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Collisional Transitory Enhancement of the High Momentum Components
of a Quantum Wave Packet
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A classically forbidden, transitory enhancement of the high positive momentum components of a
quantum wave packet during its collision with a potential barrier is described. A quantity is defined to
measure its importance; the universality of the effect is justified, and its main features are studied with
the aid of an analytically solvable model. Its relation to other “anomalously high velocities” is also
examined. [S0031-9007(98)07182-8]

PACS numbers: 03.65.Nk, 03.65.Bz

Quantum mechanics may be cast asavetheory. The transition state” are but observations of reactive systems in
“classically forbidden effects,” such as tunneling, interfer-the midst of a collision. Irrespective of being observed or
ences, or the discretization of allowed values of certaimot, the collisional regime has to be understood to ascer-
observables, which are frequently regarded as distinctiviin, and eventually control, the mechanisms leading to the
signatures of quantum mechanics, are in fact common eldinal products.
ments of all wave phenomena, classical or quantum. The The simplest version of the effect implicates a one
counterintuitive and nonclassical aspects of these effectzarticle wave packet colliding with a potential barrier in
are revealed when the comparison is made instead with ttene dimension, but the enhancement is also present in
behavior of classicgparticles This comparison is legiti- more general collisions. Let us consider an ensemble of
mate since, behind the wave framework, quantum theorglassical particles of mass in one dimension, described
deals with particles, according to Born’s interpretationalby the phase space distribution functigiix, p; ), that
postulate of the wave function. collide with a potentialV/ (x), bounded from below, which

The aim of this Letter is to disclose and analyze onewe assume for simplicity to be nonzero only between
of such classically forbidden effects that has remained ese = 0 andx = a (atomic units are used for all numerical
sentially unnoticed in spite of being a universal feature ofvalues and figures, whereas the analytical expressions are
all scattering events: It is the transient, classically forbid-valid for any system of units, so that will be kept
den, collisional enhancement of high momentum compoexplicitly in quantum equations). Initiallyz = 0), the
nents of a wave packet. Such a long disregard (we do n@nsemble is prepared to the left of the potential and
know of any work devoted to its description or study) maywith a negligible probability of negative momenta. The
seem surprising after almost a century of scrutiny of quanmomentum of one particle along its trajectop/t), can
tum effects. The reason is surely related to an old andnly be smaller than or equal to the initial ong), plus
persistent prejudice that emphasizes the role of scattethe momentump, due to the possible conversion from
ing theory as a link between asymptotic regimes, well bepotential to kinetic energy,
fore and well after the interaction is effective, and views (—2m Vi)V fV. <0
the processes during the collision itself as irrelevant, be- Py = { 1Y min T Vinin ’ Q)

p T 0 otherwise
cause “they cannot be observed.” This is not true anymore.
Modern pulsed lasers allow one to probe the wave-packethere Vy,;, is the minimum value ofV(x). Thus, as
dynamics, and techniques such as the “spectroscopy of ttee consequence of energy conservation, the accumulated
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probability of momenta above + p, at time: >0 An important element of the effect apparent in Fig. 2
cannot exceed the initial accumulated probability abpye is its transitory nature. It disappears before and after
the collision. Initially, G4(p,r = 0) = 0, whereas as

GW%ﬁEf{Hﬂ+pmﬂ—HﬂwMﬂS0, =,
’ @ W=Dl = =0P (>0, @)

% [ h [ ith the kineti
whereP(p',1) = [, f(x, p':1)dx. Quantally, however, since theS matrix commutes with the kinetic energy

o A . .operator, and the probability of finding momentymor
;33?;It?étojsvugfaﬁggJchgefg(fﬂzl gja?]st;[;bllshed. We W'IB p (p > 0) is conserved from the initial to the final

asymptotic states,

Gi(p.1) = fw{lw(p' + pe P = W 0P W= 2P+ W(pr = ) = lg(p.r = OF
’ (p>0). (5)

The inequality of Eq. (4) implies tha&¥4(p, r) tends to a
nonpositive value as— <.

