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We derive a tight upper bound for the fidelity of a universalN ! M qubit cloner, valid for any
M $ N, where the output of the cloner is required to be supported on the symmetric subspace.
proof is based on the concatenation of two cloners and the connection between quantum cloning
quantum state estimation. We generalize the operation of a quantum cloner to mixed and/or enta
input qubits described by a density matrix supported on the symmetric subspace of the consti
qubits. We also extend the validity of optimal state estimation methods to inputs of this kin
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Perfect quantum cloning is impossible [1]. This
notwithstanding, we may ask how well we can clon
quantum states. Bužek and Hillery, who were the first to
address this problem, provided an example of a quantu
device which can clone an unknown pure state of a sing
input qubit (a two-state system) into two output qubits
albeit with a certain fidelity smaller than one [2]. Thei
construction was subsequently shown to be optimal
Bruss et al. [3]. In this Letter we derive the optimal
fidelity of a universal and symmetric quantum clonin
machine (QCM) which acts onN original qubits and
generatesM clones.

A universalN ! M quantum cloner is a quantum ma
chine which performs a prescribed unitary transformatio
on an extended input which containsN original qubits,
M 2 N “blank” qubits, andK auxiliary qubits, and which
outputsM clones together with theK auxiliary qubits.
The original qubits are all in the same (unknown an
pure) quantum state described by the density opera
% in  1

2 s1 1 $sin ? $sd, where $sin is the original Bloch
vector. Both “blanks” and the auxiliary qubits are ini
tially in some prescribed quantum state. The output qub
are in an entangled state and in the present work we
quire that the density operator describing the state of t
M clones is supported on the symmetric subspace. T
guarantees that all the output qubits are indistinguishab
and in the same state described by the reduced density
erator%out. We comment on relaxing this assumption a
the end of the paper.

It has been shown thatuniversal 1 ! 2 cloners can
shrink only the original Bloch vector, without changing its
orientation in the Bloch sphere [3]. The same argume
as given in [3] (namely the impossibility to find a
transformation that rotatesany Bloch vector of the one-
particle reduced density matrix by the same angle) appl
also generally for anN ! M qubit cloner. Therefore,
the operation of a universal QCM can be characterized
the shrinking factorhsN , Md, which is also known in the
literature as the Black Cow factor [4], and the reduce
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output density operator is of the form%out  1
2 f1 1

hsN , Md$sin ? $sg. Universal N ! M quantum cloning
machines may be constructed in many different way
the best constructions are those which maximizehsN , Md
(i.e., which maximize the fidelity of the cloning machine
and we refer to them as the optimal cloners.

Gisin and Massar have constructed a class of univer
N ! M QCMs and showed, using numerical method
that for N # 7 their cloners are optimal [5]. Our deriva-
tion of the upper bound forhsN , Md is quite general and
does not refer to any specific realization of the univers
cloning machines. In particular, it shows that the Gisin
Massar cloners saturate this bound for anyN andM $ N .
Our approach avoids an elaborate optimization proc
dure, extends the class of allowed inputs to mixed and
entangled states of the original qubits which belong
the symmetric subspace, and sheds some light on
connection between optimal quantum cloning and op
mal quantum state estimation. The proof is based on
concatenation of two quantum cloners and on associat
the upper bound on the fidelity of anM ! ` cloner with
the fidelity of the optimal state estimation ofM qubits,
given in [6].

We concatenate two cloning machines in the followin
way. The first cloner is anN ! M universal machine
characterized by the shrinking factorhsN , Md. The M
clones from the output of the first cloner are then take
as originals for the input into the second cloning machin
which creates infinitely many clones with the shrinkin
factor hsM, `d. We now write down two statements
which will be proved after unfolding the main result
(a) The shrinking factors for concatenated cloners mu
tiply. (b) The equality

h
opt
QCMsM, `d  h opt

meassMd (1)

holds. Hereh opt
meassMd corresponds to the optimal state

estimation derived in [6], and its meaning will be ex
plained below.
© 1998 The American Physical Society
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Because of statement (a), the shrinking factors of un
versal cloning machines in sequence multiply. Moreove
the sequence of the two machines cannot perform bet
than the optimalN ! ` universal cloner, otherwise the
N ! ` universal cloner would not be optimal. Thus we
arrive at the following inequality:

hQCMsN , Md ? hQCMsM, `d # h
opt
QCMsN , `d . (2)

