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Entanglement, Elasticity, and Viscous Relaxation of Actin Solutions
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We have investigated the viscosity and the plateau modulus of actin solutions with a magnetically
driven rotating disk rheometer. For entangled solutions we observed a scaling of the plateau modulus
versus concentration with a power of 7y5. The measured terminal relaxation time increases with a
power 3y2 as a function of polymer length. We interpret the entanglement transition and the scaling of
the plateau modulus in terms of the tube model for semiflexible polymers. [S0031-9007(98)07135-X]

PACS numbers: 87.15.Da, 61.25.Hq, 83.50.Fc
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Networks of semiflexible macromolecules are majo
constituents of biological tissue. There is experimen
tal evidence [1–4] that certain aspects of biologicall
important macromolecules, such as DNA and acti
are well described by the minimal theoretical mode
of a semiflexible macromolecule, also known as th
wormlike chainmodel. This model represents the poly
mer as a smooth inextensible contour with an energ
cost for bending and includes ideal flexible chains a
a limiting case. The bending modulus of the singl
molecule can be expected to be constitutive also for t
collective mechanical properties of gels and sufficientl
concentrated solutions of semiflexible polymers. (Re
cently, possible contributions from twist have also bee
discussed [5].) However, very little is known about how
semiflexible polymers build up statistical networks an
how the macroscopic stresses and strains are media
to the single molecules in such networks. This is als
known as theentanglement problem. In this Letter, we
report on experiments performed with a magnetical
driven rotating disk rheometer, which elucidate som
important aspects of the entanglement problem. Th
systems under scrutiny arein vitro polymerized actin
solutions of various concentrationsc and average polymer
lengthsL. Actin [6] forms large semiflexible polymers
with a persistence length,p of about17 mm [7,8] (com-
parable to typical filament lengths in our experiments
and is the most abundant cytoskeletal element in mo
eucariotic cells. We have analyzed the transition from
the dilute to the semidilute phase (the entangleme
transition) as a function of polymer length and concen
tration. The data can be interpreted in terms of a viria
expansion for effective “tubes.” For entangled solution
we observed a scaling of the plateau modulusG0 versus
actin concentrationc. This is compared with various
theoretical predictions [9–14]. Lastly, we analyzed th
dependence of the zero shear rate viscosity on polym
length, which exhibits a much weaker length dependen
than one would expect theoretically from work by Odijk
[9] and Doi [15].

Actin was prepared as previously described [16] an
purified in a second step using gel column chromato
4 0031-9007y98y81(12)y2614(4)$15.00
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raphy (Sephacryl S-300). Monomeric actin (calle
G-actin) was kept in G-buffer, consisting of 2 mM Imi
dazol (pH 7.4), 0.2 mM CaCl2, 0.2 mM DTT, 0.5 mM
ATP, and 0.005 vol % NaN3. Polymerization was ini-
tiated by adding 1y10 of the sample volume of 10-fold
concentrated F-buffer containing 20 mM Imidazol (pH
7.4), 2 mM CaCl2, 1 M KCl, 20 mM MgCl2, 2 mM DTT,
and 5 mM ATP. Gelsolin was prepared from bovin
plasma serum according to Ref. [17] and stored dissolv
in G-buffer at 4±C for several weeks. The purity of the
proteins was checked by SDS-PAGE (sodium dode
polyacrylamide gel electrophoresis). After staining wi
coomassie blue [18] only one single band was detect
The mean length of actin filaments was adjusted
adding gelsolin to G-actin before initiating polyme
ization. According to results by Janmeyet al. [19] we
computed the average actin length from the molar ra
rAG of actin to gelsolin asL smmd ­ rAGy370. All mea-
surements were done at room temperatures20 6 0.1d ±C.
Both oscillatory and creep experiments were perform
with a magnetically driven rotating disk rheometer,
described previously [16]. Care was taken to keep
strain below 1% to probe linear response. For oscillato
measurements the phase shift between exciting fo
and observed oscillation and the response amplitu
were recorded. From these two parameters the dyna
storage and loss modulus (real and imaginary parts of
stress amplitude divided by the strain amplitude) we
obtained for frequenciesvy2p ­ 1024 to 101 Hz. The
creep complianceJstd was obtained for timest ­ 1021