We have also noticed this effect in collisions with
different potentials, with and without discontinuities,
local or nonlocal, with finite or infinite support, that
can be studied analytically (the delta function and sepa-
with an infinite wall (see the figure caption for details). In rable potentials), or numerically (Gaussian potentials
this casep, = 0. The enhancement can be observed forand “square” barriers). Significant values Gf can be
momenta larger thap = 20.6 (for 6 = 2), or larger than  achieved G¢ > 0.05 in Fig. 2). In fact we shall argue
p = 213 (for § = 1), where the momentum distributions that the effect is a universal feature of all collisions. Its
of the wave packet at timeare above the initial distribu- origin can be traced back to the building blocks of the
tions. Consequently, the accumulated increments of normime-dependent wave packet, the stationary wave func-
Gi(p,1), for t = 2.5, have a maximum gb = 20.6 (for  tions |p’*). These are non-normalizable solutions of
6 =2), and atp = 21.3 (for 6 = 1), as can be seen in the Schrédinger equation corresponding to endrgy—

Fig. 2, where a contour plot of the positive part®f(p.1)  52/2;, an incoming plane wavéx|p’y = h~1/2 expx
is represented as a function pfand: for the same col- (;»/x/n), and outgoing boundary conditions for the scat-
lisions examined in Fig. 1. Dimensional analysis showsered wave. In coordinate representation, if the potential

that oncer. /4 is fixed, the maximum value a¥ can de- v (x) is restricted to the spatial intervild, «], the state
pend only onp.§/A. In Table | the maximum value of |,/*) can be written as

G1 is given for several values of.8 /i corresponding to
x./8 = —25, which is the value used in Figs. 1 and 2 for
6 =2.

takes on positive values. Figure 1 shols p,)|*> and
l¢(p,0)|* as functions of, for a timer = 2.5 during the
collision of a Gaussian wave packet,

2

2 1/4 . 292 2
Y (p,0) = ( ) e {p=poxe/ B g =(p=pc)8*/h . (3
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FIG. 1. |¢(p,t)|* (dashed line) at timer =25, and FIG.2. Contour plot of the positive part o4(p,t) vs
l#(p,0)|? (solid line), vs momentum, as given by Egs. (8) andtime and momentum, for an initial Gaussian wave packet (3)
(3), respectively, withp. = 20, x. = —50, and several values characterized by, = 20, x. = —50, and§ = 1 (solid lines)

of &, indicated in the figure. or 6§ = 2 (dashed lines).
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TABLE I. Maximum of G¢ as a function of the dimensionless prodpet /% for x./6 = —25.
p.O/h 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
maxG1?) 0.009 0.022 0.032 0.040 0.045 0.049 0.052 0.055 0.056
h='2[e/T + R(phe= "), if x <0,
xlp™y =1 =121 (p')eir*/h, if x >a, (6)
/\/(pl7x)s if0<x<a,

whereR(p’) andT(p’) are, respectively, the reflection and transmission amplitudesyépd x) is the solution in the
interaction region. The Fourier transform(afp’*) is given by the following distribution:

1 . i o 1
(plp"y = S [+ T(pNe' "= 3(p — p') + S—[1 = T(phe'” ”)“/ﬁ]ﬂ’< />
7 p-p

+ %R(p’)[ﬁ(p +p) + ii”<

where P denotes the Cauchy principal value.

