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We derive a tight upper bound for the fidelity of a univerdal— M qubit cloner, valid for any
M = N, where the output of the cloner is required to be supported on the symmetric subspace. Our
proof is based on the concatenation of two cloners and the connection between quantum cloning and
quantum state estimation. We generalize the operation of a quantum cloner to mixed and/or entangled
input qubits described by a density matrix supported on the symmetric subspace of the constituent
qubits. We also extend the validity of optimal state estimation methods to inputs of this kind.
[S0031-9007(98)07141-5]
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Perfect quantum cloning is impossible [1]. This output density operator is of the form°'' = %[1 +
notwithstanding, we may ask how well we can clonen(N,M)s™ - &]. Universal N — M quantum cloning
quantum states. Baek and Hillery, who were the first to machines may be constructed in many different ways;
address this problem, provided an example of a quanturiie best constructions are those which maximz&’, M)
device which can clone an unknown pure state of a singlé.e., which maximize the fidelity of the cloning machine)
input qubit (a two-state system) into two output qubits,and we refer to them as the optimal cloners.
albeit with a certain fidelity smaller than one [2]. Their Gisin and Massar have constructed a class of universal
construction was subsequently shown to be optimal byv — M QCMs and showed, using numerical methods,
Bruss et al.[3]. In this Letter we derive the optimal that forN = 7 their cloners are optimal [5]. Our deriva-
fidelity of a universal and symmetric quantum cloningtion of the upper bound fon (N, M) is quite general and
machine (QCM) which acts omv original qubits and does not refer to any specific realization of the universal
generated/ clones. cloning machines. In particular, it shows that the Gisin-

A universalN — M quantum cloner is a quantum ma- Massar cloners saturate this bound for ahgndM = N.
chine which performs a prescribed unitary transformatiorOur approach avoids an elaborate optimization proce-
on an extended input which contaiis original qubits, dure, extends the class of allowed inputs to mixed and/or
M — N “blank” qubits, andK auxiliary qubits, and which entangled states of the original qubits which belong to
outputs M clones together with th& auxiliary qubits. the symmetric subspace, and sheds some light on the
The original qubits are all in the same (unknown andconnection between optimal quantum cloning and opti-
pure) quantum state described by the density operatonal quantum state estimation. The proof is based on the
oin = %(1 + s - &), where 5" is the original Bloch concatenation of two quantum cloners and on associating
vector. Both “blanks” and the auxiliary qubits are ini- the upper bound on the fidelity of & — o cloner with
tially in some prescribed quantum state. The output qubitthe fidelity of the optimal state estimation #f qubits,
are in an entangled state and in the present work we regiven in [6].
quire that the density operator describing the state of the We concatenate two cloning machines in the following
M clones is supported on the symmetric subspace. Thiway. The first cloner is av — M universal machine
guarantees that all the output qubits are indistinguishableharacterized by the shrinking factef(N,M). The M
and in the same state described by the reduced density oplones from the output of the first cloner are then taken
eratorpo®. We comment on relaxing this assumption atas originals for the input into the second cloning machine
the end of the paper. which creates infinitely many clones with the shrinking

It has been shown thainiversall — 2 cloners can factor n(M,«). We now write down two statements
shrink only the original Bloch vector, without changing its which will be proved after unfolding the main result:
orientation in the Bloch sphere [3]. The same argumen(a) The shrinking factors for concatenated cloners mul-
as given in [3] (namely the impossibility to find a tiply. (b) The equality
transformation that rotatesny Bloch vector of the one-
particle reduced density matrix by the same angle) applies ngpctM(M, ) = 7Pt (M) Q)
also generally for anv — M qubit cloner. Therefore,
the operation of a universal QCM can be characterized byiolds. Here7 22! (M) corresponds to the optimal state
the shrinking factom (N, M), which is also known in the estimation derived in [6], and its meaning will be ex-
literature as the Black Cow factor [4], and the reducedplained below.

