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Absolute photonic band gaps can be substantially improved in two-dimensional square and tria
lattices of cylinders by introducing anisotropy in material dielectricity. Owing to different refrac
indices for electromagnetic waves withE and H polarization, the band gaps for the two polarizatio
modes can be freely adjusted and matched to overlap optimally. Large absolute band gaps can
ated for uniaxial cylinders in air with a positive anisotropy. In the case of air holes in background
axial dielectric with even a weak negative anisotropy, the absolute band gap can be increased 2–
[S0031-9007(98)07161-0]
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In recent years there appears great interest in fab
cating the photonic band gaps (PBG) structure, whic
exhibits a “forbidden” frequency region where electromag
netic waves cannot propagate for both polarizations alo
any directions [1,2]. This may bring about some peculia
physical phenomena [3–7], as well as wide applicatio
in several scientific and technical areas [1,2]. Althoug
three-dimensional (3D) PBG structures will provide th
most stirring potential in applications, the fabrication o
such PBG structures with a band gap in the visible or i
frared regime is exceedingly difficult. In contrast, it is
much easier to fabricate two-dimensional (2D) PBG stru
tures in this regime [8–11]. Furthermore, 2D structure
could also find some important uses such as a feedba
mirror in laser diodes [12]. Perhaps for this reason, mu
attention has been drawn towards 2D PBG structures.

Since the superior features of PBG structures result fro
the photonic band gap, it is essential to design crys
structures with a band gap as large as possible. It is w
known that the electromagnetic wave can be decompos
into theE- andH-polarization modes for a 2D structure
An absolute band gap exists for a 2D PBG crystal on
when band gaps in both polarization modes are present a
they overlap each other. Thus it is our aim to search f
some structures with an optimal overlapping band gap
varying parameters of the photonic crystal, such as latti
type, refractive index contrast, filling fraction, and atom
configurations.

It has recently been reported that the symmetry r
duction of atom configuration by introducing a two-poin
basis set in simple 2D lattices can remarkably increase a
solute band gaps [13], quite similar to the 3D case for di
mond structures [14]. Very recently, it was found that th
anisotropy in atom dielectricity can also break the dege
eracy of photonic bands such that partial band gaps can
created in fcc, bcc, and simple cubic lattices [15]. In th
0031-9007y98y81(12)y2574(4)$15.00
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Letter, we will demonstrate that such an anisotropy in d
electricity can remarkably increase absolute band gaps
2D PBG structures.

The photonic band structure is left determined by th
refractive index contrast, provided that other paramete
such as lattice type, filling fraction, and atom configura
tion are fixed. The sizes and positions of band gaps can
adjusted by varying the refractive index contrast. Thus,
we choose different refractive index contrasts for theE-
andH-polarization modes in a given photonic crystal, w
can match the relative position of band gaps for the tw
modes. This will enable the optimal overlapping of ban
gaps and the largest absolute band gap can be obtai
One way available is to fabricate photonic crystals fro
materials with anisotropy in dielectricity. Nature offers
lot of anisotropic crystals which are lossless and transp
ent in visible or infrared regime. Among them are uniax
ial crystals, which have two different principal refractiv
indices known as ordinary refractive indexno and extra-
ordinary refractive indexne.

For simplicity and not without generality, we prefer to
choose the extraordinary axis of uniaxial crystal parall
to the extension direction of cylinders. Then Maxwell’
equations for such an anisotropic 2D PBG structure c
be decomposed into two equations satisfied by theE- and
H-polarization modes, respectively. They are the sam
as in the case of isotropic PBG structures, except that
dielectric constants for the two modes are now differen
As the electric field vector in theE-polarization mode
is parallel to the extraordinary axis, while perpendicul
to the extraordinary axis in theH-polarization mode,
the refractive indices arene and no for the E- and H-
polarization modes, respectively.

The anisotropic photonic band structures are calcula
using the plane-wave expansion method [14–16], whi
is also the same as in the case of isotropic photon
© 1998 The American Physical Society
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crystals. The results were obtained using 289 plane wav
The convergence accuracy for the several lowest photo
bands is better than1%.

We first examine 2D photonic crystals consisting o
dielectric cylinders in air. The cylinders are arranged in tr
angular lattice. The photonic properties of isotropic stru
tures have been studied and shown to exhibit band gaps
each of the two polarization modes [16]. However, the
is some discrepancy about whether an absolute band
is present. Our simulations demonstrate that band gap
the two polarization modes do not overlap with each oth
resulting in the absence of the absolute band gap. T
can be clearly seen from Fig. 1, which displays the ba
structures of two polarization modes for a triangular la
tice of isotropic dielectric cylinders in air. The cylinder
have a refractive index ofn ­ 3.6 and a filling fraction
of f ­ 0.4. Two band gaps open for theE-polarization
mode (plotted in solid lines), i.e., the 1-2 band gap and t
3-4 band gap. For theH-polarization mode a band gap is
opened between 1-2 bands. However, theH 1-2 band gap
lies between theE 1-2 and 3-4 band gaps; thus no absolu
band gap is present.