extends to infinity from the critical poinp = p/, and

the termg (p’, p) = h='/2 [§ x(p’, x)e'?*/" dx behaves,
for nonvanishingy(p’,x), asp~! whenp — «. These

p+p

1 )} + x(p'p), (7)

|
The can be simplified by considering the ratio= |(p,1)|>/
principal value termP[1/(p’ — p)] has a long tail that

l¢s(p,0)|?, between the momentum distributions with and
without potential barrier. Unlesg. is very low, we are
interested in momenta wherew(z—) represents only a
small correction tow(z+), and can be neglected. Using

tails, which do not in general cancel each other, lead td&gs. (3) and (8) one obtains

nonzero amplitudes for classically forbidden valuegof
Contrast this with a stationary flux of classical particles wi(z+) 1 )

with incident momentunp’. In the classical context there exp—z) | 4 lerfolz )" (12)
cannot be momenta above + p,. Even though the

equation (7) justifies the universality of the effect [1], it | other words, the ratia) has been reduced to the square
represents a stationary state, so it cannot describe its tiMgodulus of the complementary error function computed at

dependence and transient nature. _ z+, a dimensionless quantity that depends on the variables
To llustrate and analyze the effectmthetlme—dependenﬁ t, and the parameterg., x., and 8; see (9). This

case, we shall turn back to the simple example of Figs. tnaples us to study the effect by drawing the contour plot
and 2. The temporal evolution of the wave function ingf the function(z) in the complexz plane (in Fig. 3

momentum representation can be written in termsvof using log,[7(z)]), and following the “trajectory” ofz .
functions [2] as as one of the variables or parameters of interest varies.

n(z4) = % ’

1/282\1/4 ipexe  pio? b2 Pro_minent features of the Igd n(z)] function are two hiII_s
b(p,t) = 5<?> eXp{T — Tt 4—} at right and left, a plateau around the negative imaginary
. a z axis, and a valley for positive imaginary For a given
X [w(z4) — wlz-)], (8) initial wave packetz can be represented asvaries, for
wherew(z) = e~ erfd—iz), and different (fixed) values of. This is a family of straight
' lines. In Figs. 3(a) (fob = 1) and 3(b) (for6 = 2) (see
ze =[p * b/2alV~-a, (9)  also the corresponding contour plots@f in Fig. 2), these
b =2p.8%/K* — ix./h, (10) lines are drawn for times before, during, and after the
. - collision, and forp betweenp. — 374/6 andp,. + 3h/6.
a = —it/2mh — §°/h". (11)  Note that before the collision (bottom liney, = 1, and

Each collision can be defined by the parametersx.,  after the collision (top line)y = 0, because the transition
andé, and studied ap andr vary, by analyzing a contour from p to —p has been completed, whereascan take
plot of G4(p,t), as in Fig. 2. Even thougl&;? is the  on large positive values during the collision (middle line).
guantitative measure of the effect, it involves in generalThe value ofp whereG9(p, r) is maximum, for a given
multiple integrals, also for analytical models, that makevalue of time, can be read from the cut between the line
the prediction of its value or simple approximated analysis +(p) (for p > p.) and the contour level lqg(n) = 0.
cumbersome. The characterization of the enhancemeithis is the point where the two distributions coincide; see
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no means a peculiarity of this model. In fact these func-
tions may be considered as the elementary propagators
of the Schrodinger transient modes [4], and therefore the
type of analysis just performed can be extended to more
complex cases [5,6].

This momentum enhancement is not related to certain
effects that involve “anomalously high velocities.” In re-
cent years there has been much discussion and controversy
about the propagation of evanescent waves. Measure-
ments of “superluminal” velocities have been reported for
photons [7], and similar effects were predicted and stud-
ied for particles in collisions involving tunneling across
opaque barriers by Hartman [8]. The Hartman effect can
be described by considering only the asymptotic regimes
(before and after the collision) and comparing average pas-
sage times for the incident wave packet with the actual
transmitted wave packet [9,10]. The latter is advanced (in
particular its peak) with respect to the former, but no en-
hancement of the momentum distribution similar to the
one depicted in Fig. 1 takes place asymptotically. The
effect described in this Letter and the anomalously high
velocities reported in evanescent wave conditions are not
connected to each other (although trying to find a pos-
sible link was our original motivation). The enhance-
ment effect is universal and does not require evanescent
conditions. A second asymptotic effect also unrelated to
the one discussed in this Letter is the acceleration that
the transmitted wave packet suffers because of the “filter-
ing” of the potential barrier. The transmission coefficient
|T(p)|?* favors the passage of higher momentum compo-
nents so that the average of the momentum distribution of
the transmitted packet is usually shifted to larger values
than the original one. However, because of the asymp-
totic kinetic energy conservation, Eq. (5), the momentum
distribution itself [¢(p, t)|?, cannot exceed the original
curve|y(p,0)]?.

