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A classically forbidden, transitory enhancement of the high positive momentum components
quantum wave packet during its collision with a potential barrier is described. A quantity is defin
measure its importance; the universality of the effect is justified, and its main features are studie
the aid of an analytically solvable model. Its relation to other “anomalously high velocities” is
examined. [S0031-9007(98)07182-8]
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Quantum mechanics may be cast as awavetheory. The
“classically forbidden effects,” such as tunneling, interfe
ences, or the discretization of allowed values of cert
observables, which are frequently regarded as distinc
signatures of quantum mechanics, are in fact common
ments of all wave phenomena, classical or quantum.
counterintuitive and nonclassical aspects of these eff
are revealed when the comparison is made instead with
behavior of classicalparticles. This comparison is legiti-
mate since, behind the wave framework, quantum the
deals with particles, according to Born’s interpretation
postulate of the wave function.

The aim of this Letter is to disclose and analyze o
of such classically forbidden effects that has remained
sentially unnoticed in spite of being a universal feature
all scattering events: It is the transient, classically forb
den, collisional enhancement of high momentum com
nents of a wave packet. Such a long disregard (we do
know of any work devoted to its description or study) m
seem surprising after almost a century of scrutiny of qu
tum effects. The reason is surely related to an old a
persistent prejudice that emphasizes the role of sca
ing theory as a link between asymptotic regimes, well
fore and well after the interaction is effective, and view
the processes during the collision itself as irrelevant,
cause “they cannot be observed.” This is not true anym
Modern pulsed lasers allow one to probe the wave-pac
dynamics, and techniques such as the “spectroscopy o
0031-9007y98y81(13)y2621(5)$15.00
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transition state” are but observations of reactive system
the midst of a collision. Irrespective of being observed
not, the collisional regime has to be understood to asc
tain, and eventually control, the mechanisms leading to
final products.

The simplest version of the effect implicates a o
particle wave packet colliding with a potential barrier
one dimension, but the enhancement is also presen
more general collisions. Let us consider an ensemble
classical particles of massm in one dimension, describe
by the phase space distribution functionfsx, p; td, that
collide with a potentialV sxd, bounded from below, which
we assume for simplicity to be nonzero only betwe
x ­ 0 andx ­ a (atomic units are used for all numerica
values and figures, whereas the analytical expressions
valid for any system of units, so that̄h will be kept
explicitly in quantum equations). Initiallyst ­ 0d, the
ensemble is prepared to the left of the potential a
with a negligible probability of negative momenta. Th
momentum of one particle along its trajectory,pstd, can
only be smaller than or equal to the initial one,ps0d, plus
the momentumpy due to the possible conversion from
potential to kinetic energy,

py ­

Ω
s22mVmind1y2 if Vmin , 0 ,
0 otherwise,

(1)

where Vmin is the minimum value ofV sxd. Thus, as
a consequence of energy conservation, the accumul
© 1998 The American Physical Society 2621
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(3)
probability of momenta abovep 1 py at time t . 0
cannot exceed the initial accumulated probability abovep,

Gclsp, td ;
Z `

p
hPsp0 1 py , td 2 Psp0, 0dj dp0 # 0 ,

(2)

wherePsp0, td ;
R`

2` fsx, p0; td dx. Quantally, however
a similar bound cannot in general be established. We
study below examples where the quantity

Gqsp, td ;
Z `

p
hjcsp0 1 py , tdj2 2 jcsp0, 0dj2j dp0

takes on positive values. Figure 1 showsjcsp, tdj2 and
jcsp, 0dj2 as functions ofp, for a timet ­ 2.5 during the
collision of a Gaussian wave packet,

csp, 0d ­

µ
2d2

p h̄2

∂1y4

e2is p2pcdxcy h̄e2s p2pcd2d2yh̄2

, (3)

with an infinite wall (see the figure caption for details).
this casepy ­ 0. The enhancement can be observed
momenta larger thanp . 20.6 (for d ­ 2), or larger than
p . 21.3 (for d ­ 1), where the momentum distribution
of the wave packet at timet are above the initial distribu
tions. Consequently, the accumulated increments of no
Gqsp, td, for t ­ 2.5, have a maximum atp . 20.6 (for
d ­ 2), and atp . 21.3 (for d ­ 1), as can be seen i
Fig. 2, where a contour plot of the positive part ofGqsp, td
is represented as a function ofp and t for the same col-
lisions examined in Fig. 1. Dimensional analysis sho
that oncexcyd is fixed, the maximum value ofGq can de-
pend only onpcdyh̄. In Table I the maximum value o
Gq is given for several values ofpcdyh̄ corresponding to
xcyd ­ 225, which is the value used in Figs. 1 and 2 f
d ­ 2.
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FIG. 1. jcsp, tdj2 (dashed line) at time t ­ 2.5, and
jcsp, 0dj2 (solid line), vs momentum, as given by Eqs. (8) a
(3), respectively, withpc ­ 20, xc ­ 250, and several value
of d, indicated in the figure.
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An important element of the effect apparent in Fig.
is its transitory nature. It disappears before and a
the collision. Initially, Gqsp, t ­ 0d ­ 0, whereas as
t ! `,

jcsp, t ! `dj2 # jcsp, t ­ 0dj2 sp . 0d , (4)

since theS matrix commutes with the kinetic energ
operator, and the probability of finding momentump or
2p sp . 0d is conserved from the initial to the fina
asymptotic states,

jcsp, t ! `dj2 1 jcs2p, t ! `dj2 ­ jcsp, t ­ 0dj2

sp . 0d . (5)

The inequality of Eq. (4) implies thatGqsp, td tends to a
nonpositive value ast ! `.