The case can be changed by introducing the anisotro
in the dielectric of cylinders. If we can move upwards th
H 1-2 band gap so that it can overlap with theE 3-4 band
gap, or if we can shift it downwards as to overlap theE
1-2 band gap, an absolute band gap will be opened. As
photonic band frequency is somewhat inverse with resp
to refractive index contrast, this means that we must choo
in the former case a refractive index for theH-polarization
mode lower than that for theE-polarization mode, namely,
ne . no, a positive uniaxial crystal. In the latter case, w
should select a negative uniaxial material withne , no.

Following this idea, we investigate the dependence
band gap positions on the refractive index for both pola
ization modes, in order to design photonic crystals wi
optimal band gaps. As an example, we first consider t
triangular lattice of dielectric cylinders in air. The filling
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FIG. 1. Calculated photonic band structure for a triangul
lattice of isotropic dielectric cylinders in air forE-polarization
(solid lines) andH-polarization (dotted lines) modes. The
cylinders have a refractive index ofn ­ 3.6 and a filling
fraction of f ­ 0.4.
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fraction of cylinders is fixed asf ­ 0.4. The results are
displayed in Fig. 2. A band gap is present for theH-
polarization mode at a refractive index larger than 3.
Two wide band gaps still open for theE-polarization mode
at a refractive index as low asn ­ 2.0. However, the band
gaps of the two modes do not overlap at all refractive i
dices. The top edge of theH 1-2 band gap is always lower
than the bottom edge of theE 3-4 band gap, while the bot-
tom edge of theH 1-2 band gap is always higher than th
top edge of theE 1-2 band gap. Therefore, no absolut
band gap is present at all refractive indices.

As conceptualized above, the optimal overlap ofE and
H band gaps can be obtained by introducing anisotropy
material dielectricity. This is verified when one looks int
Fig. 2. TheH 1-2 band gap can overlap either with theE
1-2 band gap at a lower refractive index or with theE 3-4
band gap at a higher refractive index. Given an anisotro
sufficient enough, the band gaps will match complete
and the largest absolute band gap can be achieved.
particular, consider the largeH 1-2 band gap atno ­ 4.0,
which lies between0.278 0.333s2pcyad, wherec is the
light speed in vacuum anda is the lattice constant of a
triangular lattice. Its top edge overlaps with that of theE
3-4 band gap atne ­ 5.2, and its bottom edge overlaps
with that of theE 3-4 band gap atne ­ 4.8. Therefore,
the two band gaps wholly overlap each other at the ran
of 4.8 # ne # 5.2. Similarly, it can be found that this
H 1-2 band gap also completely overlaps theE 1-2 band
gap at the range of2.6 # ne # 2.8. The anisotropy to
obtain the optimal absolute band gap by a positive crys
is weaker than that by a negative crystal; thus it is eas
in experiment to fabricate from positive uniaxial materia
2D PBG crystals with optimal band gaps.

Such a concept is also applicable to other lattice typ
and atom configurations. Figure 3 displays the depe
dence of band gap positions on the refractive index contr
for both polarization modes in a square lattice of dielectr
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FIG. 2. Dependence of band gap positions on the refract
index for the triangular lattice of dielectric cylinders in air with
a filling fraction of f ­ 0.4.
2575



VOLUME 81, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 21 SEPTEMBER1998

ar

d

e

e
ic

ill
n-
r

re
d

el
t
es,

s
d
a

ce

d

2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 H-polarization, 1-2 band gap
 E-polarization, 1-2 band gap
 E-polarization, 3-4 band gap

F
re

qu
en

cy
 (

ω
a/

2 π
c)

Refractive Index

FIG. 3. Dependence of band gap positions on the refract
index for the square lattice of dielectric cylinders in air with
filling fraction of f ­ 0.4.

cylinders in air. The filling fraction of cylinders is fixed
asf ­ 0.4. Although the band gap variations are simila
to those in triangular lattice, comparing Fig. 3 with Fig. 2
the band gaps are narrower than in triangular lattice. T
H 1-2 band gap does not open until at a large refracti
index over 3.6 and reaches its maximum size atn ­ 4.8.

According to Fig. 3, no absolute band gap is present
such isotropic photonic crystals at any refractive inde
However, an absolute band gap can also be opened
the introduction of sufficient anisotropy into material di
electricity, shifting theH 1-2 band gap either upwards o
downwards to overlap with theE 3-4 band gap or theE
1-2 band gap, respectively. Similar to a triangular lattic
an optimal absolute band gap can be obtained by match
the relative position of theH 1-2 band gap either with the
E 3-4 band gap or with theE 1-2 band gap, correspond
ing to the selection of positive crystals or negative crysta
Because of narrowerE 1-2 and 3-4 band gaps, the match
ing condition is more strict than for triangular lattice. Fo
example, the largeH 1-2 band gap atno ­ 4.8 can com-
pletely overlap theE 3-4 band gap at the narrow range o
5.9 # ne # 6.0 and overlap theE 1-2 band gap only at
aboutne ­ 3.1. It is also favorable to obtain from posi-
tive crystals the optimal absolute band gaps in such squ
lattice structures.