This means that the lowest upper bound for the gene
N ! M cloner is given by

hQCMsN , Md #
h

opt
QCMsN , `d

h
opt
QCMsM, `d

. (3)

We have thus reduced the optimality problem of th
N ! M cloner to the task of finding the optimalN ! `

cloner.
Now we can use statement (b) and the explicit form o

h opt
meassMd (see [6]), namely

h opt
meassMd 

M
M 1 2

(4)

to conclude the central result that for anyM $ N

h
opt
QCMsN , Md 

N
M

M 1 2
N 1 2

. (5)

For pure input states this corresponds to the optim
fidelity

F
opt
QCMsN , Md 

NM 1 N 1 M
MsN 1 2d

, (6)

which is achieved by the cloning transformations pro
posed in [5]. (For% in  jcl kcj the fidelity is defined
asF  kcj%outjcl.)

Let us note in passing that as the consequence
the factorization property (3) we can produceM clones
from N originals either by applying directly the optimal
N ! M cloner or by taking any number of intermediate
steps in order to realize the cloning process, using t
optimal transformation at each step; both ways lead to t
same overall shrinking factor.

Let us now justify statements (a) and (b).
In order to prove (a) we describe anN ! M cloner

in terms of a completely positive mapCNM which maps
input density operators ofN identical pure originals into
output density operators ofM clones, such that for any
statejcl kcj of a single input qubit (original) we have

TrM21fCNMsjcl kcj≠N dg  hsN , Md jcl kcj

1 f1 2 hsN , Mdg
1
2

1 , (7)

where the trace is performed on anyM 2 1 qubits (for an
overview of completely positive operators, see [7]).

Let %N be a density operator ofN qubits which is
supported on the symmetric subspace of the2N dimen-
sional Hilbert space. We can always write%N as a linear
combination of direct products of identical pure state
%N 

P
i ai jcil kcij

≠N , where
P

i ai  1; N.B. we do
i-
r,
ter
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e

f
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-
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he
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not require that all valuesai are positive [4,8]. The lin-
earity of the completely positive map and its universalit
i.e., the fact thathsN , Md does not depend onjcl, allow
us to extend Eq. (7) to the more general form

TrM21fCNMs%N dg  hsN , Md% 1 f1 2 hsN , Mdg
1
2

1 ,

(8)

where %  TrN21f%N g. Now, suppose we concatenat
an N ! M and an M ! L cloner and view it as an
N ! L cloner. It evolves the initialN qubit state%N

first into theM qubit state% 0
M and then into theL qubit

state% 00
L . The corresponding single qubit reduced dens

operators are% , % 0  TrM21f% 0
Mg and% 00  TrL21f% 00

L g.
Following Eq. (8) we can write

% 00  hsM, Ld% 0 1 f1 2 hsM, Ldg
1
2

1

 hsN , Md ? hsM, Ld%

1 f1 2 hsN , Md ? hsM, Ldg
1
2

1 , (9)

i.e., indeedhsN , Ld  hsN , Md ? hsM, Ld.
We will now prove statement (b). Equation (5) wa

obtained assuming the following result (due to [6]): give
M qubits all in an unknown quantum statejcl there exists
a universal POVM measurementhPmj [9] which leads to
the best possible estimation ofjcl with fidelity FsMd 
M11
M12 , or, equivalently, withhsMd 

M
M12 . The outcome

of each instance of the measurement provides, w
probability pmscd  TrsPmjcl kcj≠Md, the “candidate”
jcml for jcl. The fidelity FmeassMd is then calculated
from the outcomes of the measurement as

FmeassMd 
X
m

pmscd jkc j cmlj2  kcj% jcl , (10)

where% 
P

m pmscd jcml kcmj. In the optimal univer-
sal state estimating procedure the fidelity must not depe
on c, thus% can also be written as

%  h opt
meassMd jcl kcj 1 f1 2 h opt

meassMdg
1
2

1 . (11)

The optimal measurement of this type can be view
as anM ! ` cloner because after reading each outcom
we can prepare any number of candidates, in particu
infinitely many of them, with the average reconstructio
fidelity Fopt

meassMd with respect to the originals. Clearly
this procedure cannot provide a larger shrinking fact
than the optimalM ! L cloner and we find

h opt
meassMd # h

opt
QCMsM, Ld (12)

for anyL $ M, in particular forL ! `.
Let us now show that forL ! ` the formula (12)

becomes the equality. To see this let us concatenate
M ! L cloner with a subsequent optimal state estimati
measurement. The input to the cloner is of the for
2599
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jcl kcj≠M and the output is described by the densit
operator %L which is of the form