We have also noticed this effect in collisions wit
different potentials, with and without discontinuitie
local or nonlocal, with finite or infinite support, tha
can be studied analytically (the delta function and se
rable potentials), or numerically (Gaussian potenti
and “square” barriers). Significant values ofGq can be
achieved (Gq . 0.05 in Fig. 2). In fact we shall argue
that the effect is a universal feature of all collisions.
origin can be traced back to the building blocks of t
time-dependent wave packet, the stationary wave fu
tions jp01l. These are non-normalizable solutions
the Schrödinger equation corresponding to energyEp0 ­
p02y2m, an incoming plane wavekxjp0l ­ h21y2 exp3

sip0xyh̄d, and outgoing boundary conditions for the sca
tered wave. In coordinate representation, if the poten
V sxd is restricted to the spatial intervalf0, ag, the state
jp01l can be written as
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FIG. 2. Contour plot of the positive part ofGqsp, td vs
time and momentum, for an initial Gaussian wave packet
characterized bypc ­ 20, xc ­ 250, and d ­ 1 (solid lines)
or d ­ 2 (dashed lines).
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TABLE I. Maximum of Gq as a function of the dimensionless productpcdyh̄ for xcyd ­ 225.

pcdyh̄ 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

maxsGqd 0.009 0.022 0.032 0.040 0.045 0.049 0.052 0.055 0.0

kxjp01l ­

8><>:
h21y2feip0xy h̄ 1 Rsp0de2ip0xy h̄ g, if x , 0 ,
h21y2T sp0deip0xy h̄, if x . a ,
xsp0, xd, if 0 , x , a ,

(6)

whereRsp0d andT sp0d are, respectively, the reflection and transmission amplitudes, andxsp0, xd is the solution in the
interaction region. The Fourier transform ofkxjp01l is given by the following distribution:

kpjp01l ­
1
2

f1 1 T sp0deis p2p0day h̄gdsp 2 p0d 1
i

2p
f1 2 T sp0deis p2p0day h̄gP

µ
1

p 2 p0

∂
1

1
2

Rsp0d
∑

dsp 1 p0d 1
i
p

P

µ
1

p 1 p0

∂∏
1 x̃sp0, pd , (7)
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where P denotes the Cauchy principal value. Th
principal value termP f1ysp0 2 pdg has a long tail that
extends to infinity from the critical pointp ­ p0, and
the termx̃sp0, pd ; h21y2

Ra
0 xsp0, xdeipxy h̄ dx behaves,

for nonvanishingxsp0, xd, asp21 when p ! `. These
tails, which do not in general cancel each other, lead
nonzero amplitudes for classically forbidden values ofp.
Contrast this with a stationary flux of classical particl
with incident momentump0. In the classical context ther
cannot be momenta abovep0 1 py. Even though the
equation (7) justifies the universality of the effect [1],
represents a stationary state, so it cannot describe its
dependence and transient nature.

To illustrate and analyze the effect in the time-depend
case, we shall turn back to the simple example of Figs
and 2. The temporal evolution of the wave function
momentum representation can be written in terms ofw
functions [2] as

csp, td ­
1
2

µ
2d2

p h̄2

∂1y4

exp

Ω
ipcxc

h̄
2

p2
cd2

h̄2 1
b2

4a

æ
3 fwsz1d 2 wsz2dg , (8)

wherewszd ; e2z2
erfcs2izd, and

z6 ; fp 6 by2ag
p

2a , (9)

b ; 2pcd2yh̄2 2 ixcyh̄ , (10)

a ; 2ity2mh̄ 2 d2yh̄2. (11)

Each collision can be defined by the parameterspc, xc,
andd, and studied asp andt vary, by analyzing a contou
plot of Gqsp, td, as in Fig. 2. Even thoughGq is the
quantitative measure of the effect, it involves in gene
multiple integrals, also for analytical models, that ma
the prediction of its value or simple approximated analy
cumbersome. The characterization of the enhancem
o

e

t
1

l

s
nt

can be simplified by considering the ratioh ; jcsp, tdj2y
jcsp, 0dj2, between the momentum distributions with an
without potential barrier. Unlesspc is very low, we are
interested in momentap wherewsz2d represents only a
small correction towsz1d, and can be neglected. Usin
Eqs. (3) and (8) one obtains

hsz1d ­
1
4

Ç
wsz1d

exps2z2
1d

Ç2
­

1
4

j erfcsz1dj2. (12)

