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Decoherence-Free Subspaces for Quantum Computation
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Decoherence in quantum computers is formulated within the semigroup approach. The error genera-
tors are identified with the generators of a Lie algebra. This allows for a comprehensive description
which includes as a special case the frequently assumed spin-boson model. A generic condition is
presented for errorless quantum computation: decoherence-free subspaces are spanned by those states
which are annihilated by all the generators. It is shown that these subspaces are stable to perturbations
and, moreover, that universal quantum computation is possible within them. [S0031-9007(98)
07057-4]

PACS numbers: 03.67.Lx, 03.65.Bz, 03.65.Fd, 89.70.+c

Decoherence remains the most important obstacle tmatrix p:
the exploitation of the speedup [1] promised by quantum .

computers. To this end a remarkable theory of quantum 9 _ Llp]l = L [H,p] + Lp[p], Q)
error correction codes (QECC) has recently been con- ot k

structed [2], in which a logical quantum bit (qubit) is 1 M

encoded in the larger Hilbert space of several physical Lolpl = 3 > aaplr.r,lp]. 2)
qubits. This “active” errorcorrectionapproach builds on a.p=1

the assumption that the most probable errors are those L, k,[p] = [Fa,pF};] + [Fap,FZ;]- 3)

which occur independently to a few qubits during a rea- _ . _ _ .
sonable time interval. However, correlated errors, whichthe commutator involvingH is the ordinary, unitary,
affect many or all qubits, may also be likely in some Heisenberg term. All the nonunitary, decohering dy-
experimental realizations, particularly when qubits areh@mics is accounted for byj. The time-independent
physically close (for example, nuclear spins in a mole-Hermitian coefficient matrixA = {a.} contains the in-
cule) [3]. Such situations motivate the present study oformation about the physical decoherence parameters
an alternative “passive” err@reventionscheme, in which ~ (lifetimes, longitudinal, or transverse relaxation times, and
logical qubits are encoded within subspaces which do ndtarious equilibrium parameters such as stationary polar-
decohere because of reasons of symmetry. The existentZ&tion or mﬁgnetlAzatlonA) ¢ _

of suchdecoherence-fre(DF) subspaces has been shown The {Fa},— (Fo = I) constitute a basis for the
by projection onto the symmetric subspace of multiplevector space of bounded operators acting #h, the
copies of a quantum computer [4], and by use of a groupN—dimensionaI system Hilbert space. This operator space
theoretic argument [5]. Construction of these subspace®ay be restricted—see the classification below. As such,
has been performed explicitly for certain collective errorthe set{F,},_, forms an M-dimensional Lie algebra
processes in the spin-boson model [6,7]. In this Letterl . with an N X N (generally M = N> — 1) matrix

we formulate a general theory for decoherence in quankepresentation(F,}y_; appearing in Eq. (2) (we omit
tum computation (QC) within the powerful semigroup ap-the hat symbol for matrices). Physically, tfE,}y
proach [8,9], and show that this provides a rigorous andlescribe the various decoherence processes: in the QC
comprehensive criterion for construction of DF subspacegontext they are therror generators They are often

for an arbitrary Hamiltonian. determined implicitly by the interaction Hamiltonian:
The semigroup approach-The dynamics of a quan- . R R
tum systemS coupled to a battB (which together form 0, =D F, ®B,, (4)

a closed system) evolves unitarily under the Hamilton-

ian: Hgzy = H ® I + Iy ® Hy + H;, whereH, Hz, where {B,} are bath operators (see Ref.[11] for
and H; are the system, bath, and interaction Hamilton-examples).

ians, respectively I is the identity operator. Inthe semi-  Decoherence of a quantum registerConsider a quan-
group approach one shows that under the assumptions tfm computer made oK qubits. States in the corre-
(i) Markovian dynamics, (ii) “complete positivity” [9], spondingN = 2X-dimensional register Hilbert spachl

and (iii) initial decoupling between the system and bathare tensor products of single qubit states), . = 0, 1.
[10], the following master equation provides the mostlt is convenient to adopt the following classification of
general form for the evolution of the system densitydecoherence models of interest, in terms of the above
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Lie-algebraic scheme: (i) “Total decoherence”: This pro-should vanish separately «, 8. A straightforward cal-
vides the maximum possible complexity of error genera-culation yields
tion, in which combined errors from any number of qubits No