2598 0031-900798/81(12)/2598(4)$15.00 © 1998 The American Physical Society



VOLUME 81, NUMBER 12 PHYSICAL REVIEW LETTERS 21 BPTEMBER1998

Because of statement (a), the shrinking factors of uninot require that all valuea; are positive [4,8]. The lin-
versal cloning machines in sequence multiply. Moreovergarity of the completely positive map and its universality,
the sequence of the two machines cannot perform bettése., the fact thaty(N, M) does not depend o), allow
than the optimalv — o« universal cloner, otherwise the us to extend Eq. (7) to the more general form
N — o universal cloner would not be optimal. Thus we 1
arrive at the following inequality: Tryu—1[Cvu(en)] = n(N,M)o + [1 — n(N,M)] > 1,

nocm(N, M) - moem(M, ) = noem(N,®).  (2) (8)
This means that the lowest upper bound for the generqt,{,here 0 = Try_i[on].

5 Now, suppose we concatenate
N — M cloner is given by

opt an N— M and anM — L cloner and view it as an
noew(N, M) = NQcm(N, ) 3) N — L cloner. It evolves the initialV qubit statey
’ opt first into the M qubit statep,, and then into the. qubit

Noem (M, ) ' p . . ) .
o stateg;. The corresponding single qubit reduced density
We have thus reduced the optimality problem of the

op : operators ar@, ¢’ = Try—i[oy] ande” = Tr.—i[e[].
N — M cloner to the task of finding the optimal — oo Following Eq. (8) we can write

cloner.
Now we can use statement (b) and the explicit form of 0" = nM,L)o’ + [1 — n(M,L)] 1 1

7oPt (M) (see [6]), namely 3

—o M =n(N,M) - n(M,L)e

Tmeas(M) = 377> 4) 1
to conclude the central result that for ahy= N =W, M) - (M. D]51,  (9)

o Ny = M2 (5) e indeedy(N.L) = 5(N. M) - (M, L)
QeMAY MN+2° We will now prove statement (b). Equation (5) was

For pure input states this corresponds to the Optimaq)btained assuming the following result (due to [6]): given
fidelity M qubits all in an unknown quantum stdtg) there exists

NM + N + M a universal POVM measuremefr,,} [9] which leads to
FS%IM(N,M) = m (6) the best possible estimation pf) with fidelity F(M) =

M+1 . P M
i or, equivalently, withp(M) = 377-. The outcome
which is achieved by the cloning transformations pro-of each instance of the measurement provides, with
posed in [5]. (Fore™ = [¢) (| the fidelity is defined probability p,(¢) = Tr(P.ly) (¢|®M), the “candidate”
asF = (ylo°™|).) lu) for |y). The fidelity Fieas(M) is then calculated
Let us note in passing that as the consequence dfom the outcomes of the measurement as
the factorization property (3) we can produkg clones

from N originals either by applying directly the optimal  Fp.. (M) = Zp’u(lﬁ) K | )* = (plelyy,  (10)
N — M cloner or by taking any number of intermediate u

steps in order to realize the cloning process, using th@vhere@ — 3, pu(@) ) (@] In the optimal univer-

optimal transformation at each step; both ways lead to thgal state estimating procedure the fidelity must not depend

same overall shrinking factor. — :
I on ¢, thusp can also be written as
Let us now justify statements (a) and (b). v ¢

In order to prove (a) we describe ah— M cloner = _ —opt _ —opt 1

in terms of a completely positive magyy, which maps € = Tmeas (M) 1) W1+ 11 = Tinea (M) 2 1. @b

input density operators a¥ identical pure originals into  The optimal measurement of this type can be viewed

output density operators dif clones, such that for any as anym — o cloner because after reading each outcome

state|y) (| of a single input qubit (original) we have e can prepare any number of candidates, in particular

Tty [Cm (1) W 1BV)] = n(N, M) |4 (] infinitely many of them, with the average reconstruction
| fidelity ™. (M) with respect to the originals. Clearly,