to 104 s by applying a sudden step force to the sam
and recording its strain, which is proportional toJstd.
In both cases the apparatus was calibrated with pur
viscous liquids of known viscosities. A quantitativ
measure for the elastic character of a material is the ph
shift. In the limiting case of a purely elastic medium
the phase shift is zero; in the opposite case of a pur
viscous liquid the phase shift ispy2. Consequently, the
sample behaves most rubberlike when the phase s
becomes minimal. Therefore, in oscillatory experimen
with actinygelsolin the value of the storage modulus
the frequency corresponding to the minimum phase s
© 1998 The American Physical Society
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FIG. 1. The plateau modulus above the entanglement tran
tion as a function of polymer length for constant monomeri
actin concentrationc ­ 1.0 mgyml. The solid line corresponds
to Eq. (2) with j1 ­ 0.38. The increase ofG0 for large L is
not yet fully understood.

was identified as theplateau modulusG0. For actin
samples without gelsolin, where no minimum in the
phase could be observed within the measured frequen
range, the storage modulus at a fixed frequency in t
plateau regime was taken asG0. This does not affect
the functional form ofG0scd but its absolute value. (As
a consequence, the vertical shift between the two da
sets shown in Fig. 3 has no physical significance.) F
the circles in Fig. 2,G0 was determined by the minimum
phase prescription at the highest concentration on
whereas relative shifts ofG0 at lower concentrations
were determined by rescaling to superimpose the modu
The zero shear rate viscosityh0 was obtained from
measurements of the creep complianceJstd according
to h

21
0 :­ limt!` Jstdyt [20]. From creep experiments

we extracted the frequency dependent moduli (to obta
G0 for Fig. 1) as described in Ref. [21]. It was checke
that the results agree well with corresponding oscillato
measurements [21].

Figures 1, 2, and 3 show the plateau modulusG0 as
a function of filament lengthL and actin concentration
c, respectively. The data in Fig. 1 clearly indicate
transition with increasing length of polymers. Simila
results also have been obtained by Janmeyet al. [22]
recently. At first sight, one might be tempted to attribut
this transition to the mutual steric hindrance in a solutio
of rods at the overlap concentration. The observe
transition is indeed in a parameter regime, where th
polymer lengthL is not much larger (about a factor of
5) than the mesh sizejm, and we originally attempted to
interpret the data this way. Some more thought sugges
however, that there is no transition expected for th
plateau modulus of stiff rods; a sudden increase in th
shear modulus near the overlap concentration would n
be in accord with the virial expansion for the osmoti
pressure of rods [23], which predicts a smooth dependen
on c andL below the nematic transition. One can hardl
imagine the shear modulus of a semidilute solution o
rods to be larger than the osmotic compression modulu
The solution could easily escape the shear stress by lo
compression. On the other hand, the actin solutions
si-
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FIG. 2. The plateau modulus near the entanglement transiti
as a function of polymer concentration for short rodlike acti
filaments (L ­ 1.5 mm). Two different methods were used to
extract G0 from the data (see main text). Also shown is the
theoretical prediction, Eq. (2) forj1 ­ 0.47. Theoretically the
transition is expected atcp ­ 0.68 mgyml.

our experiments were below the critical concentration fo
the nematic transition [24,25]. We can thus conclude th
the observed sudden increase (Fig. 1) and the enhan
concentration dependence (Figs. 2 and 3) ofG0 above a
certain threshold are related to the semiflexible nature
actin filaments. Their persistence length of about17 mm
[7,8], albeit much larger than the typical mesh sizejm .
0.1 1 mm of the studied networks, cannot be assume
to be infinitely large. Otherwise the data would have t
obey the prediction of the classical theory for dilute an
semidilute rods [26]

G0 ­ 3nkBTy5 . (1)

Here n ­ 3yj2
mL is the polymer number density. It is

not conceivable that the sudden steep increase ofG0 with
polymer length is merely due to internal modes ofsingle
polymers neglected in the theory for stiff rods