In principle the optimal absolute band gaps can b
obtained for any 2D photonic crystals, as the adjustme
of band structures by the anisotropy in dielectricity is s
effective. However, in practice, due to limited anisotrop
materials [17], such an optimal match in band gaps can
fully be achieved because it needs very strong anisotropy
material dielectricity. Nevertheless, the anisotropy is st
of much help to create and increase absolute band gap
2D PBG structures.

As a practical example, we consider 2D PBG structur
made from Te (tellurium), which is a kind of positive uni
axial crystal with principal indices ofne ­ 6.2 andno ­
4.8 in the wavelength regime between3.5 and 35 mm.
2576
ive
a

r
,
he
ve

in
x.
by

-
r

e,
ing

-
ls.
-
r

f

are

e
nt
o

ic
not

in
ill
s in

es
-

0.0

0.1

0.2

0.3

0.4

J XX Γ

F
re

qu
en

cy
 ( ω

a/
2 π

c)

FIG. 4. Calculated photonic band structures of a triangul
lattice of Te cylinders in air forE-polarization (solid lines)
andH-polarization (dotted lines) modes. The filling fraction of
Te cylinders isf ­ 0.4. An absolute band gap (crosshatche
region) is present between0.234 0.280s2pcyad.

As the free carrier absorption is quite weak for Te in th
infrared regime (absorption coefficienta . 1 cm21), the
imaginary parts of the complex refractive indices can b
neglected compared with their real parts, and the photon
band structures will not be changed. The absorption w
not become a serious problem as a photonic crystal co
sisting of several tens of unit cell layers is thick enough fo
practical applications.

The photonic band structures for triangular and squa
lattices of Te cylinders in air are displayed in Figs. 4 an
5, respectively. The filling fractions of cylinders are both
f ­ 0.4 and the extraordinary axis of Te is chosen parall
to the extension direction of cylinders. It is evident tha
an absolute band gap is present in both lattice structur
which results from the overlap of theH 1-2 band gap
with the E 3-4 band gap, consistent with the analysi
of anisotropy match for band gaps shown in Figs. 2 an
3. The absolute band gap for the triangular lattice has
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FIG. 5. Calculated photonic band structures of a square latti
of Te cylinders in air forE-polarization (solid lines) andH-
polarization (dotted lines) modes. The filling fraction of Te
cylinders is f ­ 0.4. An absolute band gap (crosshatche
region) lies between0.219 0.254s2pcyad.
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FIG. 6. Dependence of band gap positions on the refracti
index for a square lattice of air cylinders in dielectric medium
The cylinders have a filling fraction off ­ 0.7.

width of Dv ­ 0.046s2pcyad, and a band gap to midgap
ratio of Dvyvg ­ 17.9%. For the square lattice we have
Dv ­ 0.035s2pcyad andDvyvg ­ 14.8%.

As to PBG structures with air cylinders in backgroun
dielectric, which exhibit absolute band gaps in both squa
and triangular lattices [18], the anisotropy in dielectricit
can also improve the size of absolute band gap. T
principle is essentially the same as in crystals of dielectr
cylinders in air.

Figure 6 displays the dependence of band gap positio
on the refractive index contrast for both polarization mode
in a square lattice of air cylinders embedded in dielectr
medium. The filling fraction of air holes isf ­ 0.7. It
is evident that theH 2-3 band gap overlaps partially with
the E 3-4 band gap at a refractive index of backgroun
medium larger than 2.8. Photonic crystals compos
of negative material with a weak anisotropy will move
upwards theE 3-4 band gap relative to theH 2-3 band
gap. This will improve remarkably the two band gap
overlapping and the absolute band gap can be increa
2–3 times. As an example, the absolute band gap
isotropic photonic crystal atn ­ 4.0 has a width ofDv ­
0.012s2pcyad. Yet the anisotropic PBG structure with
ne ­ 4.0 andno $ 4.2 exhibits an absolute band gap with
Dv ­ 0.031s2pcyad, about 3 times the size of that in
isotropic crystals. TheE 3-4 andH 2-3 band gaps can be
matched optimally by weak negative anisotropy in a wid
range of refractive index. Yet it is difficult in practice
to match theE 1-2 band gap with theH 2-3 band gap,
as this will require very strong anisotropy in negativ
materials. Simulations made for the triangular lattice of a
cylinders in background dielectric demonstrate that larg
ve
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absolute band gaps also open for anisotropic 2D PB
structures.

As a conclusion, we have shown that the anisotropy
material dielectricity for both square and triangular lattice
can increase the size of absolute photonic band gap rem
ably. As the refractive index for theE-polarization and
H-polarization modes can be chosen different, the ba
gaps can be adjusted and matched to overlap optima
In particular, the positive uniaxial materials are more f
vorable in improving the absolute band gap of photon
crystals consisting of dielectric cylinders in air, while fo
crystals composed of air holes in dielectric medium, neg
tive uniaxial materials are more competent. Because
large varieties of anisotropic materials in Nature, this ope
up a new scope for designing the band gap of 2D photo
crystals.
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