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A variational formulation of the time-dependent linear response based on the Sternheimer me
developed in order to make practicalab initio calculations of dynamical spin susceptibilities of solid
Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the app
is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The
are found to be consistent with experiment and are compared with previous theoretical calcul
[S0031-9007(98)07119-1]
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Full wave-vector and frequency dependent spin susc
tibility x is a central quantity in understanding spin fluctua
tional spectra of solids. Its knowledge accessible direc
via neutron-scattering measurements is important due
significant influence of spin fluctuations to many physic
properties and phenomena [1], such as, e.g., the electro
specific heat, electrical and thermal resistivity, suppress
of superconductivity for singlet spin pairing, etc. In mag
netically ordered materials, transverse spin fluctuations
spin waves whose energies and lifetimes are seen in
structure of transverse susceptibility. High-temperatu
superconductivity, a highly exciting phenomenon, who
origin is still not recognized, can be due to a spin fluctu
tional mechanism [2].

Despite large past efforts put on the developme
of methods forab initio calculations of the dynamical
spin susceptibility based either on the random-pha
approximation (RPA) decoupling of the Bethe-Salpet
equation [3], or within density functional formalism [4,5]
quantitative estimates ofx with realistic energy bands,
wave functions, and self-consistently screened electro
electron matrix elements are scarce in the literature [6–
This is not only because of the absence of complete the
for the proper description of exchange-correlation effec
which is a true many-body problem, but also becau
standard perturbative treatment of the electronic respo
has serious problems connected with the summation o
high-energy states and matrix inversion.

This paper proposes a method which avoids the lat
two problems. The method is a time-dependent gener
ization of an all-electron Sternheimer approach [10] whic
has proven to be very efficient inab initio calculations
of phonon dispersions, electron-phonon interactions, a
transport properties of transition-metal materials inclu
ing high-Tc superconductors [11]. The method employ
a muffin-tin-orbital representation [12] which allows on
to greatly facilitate the treatment of localized states su
as, e.g.,d and f electrons of strongly paramagnetic an
magnetic materials whose studying is the main purpose
this work.

Applications to transverse spin fluctuations in Fe and
as well as calculations of paramagnetic response in Cr a
0031-9007y98y81(12)y2570(4)$15.00
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Pd demonstrate an efficiency of the approach and reso
some discrepancies found in previous theoretical stud
In particular, experimental evidence of an “optical” spin
wave branch for Ni [13] and its absence for Fe [14]
correctly described by the present calculation which w
not done in either early semiempirical approaches [7,8]
within a recent frozen-magnon scheme [15]. For the fi
time, the dynamical susceptibility is calculatedab initio
for paramagnetic Cr, a highly interesting material due to
incommensurate antiferromagnetism [16]. The calculati
predicts a wave vector of the spin density wave (SDW), a
clarifies the role of Fermi-surface nesting. Strong lon
wavelength spin fluctuations of Pd are evident from t
present and earlier [9] theoretical studies.

The description of the method starts by considering
small external magnetic field

dBextsrtd  dbeisq1Gdreivte2hjtj 1 c.c. (1)

applied to a solid. Heredb 
P

m dbmem shows a polar-
ization of the field (m runs overx, y, z or over21, 0, 1),
wave vectorq lies in the first Brillouin zone,G is a
reciprocal lattice vector, andh is an infinitesimal posi-
tive quantity. If the unperturbed system is described
charge densityrsrd and, in general, by magnetization
msrd, the main problem is to find self-consistently firs
order changesdrsrtd and dmsrtd 

P
n dmnsrtden in-

duced by the fielddBextsrtd. If the polarizationdb in (1)
is fixed to a particularmth direction, anddmsrtd is calcu-
lated afterwards, amth column of the spin susceptibility
matrix xnmsr, q 1 G, vd will be found [17]. This essen-
tially solves the problem.

