. 1, the value of the crossover
point, nc ø 2, depends only weakly on the total number
of instantons (or the volume). This is not in agreemen
with the theoretical expectation (4) thatnc ø F2

p

p
Vyp

in four dimensions. ForNyV ­ 1 fm24 the value ofnc

for N instantons is given bync ø 0.07
p

N which is on the
order of the results found in Fig. 1. However, in the bulk
of the spectrum (Fig. 2), the value ofnc is consistent with ap

V scaling but the numerical constant appears to be larg
than the above estimate. This result is in agreement wi

FIG. 1. The number varianceS2snd versusn approximation
for an interval starting atl ­ 0. The total number of
instantons is denoted byN.
269
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the finding that correlations of lattice QCD eigenvalue
are given by RMT up to distances of more than 100
spacings [12,27].

Beyond the crossover point the number variance sho
a linear behavior with a slopex ø 0.08 for eigenvalues
near zero andx ø 0.04 in the bulk of the spectrum. The
downward trend of the curves for larger values ofn is a
well understood finite size effect. This prevents us fro
saying more about the ballistic regime, an energy scale
roughly the inverse distance between instantons.

In the ergodic regime we expect that eigenvalue corr
lations are given by the chiral random matrix ensemble
Indeed, both the microscopic spectral density up to tw
level spacings and the nearest neighbor spacing distri
tion are in perfect agreement with the chGUE.

The number of significant components of the wav
function is measured by the participation ratio. Its inver
is defined as

I2sld ­

*X
k

jcksldj4
+

. (7)

The cksld are the normalizedN-component eigenfunc-
tions (corresponding to eigenvaluel) of the Dirac operator
in the space of the fermionic zero modes of the individu
instantons. Results forNI2sld as a function ofl are de-

FIG. 2. The number varianceS2snd versusn in the bulk of
the spectrum.
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picted in Fig. 3 (upper). The general impression is that t
wave functions are extended with an inverse participati
ratio that is not too different from the random matrix re
sult (full line). The eigenfunctions corresponding to sma
and large eigenvalues appear to be somewhat more lo
ized. A more definitive result for the character of the wav
functions follows from the scaling behavior ofI2sld with
the volume. A double logarithmic plot ofNI2sld versus
N is shown in Fig. 3 (lower). Results are given for bot
the energy intervalsf0.1, 0.2g (open circles) andf0.7, 0.8g
(full circles). The first region corresponds to a part of th
spectrum where the number variance shows a linear beh
ior for the volumes shown in Fig. 1, and the second regi
corresponds to the bulk of the spectrum. The multifract
ity index h is defined by [6]

I2 , V hyd21. (8)

According to [6] the value ofh ­ 2xd (where x is
the slope of the linear piece in the number variance)
the critical domain. From the volume dependence ofI2

shown in Fig. 3 (lower) we find values forhyd of about
0.02 and 0.04 for the intervalsf0.1, 0.2g and f0.7, 0.8g,
respectively. These values are well below the theoreti
result of 2x. Apparently, our ensemble of instantons

FIG. 3. The inverse participation ratio timesN versus the
corresponding Dirac eigenvalues (upper), and the scal
behavior versusN (lower) for two energy intervals.
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not in the critical region. Our results should be contraste
with Wilson lattice QCD Dirac eigenfunctions which were
found to be localized [28]. We have no explanation fo
this discrepancy.

In conclusion, we have identified an energy scale belo
which the eigenvalue correlations of the QCD Dirac op
erator are given by chRMT. In analogy with the theor
of mesoscopic systems, this scale will be called the Tho
less energy. For eigenvalues near zero we find a Tho
less energy that only shows a weak volume dependen
whereas for eigenvalues in the bulk the Thouless ener
scales roughly with the square root of the volume in agre
ment with theoretical prediction.

For energy scales beyond the Thouless energy a lin
n dependence of the number variance is found. Our wa
functions show a small nonzero multifractality index whic
does not obey the relation derived for critical mesoscop
systems. Interesting connections with the scalar susce
bility and quenched chiral perturbation theory will be dis
cussed elsewhere [29].

We thank A. Smilga and Y. Fyodorov for stimulating
discussions.

Note added.—After the completion of this work we
received a paper by R. Janiket al. [30] in which similar
ideas were discussed. In that work the diffusion consta
is related to diffusion in a4 1 1 dimensional space time.
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