In spite of being a transient effect, the enhancement of

Re (2) high momenta is in principle measurable, for example, by

FIG. 3. Contour plot of log[n(z)]. Three curves,(r) for ~ Suddenly switching the potential off during the collision

p = p. — 3h/6 (left), p = p. (middle), andp = p. + 3i/6  and analyzing the resulting momentum distribution as in

(right) are represented by solid circles for the wave packet (8Ref. [11]. In the sudden limit, the momentum distribution

‘(’:‘{'rt(':]el;v r=ep2r(e)z§ iy (_ﬁofgp%ﬁgéz :bei‘o?;(gélfisi:or% (t')foq‘tg%) remains unaltered by the change of the Hamiltonian, from

t = 2.5 (middle), +arjlpd after collision (top). The circles are o 10 n [12.]' The condition of validity of the §udden

drawn everyAp = 0.5. approximation isT < /i/AH, whereT = 1| — t, is the
switching time,H is the time average of the Hamiltonian
during the interval(t, t;), and AH is calculated for the
state of the system afy [12]. The experiment may

also Fig. 1. The maximum is shifted to lower momentabe implemented with ultracold atoms colliding with a

whené increases, as confirmed in Fig. 2. potential barrier created by a laser beam [13,14]. The

Alternatively, z+ can be drawn as varies, for fixed switchingtimes{0.5 us)and atomic velocities{mm/s)
values of p. Figures 3(a) and 3(b) show curves(r)  recently achieved would allow one to satisfy the above
for p = p. andp = p. = 31/8. The latter “explore” condition.
regions of the; plane wherey is larger than for the central ~ We acknowledge A. M. Steinberg for useful discussions
momentum. about the possible experimental verification of the effect.

The presence o functions (and related “complemen- Support from Gobierno de Canarias (Grant No. PI2/95) is
tary error functions” or “Moshinsky functions” [3]) is by also acknowledged.

(a) 10

(b)

Im (2)

2624



VOLUME 81, NUMBER 13 PHYSICAL REVIEW LETTERS 28 BPTEMBER1998

[1] A principal part is always present in the momen- [7] A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Phys. Rev.
tum representation of the scattered wave of the Lett. 71, 708 (1993).
Lippmann-Schwinger equation, which is the basic [8] T.E. Hartman, J. Appl. Phy3, 3427 (1962).
framework for all scattering processes, regardless of the[9] S. Brouard, R. Sala, and J.G. Muga, Phys. Rev4®

dimensionality. 4312 (1994).

[2] M. Abramowitz and I.A. StegunHandbook of Mathe- [10] V. Delgado and J.G. Muga, Ann. Phys. (N. Y248 122
matical FunctiongDover, New York, 1972). (1996).

[3] M. Moshinsky, Phys. Rew84, 525 (1951). [11] M. Raizen, Ch. Salomon, and Q. Niu, Phys. Tod¥y

[4] H.M. Nussenzveig, inSymmetries in Physicgdited by No. 7, 30 (1997).
A. Franck and K. B. Wolf (Springer-Verlag, Berlin, 1992), [12] A. Messiah,Quantum MechanicéNorth-Holland, Amster-
p. 293. dam, 1961), Vol. 2.

[5] J.G. Muga, G.W. Wei, and R.F. Snider, Ann. Phys. [13] P. Szriftgiser, D. Guéry-Odelin, M. Arndt, and J. Dalibard,
(N.Y.) 252 336 (1996). Phys. Rev. Lett77, 4 (1996).

[6] S. Brouard and J. G. Muga, Phys. Rev5A, 3055 (1996). [14] A.M. Steinberg, Superlattices Microstru@s, 823 (1998).

2625