A central issue of employingtime-dependent(TD) den-
sity functional theory (DFT) [18] to find the quantities
drsrtd and dmsrtd is now discussed. The unperturbe
density and magnetization are described accurately by
static DFT and are expressed via occupied Kohn-Sh
states. This is by now a well established method in pra
tical ab initio calculations. In order to find the dynamica
response within TD DFT, only the knowledge of these u
perturbed Kohn-Sham states (both occupied and unoc
pied) is required; no knowledge of real excitation spec
(both energies and lifetimes) is necessary. This is the m
© 1998 The American Physical Society
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advantage of such an approach. Unfortunately, within T
DFT, an accurate approximation to the kernelIxcsr, r0, vd
describing dynamical exchange-correlation effects is u
known while some progress is currently being made [19
In the following, the so-called adiabatic local density ap
proximation (ALDA) [18] and a generalized gradient ap
proximation (GGA) [20] are adopted to treatIxcsr, r0, vd.
To date, these are the most popular tools for practic
ab initio calculations, which are known to produce stati
response functions as well as other ground-state, opti
[21], plus, recently [11], superconducting and transpo
properties for a large variety of solids in good agreeme
with experiments. The use of other approximations
Ixcsr, r0, vd will be addressed in future work.

An important issue ofvariational linear-response for-
mulation is now discussed. The advantage of variation
principles for the calculation of physical quantities is tha
if one makes a first-order error in the trial function, th
error in the variational quantity is of the second orde
Staticcharge and spin susceptibilities appeared as seco
order changes in the total energy due to applied ext
nal fields can be calculated in a variational way. Th
was demonstrated a long time ago [22] on the examp
of magnetic response, and, recently [10,23], in the pro
lem of lattice dynamics which is an example of charg
response. The proof is directly related to a powerf
“2n 1 1” theorem of perturbation theory and stationarit
property for the total energy itself [24]. Any (2n 1 1dth
change in the total energyEtot involves finding onlynth
order changes in one-electron wave functionsci, and cor-
responding changes in the charge density as well as
the magnetization. Any2nth change inEtot is then varia-
tional with respect to thenth-order changes inci.

A time-dependent generalization of these results is no
required. For TD external fields, the actionS as a func-
tional of rsrtd and msrtd is considered within TD DFT
[18,25]. These functions are expressed via Kohn-Sha
spinor orbitals $cisrtd satisfying TD Schrödinger’s equa-
tion [26]. Therefore,S as the stationary functional of
$cisrtd is considered in practice. When the external field
is small, the perturbed wave function is represented
$cisrde2iei t 1 d $cisrtd and the first-order changesd $cisrtd
define the induced charge density as well as the magn
zation:

dr 
X

i

shd $cijIj $cij 1 h $cijIjd $cijd , (2)

dm  mB

X
i

shd $cijsj $cij 1 h $cijsjd $cjd . (3)

Herehj jj denotes averaging over spin degrees of freedo
only, I is the unit2 3 2 matrix, ands is the Pauli matrix.
It is now seen that the knowledge ofd $cisrtd will solve the
problem.

In order to findd $cisrtd, a time-dependent analog of
the 2n 1 1 theorem is now introduced. Any (2n 1

1)th change in the action functionalS involves finding
D
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only nth order changes in the TD functions$cisrtd,
and corresponding changes in charge density as w
as in the magnetization. Any2nth change in S is
then variational with respect to thenth-order changes
in $cisrtd. The proof is the same as for the static cas
[24] if the stationarity property ofS and the standard TD
perturbation theory are exploited. For important casen 
2, this theorem makes the second-order changeSs2d in the
action variational with respect to the first-order changes
d $cisrtd. If the perturbation has the form (1),Ss2d is
directly related to the real diagonal part of the dynamica
spin susceptibility Refxnmsq 1 G0, q 1 G, vdgG0G, thus
allowing its variational estimate [25].

The problem is now reduced to findSs2d as a functional
of d $cisrtd and to minimize it. This will bring an equation
for d $cisrtd. Any change in the action functional can
be established by straightforward varyingS of TD DFT
[18,25] with respect to the perturbation (1). This is
analogous to what is done in the static DFT to derive, fo
example, the dynamical matrix [10].Ss2d is found to be

Ss2dfd $cig 
X

i

2kd $cijH 2 i≠tIjd $cil

1
Z

drdVeff 2
Z

dmsdBeff 1 dBextd ,

(4)

where the unperturbed2 3 2 Hamiltonian matrixH 
s2=2 1 VeffdI 2 mBsBeff. Veff andBeff are the ground-
state potential and magnetic field of the DFT.dVeff and
dBeff are their first-order changes induced by the pertu
bation (1) which involve the Hartree (fordVeff) and the
exchange-correlation contributions expressed viadr and
dm in the standard manner [4].