+[1 - nW,M)]—=1, (7) this procedure cannot provide a larger shrinking factor

2 than the optimalM — L cloner and we find

where the trace is performed on akly — 1 qubits (for an —opt opt

overview of completely positive operators, see [7]). Tmeas(M) = mocm(M., L) (12)
Let oy be a density operator aV qubits which is for anyL = M, in particular forL. — oo,

supported on the symmetric subspace of edimen- Let us now show that forL — « the formula (12)

sional Hilbert space. We can always wrige as a linear becomes the equality. To see this let us concatenate an
combination of direct products of identical pure statesM — L cloner with a subsequent optimal state estimating
on = >, aili){;|®Y, where>; a; = 1; N.B. we do measurement. The input to the cloner is of the form
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ly) (p|®M and the output is described by the densitythe state of all outputs does not belong to the symmetric
operator ¢; which is of the form Y, a;|y;)(¥:|®-,  subspace. This case, in principle, may provide a higher
where >, a; = 1. The reduced density operator of shrinking factor, however, we could neither prove nor

each output qubit iso = Tr.—10, = X a;li){¥;l =  disprove this with our approach. We leave this problem
n(M,L) )| + [1 — n(M,L)]%l. The cloner as a challenge to other colleagues.
M — L concatenated with the state estimation fn In a similar way as for the cloner we can extend the

qubits can be viewed as the state estimation performedalidity of an optimal universal measurement procedure
on M qubits. The total procedure gives the fidelity of to inputs from the symmetric subspace. In this case the

estimating|) which can be written as goal is to find the optimal measurement for the reduced

. density operator for each input copy. Since we require the

Frneas(M) = (¢| ZTF(P,LQL) [ ) P | ) process to be universal, we know that the reduced density
s operator reconstructed as the result of the measurement

_ _ N/ |®L given in Eq. (11) is just the shrunk version of the initial
%w'a’Tr(P“l%)W’l V) W 1) (13) one. We can then describe the quality of the procedure

in terms of the shrinking factor. We conclude that the

= Z(Mm[ﬁﬁ&s(m AR optimal measurement derived in Ref. [6] is also optimal

i for any input symmetric state. Actually, if this were not

- 1 the case, we could devise a measurement procedul& on

+[1 - "P‘L—l} 14) Ihe€ case, we CC : : P
[ Mimeas (L] 2 ) (14) initial pure qubits by first applying aN — M cloner and

which for L — o becomes [due taj°Pt (L) — 1] then an optimal measurement on the mixed state of the
‘ outputM clones. If this global measurement were better

Fmeas(M) — Z(l//lailwi)(;bi L) = (lely) than the optimal one of Ref. [6] we would then obtain

with the above procedure a universal measurement for
1 pure states which performs better than the one in Ref. [6],

= 5[1 + meem(M, )] (15)  thus finding a contradiction.
Let us mention in passing that in our discussion we
und it convenient to use the shrinking factor, because
has an intuitive geometrical meaning both for pure and
mixed states; however, one can rephrase the optimality

The concatenation of a cloner with a measuremer:f
cannot perform better than the optimal measurement, th I?
we can write

noem(M, =) = I (M) . (16)  argument for universal operations using, for example, the
Combining Egs. (12) and (16) finally leads to Uhlmann fidelity [10] for the reduced density operators.
opt _ —opt In conclusion, we have derived the optimal shrinking
noem(M, ) = Tneas (M), 17) factor/fidelity for a universaN — M cloner and general-
thus proving statement (b). ized its operation to a more general case of mixed and/

Before concluding, we want to stress that, as a coner entangle input states which belong to the symmetric
sequence of what was shown above, we can extend treubspace. Furthermore, we have established the connec-
operation of a cloning machine and the application oftion between optimal quantum state estimation and optimal
an optimal measurement to any input density operatoguantum cloning which allowed us to extend the validity
of N qubits which has support on the symmetric sub-of the optimal state estimation methods [6] to inputs of the
space. The properties of the universal cloning machin@bove form.
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