- ~ B* o
are generated. As is well knowsingle-qubit errors can Lr, F,[P] = Z pij(2¢cjmeinln) (ml
be fully described by the three Pauli matrices [i.e., the ijsmn=1
defining representation of the Lie algebra su(2)]. Thus — cBrealmy Gl = chmes,liYnl) . (6)

when |e,) are the eigenstates of the: Pauli matrix, a
single qubit can either undergo a phase-fig), a bit-
flip (o), or both o). Taking into account also the
possibility of no single-qubit error, there are four possi-
bilities per qubit, so that the maximal total number of
combined errors oK qubits isM = 4K — 1, if we dis- ¢ =
regard the case of zero overall errors. The Lie algebra Ty B o B o
sUN) has N> — 1 generators, so the correspondiffy  LF. F,[A]= Z pijliy 1 Q2cj i — i ¢t = cj cf).
tensor products of Pauli matric¢E,} form the defining ij=1 @)
representation off = su2X). (i) “Independent qubit

decoherence™ In this, the ideal starting point for QECC ,Assuming® # 0 then yields £ T Cﬁ — 2. This has
we have the much simpler case of merely one mdepen[O hold in particular fora = ﬂ Wlth 2 = Cai/Cais WE
dent error per qubit, with all other qubits unaffected. nonoptaine + |/z* = 2, which has the unlaofueasltyjlutlon
There clearly ar8K such errors, each formed by tak- = 1. This implies thatc,; must be independent of
ing the tensor product of a single Pauli matrix on onel and therefore thaf,|i) _C”C i), ¥ a. As a result,
qubit with the identity on all the rest. Since errors on we conclude tha{Fa,ﬁ“B]lz) _"‘0 If £ is semisimple

different qubits commute, this leads to a representanorahas no Abelian invariant subalgebra) [12] then the

. o K ey .
of the Lie algebral = @, su(2). (ii) "Collective  commyator can be expressed in terms of nonvanishing
decoherence” One could also consider the extreme Cage cture constant$  of the Lie aIgebra[F Fﬁ]

o a»

of all qubits undergoing the same decoherence proce

simultaneously [7], i.e., assuming full permutation in- i“y 1f“BF We then arrive at the condition on the
variance of the qubits. There are then just three posstructure constants
sible errors andC = su2). (iv) “Cluster decoherence”: y
Situations intermediate between the above three cases fol- D fapey =0 Ya.p. (8)

low when the register can be partitioned into clusters

K' qubits, with collective decoherence taking place withinNow, it is known that the structure constants themselves

each cluster, but the clusters decohering independentlyefine them-dimensional “adjoint” matrix representation

This leads tof — @,/% sy(2). Lastly, a very interest- of £ [12]: [ad(F.)]y.s = fas- Since the generators of

ing case (dealt with in detail below) arises when a symmethe Lie algebra are linearly independent, so must be the

try (e.g., permutation invariance) is brokperturbatively ~ matrices of the adjoint representation. One can readily
Conditions for decoherence-free dynamieslVithin ~ show that this is inconsistent with Eq. (8) unless all

the extremes delineated by the above categorization, @& = 0. We have thus proved [13]:

particularly interesting question is the following: what are  Theorem 1—A necessary and sufficient condition

necessary and sufficient conditions for the existence of gor generic decoherence- free dynami¢s,[p] = 0) in

generic DF subspace? By generic (as opposed to generay),subspaceH = Span[{[i)}'*;] of the register Hilbert

we mean that one should (ayoid fine tuning of the noise space, is that all basis statésare degenerate eigenstates