The differential equation ford $cisrtd is now derived
from the stationarity condition of (4). It is given by

sH 2 i≠tIdd $ci 1 sdVeffI 2 mBsdBeffd $ci  0 . (5)

This is a time-dependent version of the so-called Ster
heimer equation which is the Schrödinger equation to lin
ear order. It can be solved easily on the frequency ax
which substitutes2i≠t by ei 6 v in (5). The solution
of the whole problem assumes self-consistency: Firs
Eq. (5) is solved with the external field (1). Second
drsrvd anddmsrvd are found according to (2) and (3).
Third, screened potentialdVeffsrvd and magnetic field
dBeffsrvd are constructed. The cycle is repeated aga
by solving (5). EvaluatingSs2d after (4) brings the varia-
tional estimate of the real diagonal susceptibility at th
iteration.

In order to access the whole susceptibility matrix
xsq 1 G0, q 1 G, vd one has to perform the self-
consistency for everyq 1 G and v appearing in (1)
with the subsequent Fourier transform of the functio
dmsrvd. The self-consistency takes into account a
local-field effects in eachq 1 G channel. This means
2571
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that in practice for every particularq 1 G, a whole row
of xsq 1 G0, q 1 G, vd is accessed. As an example, th
acoustic spin waves can be found, first, by selecting so
q and G  0 in (1), second, by self-consistent finding
of xsq 1 G0, q, vd, and, third, by tracing for frequency
peaks in Imfxsq, q, vdg.

The advantages of this method are now seen: Fir
Eq. (5) does not require an expansion ofd $ci over a
complete set of unperturbed wave functions$cj as it
is done in the standard perturbation theory. Only th
knowledge of occupied and those unoccupied states wh
are belowEF 1 v is necessary. Second, the inversio
problem is substituted by the self-consistent finding
dVeff anddBeff which allows alternative treatment of the
local field effects. Normally 10 iterations is sufficient to
reach the convergency. Third, the computational sche
is the same for both longitudinal and transverse sp
fluctuations which is achieved by choosing the polarizatio
db in (1) along or perpendicular to the magnetizatio
axe. The method also accessescharge-spin fluctuations
via the knowledge ofdrsrvd, and it can be used to study
dynamical charge fluctuations, if a TDscalar filed of the
type (1) is considered as the perturbation.

An implementation of the method using linear muffin
tin orbital (LMTO) representation is now discussed. A
the original wave function $ci is expanded in terms
of the LMTOs xa with the coefficients $Aa

i , the first-
order changed $ci generally involves both changesd $Aa

i
in the expansion coefficients and changesdxa in the
LMTO basis set [10]. Changesd $Aa

i are now new
variational parameters instead ofd $ci . They must be
found by minimizing the functional (4). Changesdxa

are, on the other hand, an auxiliary set of function
which is constructed to make the expansion ofd $ci fast
convergent. Basishdxaj is normally adjusted to the
perturbation in the same way the original basishxaj is
tailored to the unperturbed one-electron potential. Su
perturbative technique was found to be extremely efficie
in the problem of lattice dynamics [10]. In the magnet
response calculation introducingdxa is important for the
fields exhibiting strong short-wavelength oscillations. O
the other hand, in the calculations withG  0 in (1) the
contributions originating fromdxa are found to be small.

Numerical efficiency of the method is now demon
strated by calculating spin susceptibilities at zero tempe
ture for a number of metals. No shape approximatio
are made either for the charge densities and the pot
tials or for the dynamical response functions. All the rel
vant quantities are expanded in spherical harmonics ins
muffin-tin spheres and in plane waves in the interstiti
region similar to the static linear-response LMTO metho
[10]. The use of GGA gives practically coinciding theo
retical and experimental lattice constants. Necessary B
louin zone (BZ) integrals are carried out using a multigr
tetrahedron technique [10] with1000 k points per 1

48 BZ.
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FIG. 1. Calculated Imfx12sq, vdg (arb. units) for Fe. The
experimental data are indicated by balls [14].