FIG. 3. Concentration dependence of the plateau modulus
pure actin (h) and actin with a small amount of gelsolin
(rAG ­ 6000:1) corresponding to an average actin filamen
length L ­ 16 mm (e). The straight lines indicate the power
7y5 corresponding to the scaling limit of Eq. (2) withj1 ­
0.40 andj1 ­ 0.46, respectively.
2615
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Instead we are forced to look for acooperative effect.
In the following we attempt to give a simple interpreta
tion of our observations based on the tube concept
semiflexible polymers developed theoretically by Odij
[9] and Semenov [10] and related to the shear modu
by Isambert and Maggs [12], recently. Experimentall
it has been demonstrated by videomicroscopy that
semidilute actin solutions the filaments are confined
tubelike cages [27]. These cages severely hinder not o
transverse and rotational motions but also undulatio
on length scales larger than a certain lengthLe, called
deflection lengthor entanglement length. Using the
wormlike chain free energy one can relateLe to the tube
diameterd by L3

e ­
p

2 d2,p [9,28]. On the time scale
of the plateau, modes of wavelength smaller thanLe are
already equilibrated. Hence, on this coarse grained tim
scale we can think of the polymer solution in terms o
an ensemble of tubes. If we apply a reasoning similar
that used for the osmotic pressure of dispersed rods [
to the plateau modulus ofdispersed tubesof lengthL and
diameterd, we can replace Eq. (1) by a virial expansion

G0 ­ s3y5dnkBT s1 1 2B2n . . .d . (2)

Here, B2 is the second virial coefficient for the tubes
Higher order terms are negligible for small volum
fraction of the tubes. (The latter turns out to be less th
0.1 in our case.) The productB2n counts the average
number of collisions of the tubes and can thus be used
define a collision lengthLc :­ Ly2B2n (always two tubes
are involved in a collision). According to Ref. [23] the
second virial coefficient is given by the excluded volum
B2 ­ pdL2y4 of a tube. However, to stay consisten
with our assumption that short wavelength modes ha
already relaxed, we subtract fromL half the collision
length at each end to account for the reduced efficien
of dangling ends in the entanglement process. The ab
relation between the second virial coefficient and th
collision length thus becomes

LyLc 2 1 ­ pndsL 2 Lcd2y2 . (3)

We can determine the still unknown tube diameterd
from the following consistency requirement. Followin
Onsager’s argument for the second virial coefficient w
have to pay a price in free energy of the order ofkBT
per lengthLc to add a new tube to the solution. On
the other hand, to suppress thermal undulations of wa
lengths larger thanLe the tube has to supply a con
finement energy of the orderkBTLyLe to the enclosed
polymer. Now, if we want the tube to be a pertinent e
fective representation of the medium surrounding a te
polymer in the entangled polymer solution, these tw
energies should be equal. We do not actually have
introduce a physical tube into the solution when addin
a polymer. Hence, for consistency we requireLc ; Le,
i.e., the number of mutual collisions of the tubes mu
equal the number of collisions of the polymers wit
their tubes. For entangled solutions we thus findG0 ­
2616
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mLe, where far from the entanglement transitio

Le andd take their asymptotic valuesLe ø 0.58j
4y5
m ,

1y5
p

and d ø 0.37j
6y5
m ,

21y5
p . The scaling behavior was pre

dicted by Isambert and Maggs [12] from a differe
reasoning before. We also note that it is included a
limiting case in a more detailed analysis concerned w
the calculation of the absolute value ofG0 [29]. The cor-
responding scalingG0scd ~ c7y5 of the plateau modulus
is indicated by the solid lines in Fig. 3. A much strong
concentration dependence—as predicted by a purely
chanical model [13] or by a model with thermodynam
buckling [11]—and the scaling predicted in [14] are n
in accord with our data. On the other hand, the agr
ment of Eq. (2) with the data seems to hold beyond t
scaling limit of strong entanglement. To relate the app
ent (theoretical) volume fraction to the nominal expe
mental actin concentrationc we introduce the symbolj1

for the apparent mesh sizejm (mm) of a solution with
c ­ 1 mgyml. Solving Eq. (3) we predict the entangle
ment transition to occur at a concentrationcp smgymld ­
7 3 21y4,

1y2
p j

2
1y3ps5Ly7d5y2 (weakly bending rod limit

assumed). The critical concentration is thus theoretica
by a factor ofcpyc̄ ø 2.0s,pyLd1y2 larger than the over-
lap concentration̄c. For the persistence length we a
sumed,p ­ 17 mm [7,8] for all our fits. The only free
parameter of the theoretical curves in Figs. 1, 2, and 3
thusj1. It was chosen asj1 ­ 0.38 for Fig. 1,j1 ­ 0.47
for Fig. 2, andj1 ­ 0.40y0.46 for the upperylower line in
Fig. 3, in reasonable agreement with the valuej1 ­ 0.35
obtained independently by fluorescence recovery a
photo bleaching [30]. The scatter in the value forj1

merely reflects the poor experimental reproducibility
absolute values ofG0 for F-actin solutions.