parameters characterizing the decoherence processegt gl the error generatofd, }: ¥, li) = coli), V «; or, if

and (b)av0|d a dependence on initial conditionSuppose s semisimple, that alli) are annihilated by alﬂFa}

that{lz)}, |_is a basis for awvy-dimensionainvariant DF R

subspaceH C F . In this basis, we may express states Foli)=0 Va,i. (9)

as the density matrix

To satisfy condition (b) above, each of the terms in
parentheses must vanish separately. This can be achieved
only if there is just one projection operatdw) (m| in

each term. The least restrictive choice leading to this is
¢i' 8in. Equation (6) then becomes

N Equivalently, the DF subspace is spanned by those states
- _ ZO 5::1i) i 5) transforming according to the one-dimensional irreducible
PijitrJ representations (irreps) of the Lie group with algebra
L. Those states arginglets The size of the DF code
Consider the actlon of the error generators on the basﬁrowded by this subspace is its dimensi¥ which can
states¥, i) = 3%, ¢&|j). The DF dynamics condition be used to further encode lgd/o) logical qubits.
is Lp[p] = 0, so that by Eqg. (1) the dynamics is purely Note also that by Eq. (4)H;|i) ® |b) = 0, where|b)
unitary in the subspacé{. Consider then Eq. (2): con- is any bath state. Theorem 1 thus not only reduces the
dition (a) above implies that each of the termg k,[5]  identification of DF subspaces to a standard problem in

ij=1
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representation theory of Lie algebras, but also has the exemaining terms leaves

pected physical interpretation, namely that the DF states M P
are those that are annihilated by the interaction Hamilton- Lhlp]l = € Z Z aa,pﬁG;Fa + H.e. (14)
ian. (Note that this is only aecessargondition.) a=1p=1

Effect of the system Hamiltoniar:-While 5, by con-  \wpile this will generally take the singlet states outside of
struction, is unaffected by the error generators, the abme pF subspace, this effect is also readily seen to be only

sence of decoherence may still be spoiled by the system second order, because the first-order decoherence time
Hamiltonian itself. To see this explicitly, consider the [Eq. (12)] is now given by

mixed-state fidelity:

1 c .
F() = Tl pOp()] = T{p(©) exdtLn [pO]}, (10) 7 =€ 2 laar TLPOPOGF]

which is a natural measure of the decay of quantum coher- + ay, Tr[BO)FIG,5(0)]} = 0, (15)
ence due to coupling of the system with the environmenty,y, cycjic permutation under the first trace. The higher
In ideal quantum computation, one would like to have,ger decoherence times,, clearly involvee” and can
F(1) =1, corresponding to perfect, noiseless memory. Iy, he made negligible. Therefore we have proved that
reality F(1)=1 — €, e >0. A formal power expansion s pF subspace wtableto first order under a symmetry
yields breaking perturbation.
o 1 n This property is very promising from a quantum
F()=> = Tr{pO) [L]"[p (O]} = > - <—> , computational perspective, since one should be able to
n=0 """ n=0 """ apply standard QECC techniques to correct errors which
(11)  then occur within the DF subspace. Of particular concern
are errors which take states out of the DF subspace;
these are analogs of amplitude damping errors, which

o o0

where the “decoherence times” are

7, = {Tr[ p(0) (L)"[ p(O)] T}~ /. abs_tra_ctly model, for example, scattering and spontaneous
emission processes. Such errors can be corrected by
In particular, the first order decoherence rate is simple codes [14], for example, by taking the DF singlet
. states as the computational basis states, and combining
. . /> /
— = Tr{pO)L[ p(0)]}. (12) fthem into QEC codewords. Prov_lded thHt; causes
T independent errors on different singlet states, we can

conclude from the threshold theorem [15,16] that as long
ase is sufficiently small, the QECC encoding will render

easily checked, generally/ 7, # 0 becausél may cause quantum computation within?{ robust against thes_e_
- ide ofif . Theref heull d L errors. Typical estimates of the threshold error probability
transitions outside - Therefore, thaull dynamicsin 346 from10~ to 103 [16] and are extremely difficult

H, including the effect of the system Hamiltonian, is DF to achieve in practice. The error probability is usually

to first order. . . proportional to €2. However, within {, the error
Effect O.f symmetry breaking perturbatlonsSL_Jppose robability is reduced toe*. Thus, QC within a DF
we have identified the DF subspace for the Lie algebr ubspace has potentially significant advantages.