The ab initio results obtained for bcc Fe are now
reported. Figure 1 shows calculated transvers
spin susceptibility Imfx12sq, vdg (G0  G  0) for
q  s00xd2pya. At small q the nondecaying spin waves
are seen to persist in the structure of Imfxg exhibiting a
standard dispersion lawvsqd  Dq2, whereD is the spin
stiffness of the material. The spin waves rapidly deca
whenq approaches approximately one-half of the BZ. A
similar picture has been found for theq’s along thes111d
direction. The deduced magnon spectrum (line) is show
on the top of Fig. 1. It agrees well with the experimen
[14] (balls) as well as with the recent frozen-magnon
calculations [15]. Also, in agreement with experimen
any additional structure which can be attributed to th
appearance of optical spin-wave branches is not predicte
This advances the early RPA calculation [7].

Imfx12sq, vdg obtained for fcc Ni is shown on Fig. 2.
The unusual structure for the energies near 100 me
and for theq’s s0, 0, 0.2 0.4d2pya due to interband transi-
tions is clearly distinguishable. This was attributed to the

FIG. 2. Calculated Imfx12sq, vdg (arb. units) for Ni. The
experimental data are indicated by balls [13].
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FIG. 3. Calculated Imfxsq, vdg (Ry21) for Cr.

appearance of the optical branch in the spin-wave spectr
[7,13]. However, since this structure is seen to be localiz
only in a certain region ofq space, its interpreting [7] as
a well-defined branch persisting to the BZ boundary mig
not be completely correct. The computations along th
(111) direction do not show such unusual behavior. Th
obtained magnon spectrum (line on top of Fig. 2) is i
agreement with the measured one (balls) [13] in the low
frequency interval while it is overestimated for higherv.
The latter is found in both (001) and (111) directions an
is attributed to the poor treatment of dynamical exchan
and correlation due to GGA.

Two examples of calculating paramagnetic spin fluc
tuations are now considered. Figure 3 shows calculat
Imfxsq, vdg for paramagnetic bcc Cr. A remarkable
structure is clearly seen for theq’s near s0, 0, xSDW ,
0.92d2pya, where the susceptibility is mostly enhanced a
low frequencies. This predicts Cr to be an incommens
rate antiferromagnet (experimentally,xSDW  0.95). To
clarify the role of the Fermi-surface nesting in the origi
of such behavior [16], thenoninteractingsusceptibility
x0sq, vd can be analyzed. Imfx0sq, vdg does notshow up
as a structure peaked atxSDW , 0.9 and is a monotoni-
cally varying function. Static Refx0sqdg slowly increases
whenx increases from 0 to 1 and exhibits a small max
mum atxSDW . This means that the generalized Stoner cr
terion 1  Ixcx0sqd does not necessarily assume a larg
peak inx0sqSDW d for Cr; xsqd is strongly enhanced for
all largeq alongGX. At the absence of nesting,x0sqd is
largest atx  1, and this would predict Cr to becommen-
surateantiferromagnet. Nesting brings a small feature
x0sqd and shiftsxSDW from 1 to a slightly smaller value.

Imfxsq, vdg in Pd is found to be strongly enhanced a
small q’s in complete agreement with the early studie
[9]. Therefore, the method also confirms a closeness
Pd to the ferromagnetic instability.
um
ed

ht
e
e

n
-

d
ge

-
ed

t
u-

n

i-
i-
e

in

t
s
of

In conclusion, the developed approach is able to d
scribe known spin-fluctuational spectra of real materia
which demonstrates its efficiency for practicalab initio
calculations. Also, more elaborate approximations to t
dynamical exchange and correlation are clearly requir
in order to account for the observed discrepancies.

The author is indebted to O. K. Andersen, O. Gunna
son, O. Jepsen, M. I. Katsnelson, and A. I. Liechtenste
for many helpful discussions.
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