In other words, the ratioh has been reduced to the squa
modulus of the complementary error function computed
z1, a dimensionless quantity that depends on the varia
p, t, and the parameterspc, xc, and d; see (9). This
enables us to study the effect by drawing the contour p
of the functionhszd in the complexz plane sssin Fig. 3
using log10fhszdgddd, and following the “trajectory” ofz1

as one of the variables or parameters of interest var
Prominent features of the log10fhszdg function are two hills
at right and left, a plateau around the negative imagin
z axis, and a valley for positive imaginaryz. For a given
initial wave packet,z1 can be represented asp varies, for
different (fixed) values oft. This is a family of straight
lines. In Figs. 3(a) (ford ­ 1) and 3(b) (ford ­ 2) (see
also the corresponding contour plots ofGq in Fig. 2), these
lines are drawn for times before, during, and after t
collision, and forp betweenpc 2 3h̄yd andpc 1 3h̄yd.
Note that before the collision (bottom line),h ­ 1, and
after the collision (top line),h . 0, because the transition
from p to 2p has been completed, whereash can take
on large positive values during the collision (middle line
The value ofp whereGqsp, td is maximum, for a given
value of time, can be read from the cut between the l
z1spd (for p . pc) and the contour level log10shd ­ 0.
This is the point where the two distributions coincide; s
2623
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FIG. 3. Contour plot of log10fhszdg. Three curvesz1std for
p ­ pc 2 3h̄yd (left), p ­ pc (middle), andp ­ pc 1 3h̄yd
(right) are represented by solid circles for the wave packet
with pc ­ 20, xc ­ 250 and (a)d ­ 1 or (b) d ­ 2. Empty
circles representz1spd for times before collision (bottom)
t ­ 2.5 (middle), and after collision (top). The circles a
drawn everyDp ­ 0.5.

also Fig. 1. The maximum is shifted to lower mome
whend increases, as confirmed in Fig. 2.

Alternatively, z1 can be drawn ast varies, for fixed
values ofp. Figures 3(a) and 3(b) show curvesz1std
for p ­ pc and p ­ pc 6 3h̄yd. The latter “explore”
regions of thez plane whereh is larger than for the centra
momentum.

The presence ofw functions (and related “compleme
tary error functions” or “Moshinsky functions” [3]) is b
2624
8)

a

no means a peculiarity of this model. In fact these fu
tions may be considered as the elementary propaga
of the Schrödinger transient modes [4], and therefore
type of analysis just performed can be extended to m
complex cases [5,6].

This momentum enhancement is not related to cer
effects that involve “anomalously high velocities.” In r
cent years there has been much discussion and controv
about the propagation of evanescent waves. Meas
ments of “superluminal” velocities have been reported
photons [7], and similar effects were predicted and st
ied for particles in collisions involving tunneling acros
opaque barriers by Hartman [8]. The Hartman effect c
be described by considering only the asymptotic regim
(before and after the collision) and comparing average p
sage times for the incident wave packet with the act
transmitted wave packet [9,10]. The latter is advanced
particular its peak) with respect to the former, but no e
hancement of the momentum distribution similar to t
one depicted in Fig. 1 takes place asymptotically. T
effect described in this Letter and the anomalously h
velocities reported in evanescent wave conditions are
connected to each other (although trying to find a p
sible link was our original motivation). The enhanc
ment effect is universal and does not require evanes
conditions. A second asymptotic effect also unrelated
the one discussed in this Letter is the acceleration
the transmitted wave packet suffers because of the “fil
ing” of the potential barrier. The transmission coefficie
jT spdj2 favors the passage of higher momentum com
nents so that the average of the momentum distributio
the transmitted packet is usually shifted to larger valu
than the original one. However, because of the asym
totic kinetic energy conservation, Eq. (5), the moment
distribution itself jcsp, tdj2, cannot exceed the origina
curvejcsp, 0dj2.

In spite of being a transient effect, the enhancemen
high momenta is in principle measurable, for example,
suddenly switching the potential off during the collisio
and analyzing the resulting momentum distribution as
Ref. [11]. In the sudden limit, the momentum distributio
remains unaltered by the change of the Hamiltonian, fr
t0 to t1 [12]. The condition of validity of the sudden
approximation isT ø h̄yDH, whereT ; t1 2 t0 is the
switching time,H is the time average of the Hamiltonia
during the intervalst0, t1d, and DH is calculated for the
state of the system att0 [12]. The experiment may
be implemented with ultracold atoms colliding with
potential barrier created by a laser beam [13,14]. T
switching times (,0.5 ms) and atomic velocities (,mmys)
recently achieved would allow one to satisfy the abo
condition.

We acknowledge A. M. Steinberg for useful discussio
about the possible experimental verification of the effe
Support from Gobierno de Canarias (Grant No. PI2/95
also acknowledged.
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