L underlying Lp. Let us consider the effect of adding : ; . ; odes
new error generator,}-_, which perturbatively break The c!|men5|on of DF subs_paces. the size Of ¢ o
9 pIp=1 p y shown in Ref. [7] for the spin-boson model, in the limit

the symmetry, i.e., which do not belong 6. We ot qjective decoherence [i.e., wheh = su?2)] the size
assume that théG,} are due to an additional interaction of the DF subspace is

HamiltonianH; which can be identified as appearing with

Sincelr{p[H, p]} = 0 (by cyclic permutation), it thus
follows from Eq. (1) thatl/7; = 0 for p. However, as is

a small parametet in the full system-bath Hamiltonian: No K> g 3 log, K (16)
Hss = H + Hg + H, + eH). Then the new terms 2 T
added to lp are The encoding efficiendyy/K is thus asymptotically

M P unity. However, in the opposite limit of independent
Lp[pl =D D (aaplr,.cc,[p] + a}, Lec,r.[5) qubit decoherencef = &X_,su.(2), which is addressed
a=1p=1 by QECC, there doesot exist a DF subspace [17]. The
P ; . . . .
n Z o Lec. 6 [5]. (13) size of the code obtained in thg intermediate cases of
=y P = €bp-€hy cluster decoherence can be estimated from Eq. (16) by
P replacing K by K’ (the number of qubits per cluster),
Under the assumption < 1 we may neglect the lastterm as long askK’ < K. However, the most interesting
since it isO(e?). As for the terms in the double sum, situation arises in the perturbative scenario. Imagine
F.p = pF! = 0 Dby Egs. (5) and (9). Expanding outthe a case of collective decoherence symmetry which is
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perturbatively broken by small independent couplingsWe would like to acknowledge helpful conversations with
between individual qubits and the bath. As long as theéDr. Paulo Zanardi, Dr. Robert N. Cahn, and Dr. Umesh
symmetry-breaking inhomogeneities are not too strongyazirani.
we can conclude that, to first order, the exponentially
large DF subspace is still available.

Universal quantum computatior-Our discussion so
far has centered on the preservation of quantoemory
To complete i_t we still need to show that un_iversal quan- 1] a) P.W. Shor, inProceedings of the 35th Annual
tum computation can actually be performed in the DF sub-" "~ symposium on the Foundations of Computer Science,
space. As is well known, the controllesbT operation, edited by S. Goldwasser (IEEE Computer Society, Los
together with arbitrary single qubit rotations, can gener-  Alamitos, CA, 1994), p. 124; (b) L. K. Grover, Phys. Rev.
ate any unitary operation [18]. The corresponding unitary  Lett. 79, 4709 (1997).
operations are implemented by a driving HamiltonEyp, [2] (&) P.W. Shor, Phys. Rev. A2, 2493 (1995); (b) A.R.
which contains experimentally manipulable, time varying ~ Calderbank and P. W. Shor, Phys. ReVo4 1098 (1996);
parameters, together with the system Hamiltordan (c) A.M. Steane, Phys. Rev. Left7, 793 (1996).

We now give an example of universal 1- and 2-qubit [3] N. Gershenfeld and I. L Chuang, Scierizés, 350 (1997).
operators acting on a four-dimensional singlet subspace.[4] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R.