P
i aijcil kcij

≠L,
where

P
i ai  1. The reduced density operator of

each output qubit is%  TrL21%L 
P

i aijcil kcij 
hsM, Ld jcl kcj 1 f1 2 hsM, Ldg 1

2 1. The cloner
M ! L concatenated with the state estimation onL
qubits can be viewed as the state estimation perform
on M qubits. The total procedure gives the fidelity o
estimatingjcl which can be written as

FmeassMd  kcj
X
m

TrsPm%Ld jcml kcm j cl


X
m,i

kcjaiTrsPmjcil kcij
≠Ld jcml kcm j cl (13)


X

i

kcjai

∑
h opt

meassLd jcil kcij

1 f1 2 h opt
meassLdg

1
2

1
∏

jcl (14)

which for L ! ` becomes [due toh opt
meassLd ! 1]

FmeassMd !
X

i

kcjaijcil kci j cl  kcj% jcl


1
2

f1 1 hQCMsM, `dg . (15)

The concatenation of a cloner with a measureme
cannot perform better than the optimal measurement, th
we can write

h
opt
QCMsM, `d # h opt

meassMd . (16)

Combining Eqs. (12) and (16) finally leads to

h
opt
QCMsM, `d  h opt

meassMd , (17)

thus proving statement (b).
Before concluding, we want to stress that, as a co

sequence of what was shown above, we can extend
operation of a cloning machine and the application o
an optimal measurement to any input density operat
of N qubits which has support on the symmetric sub
space. The properties of the universal cloning machin
as defined at the beginning of this paper allow us to co
clude that the same machine can operateany such sym-
metric density operator and shrinks the Bloch vector o
the reduced input density matrix by a fixed amount, in
dependent of the initial length. Notice also that the op
timal machine, for products of pure inputs specified b
the shrinking factor (5), is still optimal for this extended
class of inputs. Actually, if a better cloning machine ex
isted for mixed input states, we would use it as the seco
cloner M ! ` in Eq. (2), giving a smaller lower bound
in Eq. (3). This would lead to a contradiction because w
already know that universal cloners for pure states sa
rating the bound (5) exist [5].

One may want to relax our restriction and conside
quantum cloners which produce identical clones (i.e., wi
the same single-qubit density operator%out), but for which
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the state of all outputs does not belong to the symmet
subspace. This case, in principle, may provide a high
shrinking factor; however, we could neither prove no
disprove this with our approach. We leave this proble
as a challenge to other colleagues.

In a similar way as for the cloner we can extend th
validity of an optimal universal measurement procedu
to inputs from the symmetric subspace. In this case t
goal is to find the optimal measurement for the reduc
density operator for each input copy. Since we require t
process to be universal, we know that the reduced den
operator reconstructed as the result of the measurem
given in Eq. (11) is just the shrunk version of the initia
one. We can then describe the quality of the procedu
in terms of the shrinking factor. We conclude that th
optimal measurement derived in Ref. [6] is also optim
for any input symmetric state. Actually, if this were no
the case, we could devise a measurement procedure oN
initial pure qubits by first applying anN ! M cloner and
then an optimal measurement on the mixed state of
outputM clones. If this global measurement were bett
than the optimal one of Ref. [6] we would then obtai
with the above procedure a universal measurement
pure states which performs better than the one in Ref. [
thus finding a contradiction.

Let us mention in passing that in our discussion w
found it convenient to use the shrinking factor, becau
it has an intuitive geometrical meaning both for pure an
mixed states; however, one can rephrase the optima
argument for universal operations using, for example, t
Uhlmann fidelity [10] for the reduced density operators.

In conclusion, we have derived the optimal shrinkin
factor/fidelity for a universalN ! M cloner and general-
ized its operation to a more general case of mixed an
or entangle input states which belong to the symmet
subspace. Furthermore, we have established the conn
tion between optimal quantum state estimation and optim
quantum cloning which allowed us to extend the validit
of the optimal state estimation methods [6] to inputs of th
above form.
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