Simultaneously with the length dependence of t
plateau modulus shown in Fig. 1, we have measured
length dependence of the zero shear rate viscosityh0.
The latter is partly due to static effects, namely, the leng
dependence of the plateau modulus discussed above,
also to dynamics. Theterminal relaxation timetr , the
characteristic time scale at which a polymer solution b
gins to flow, can be obtained up to a numerical coefficie
from the viscosity viatr . h0yG0. Figure 4 presents
such data on the length dependence oftr . Data (not
shown) obtained directly from the frequency depende
viscoelastic moduli by the conditionG0s2pytrd ­ G0y2
or by ≠G00s2pytrdy≠v ­ 0 fall onto the same curve if
multiplied by numerical prefactors1.0 and 2.4 [21], re-
spectively. The mechanism for the terminal relaxati
seems obvious from the tube picture described abo
Viscous relaxation occurs only when the polymers ha
time to leave their tubelike cages by Brownian motio
along their axis. The reptation model that was origina
formulated for flexible polymers, was extended to sem
flexible chains by Odijk [9] and Doi [15]. They calcu
lated the disengagement timetd for a semiflexible chain
diffusing out of its tube. However, the data fortr in
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FIG. 4. Terminal relaxation time in the entangled phase f
constant actin concentrationc ­ 1.0 mgyml. The solid line
indicates the power3y2 and the dashed line is Eq. (4) with
a numerical prefactor of 0.10. The dot-dashed line is th
disentanglement time calculated by Odijk and Doi [9,15].

Fig. 4 are not in accord with their result fortd . The de-
pendence of the observed terminal relaxation timetr on
polymer lengthL is substantially weaker than predicte
for td , even in the stiff limit wheretd ­ ,pLy4Dk ~ L2

(dot-dashed line in Fig. 4),Dk ­ kBTy2phL being the
longitudinal diffusion coefficient of the chain in the free
draining approximation. Instead, the solid line in Fig.
corresponds to the scaling lawtr ~ L3y2.

A tentative interpretation of the data can be given
terms of a semiflexible polymer diffusing along a strictl
one dimensional path; i.e., not being allowed to choo
between infinitely many new directions at its ends. Th
characteristic decay time for self-correlations of the en
to-end vectorkRstdRl is then given by [28]

tR ­ L4,2
pyDkkR2l2 ø sL 1 2,pd2y4Dk . (4)

This presents an upper bound for the terminal relaxati
time within the tube model. As seen from the dashe
line in Fig. 4,tR (for ,p ­ 17 mm) is in fact by a factor
of 10 too large compared to the data but describes fai
well the length dependence oftr . The restriction to
one path implies a very slow decay of conformation
correlations [28]. An unusually slow decay of stress [th
frequency dependence ofG0svd is still less than linear in
the measured frequency range] is indeed observed, but
might also in part be due to the broad length distributio
of actin [19]. Clearly, further investigations are necessa
to come to a better understanding of the terminal regim

In summary, we were able to measure some importa
physical properties of semiflexible polymer solutions wit
a rotating disk rheometer. We investigated the plate
modulus and the zero shear rate viscosity of semidilu
actin solutions. At a certain concentrationcp larger than
the overlap concentration̄c an increase in the plateau
modulus was observed. We interpreted this entanglem
transition as well as the concentration dependence of
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plateau modulus in terms of a tube model that takes int
account the semiflexible nature of the molecules. Fo
strongly entangled solutions our data can be characteriz
by the scaling lawG0 ~ c7y5. We also found a power law
dependence of the terminal relaxation time on polyme
length tr ~ L3y2, which is substantially weaker than
predicted for the disengagement time by Odijk and Doi.
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