Let|i),0 = i = 3 be singlet states. These four states span ffgg%’ and C. Macchiavello, SIAM J. Com6, 1541

_2 enCOde_d qubitsq), |42) V\_/hereqlqz (with g; = 0,1) [5] P. Zanardi and M. Rasetti, Mod. Phys. Lett.18, 1085
is the binary representation of. A controllednoT (1997).

gate can be constructed from a Hamiltonian representeqs] (a) G. M. Paima, K.-A. Suominen, and A.K. Ekert, Proc.
in the encoded basis by the following combination of ~ R. Soc. London Sect. 452, 567 (1996): (b) L.-M Duan
projection operatorsHS3* = ¢(¢) [|11)(10] + [10)(11]]. and G.-C. Guo, Phys. Rev. Le®9, 1953 (1997); (c) L.-M
Here c(r) is a time-dependent classical control pa- Duan and G.-C. Guo, Phys. Rev.5, 737 (1998); (d) P.
rameter. Upon exponentiation this yields the familiar ~ Zanardi, Phys. Rev. A6, 4445 (1997).
conditional unitary operator form. Single encoded-qubit [7] P. Zanardi and M. Rasetti, Phys. Rev. LeR9, 3306
rotations can be constructed from, e HY' = n(r) X (1997).

T . . . [9] R. Alicki and K. Lendi, Quantum Dynamical Semigroups
eralization to larger singlet space systems is straightfor-

) . L and Applications,jn Lecture Notes in Physics (Springer-
ward: one constructs the appropriate projection operators Verlag, Berlin, 1987), No. 286.

on thesingletstates. By construction the resulting gatesj1] (a) P. Pechukas, Phys. Rev. L&t8, 1060 (1994): (b) R.
will leave the dynamics DF. Thus, in principle, universal Alicki, Phys. Rev. Lett.75, 3020 (1995); (c) P. Pechukas,
DF-QC is possible within the singlet subspace. The main  ibid., 75, 3021 (1995).

experimental challenge will involve implementation of [11] R. Kosloff, M. A. Ratner, and W. B. Davis, J. Chem. Phys.
the corresponding operations on theysical qubits. In 106, 7036 (1997).

addition, one should expect the actual implementation td12] J.F. Cornwell, Group Theory in PhysicsTechniques of
involve some of the amplitude damping errors discussed _ Physics: 7 Vol. Il (Academic Press, London, 1984). _
above, i.e., somd, operations will take the singlets [13] A related result was derived independently by P. Zanardi,
out of the DF subspace. However, as long as QECC is . F1ys: Rev. A57, 3276 (1998).

. : ) - f14] (a) I.L. Chuang, D.W. Leung, and Y. Yamamoto, Phys.
invoked, our previous arguments show that DF-QC is still Rev. A 56, 1114 (1997): (b) I.L. Chuang and Y.

possible. _ _ Yamamoto, Phys. Rev. Let7, 4281 (1997): (c) D.W.
It was shown how decoherence in QC can be described | gyng, M. A. Nielsen, I.L. Chuang, and Y. Yamamoto,

very generally in terms of the semigroup approach. The  phys. Rev. A56, 2567 (1997).

usual QC “error generators” were identified with the[15] (a) D. Aharonov and M. Ben-Or, LANL Report No.
generators of a Lie algebra, whose identity depends on  quant-ph/9611025; E. Knill, R. Laflamme, and W. Zurek,
the pertinent decoherence process. Without reference to  Science279, 342 (1998).

a specific system-bath interaction model, we deritreel  [16] J. Preskill, Proc. R. Soc. London Sect4A4, 385 (1998).
those states which are annihilated by all the error genera-  direct product of the irreps of the constituent algebras [12],
tors. We showed further that the DF subspaces are stable € representation realized for th,} is therefore in this

to first order under symmetry breaking perturbations, case already irreducible and (since it is a tensor product

. A L of K 2 X 2 matrices)2X dimensional. Thus it cannot
which allowed us to extend their utility by application of contain any 1D irreps.

QECC. Finally, we showed that the DF subspaces suppofig) a. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo,

universal quantum computation. N. Margolus, P. Shor, T. Sleator, J. Smolin, and H.
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