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Disordered XY Models and Coulomb Gases: Renormalization via Traveling Waves
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We present a novel renormalization approach to 2D ran@dhmodels using direct and replicated
Coulomb gas (CG) methods. By including fusion of environments (charge fusion in the replicated CG),
the distribution of local disorder is found to obey a Kolmogorov nonlinear equation (KPP) with traveling
wave solutions. At lowI" and weak disorder it yields a glasay phase with broad distributions and
precise connections to random energy models. Finding marginal operators at the disorder-induced
transition is related to the front velocity selection problem in KPP equations that yield new critical
behavior. The method is applied to critical random Dirac problems. [S0031-9007(98)07150-6]

PACS numbers: 75.10.Nr, 05.50.+q, 64.60.Ak

Two dimensional random systems have attractedu ~ 0), while most regions are unfavorable{ 0). The
considerable recent interest in domains ranging frondensity P(z ~ 1) of these favorable regions will emerge
localization in quantum Hall systems to vortices in super-naturally as the appropriate perturbative parameter, which
conductors. In the context of localization, progress waslecreases with the scale below the transition and increases
made to characterize the multifractal statistics of 2D wavebove. It corresponds to the tail of the distribution of fu-
functions using random Dirac models [1,2], extendinggacities which becomes broad at IGw
previous studies in 1D [3]. On the other hand, the glassy Remarkably, the RG equation we find for the distri-
properties of vortex phases with disorder was investigatetiution of fugacities turns out to be a nonlinear equation
using randomXY models. While these lines of studies which appears in many contexts, the Kolmogorov (KPP)
have developed in an apparently disconnected way, thegguation [15]. It is known to admit traveling waves so-
lead to similar proposals [1,4] that remarkable connectionfutions, whose velocity selection problem [15] is under
exist between the large fluctuation properties of theseurrent interest [16]. The velocity of the front solutions
systems and solvable disordered models [5,6]. To studgletermines the increase or decrease (@, i.e., the phase
these connections further, consistent renormalization (RGJiagram. Interestingly, universality in the leading correc-
techniques are needed. Our aim is to develop such aions to the velocity [15,16] nicely translates into the RG
approach, which, as in other glassy systems, e.g., in 1Dniversality around the disorder driven transition. Fur-
[7], requires a proper treatment of broad distributionsthermore, via this KPP equation, a precise connection is
Here we focus on the random gaug& model, whose found between the charge fugacity distribution and the
phase diagram, studied long ago [8], has recently beefiee energy distribution of a solvable disordered model:
corrected [4,9-13]. We discuss at the end related randothe directed polymer (DP) on a Cayley tree [6]. Finally,
Dirac problems. restriction to the single charge sector yields a RG deriva-

Topological defects (vortices) of 2BY models can be tion of the multifractal properties of the critical Dirac
described as integer charges with Coulomb interactionsvave function.

To study the resulting Coulomb gas (CG) in the presence As in the pure case, the stability of the weak disorder
of disorder, conventional RG methods [8,14] use a perturXY phase can be correctly inferred by approximate RG
bative expansion in the charge fugacity € ¢ ## with  studies based odipole energieg4,12,13] instead of the

wu the chemical potential) which is assumed toumform  randomcharge fugacitieintroduced here. Thus our phase
over the system However, as we show here, in a dis- diagram has the same topology as the one of [4,12,13],
ordered environmentharge fugacitiestrongly fluctuate even though precise study of the low temperature regime
from site to site at low temperature, invalidating this as-and transition requires the new method defined here.
sumption. The aim of this Letter is thus to develop anovel The 2D square latticeXY model with random
approach which allows one to treat site dependent chargehases [8] is defined by its partition sum[A] =
fugacities, denoted,, by following their probability dis- []; /7 d6;e~#H0-A] with

tribution under renormalization. By studying this distribu-

tion we uncover a transition of a new nature in the random BH[6,A] = Z V(0 — 6, — A;j) 1)
gaugeXY model at low temperature. Beyond a critical o

disorder strength, the low temperature quasi-ordef&d %

phase (which extends down = 0) becomes unstable andV(0) = —Zcod6), K = BJ, B = 1/T. TheA,; are

to the proliferation of defects (vortices). This topologicalindependent Gaussian random gauge fields, wfgh=
transition is peculiar, as these defects are disorder inducedo. The Villain form [17,18] of this model, which we
and frozen in rare favorable regions whefds of order 1 study in this paper, can be transformed into a CG with
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integer charges defined on the sitesf the dual lattice distribution which isnot Gaussiana novel feature from

with Z[V] =Z{nr}e‘5” and all previous approaches. We find that the disorder
Ve = V. + v, naturally splits into two parts, dong
BH = —K Z 1y Gty + anVr (2) range correlated Gaussiampart V,” with logarithmic
’ D E—— ]
r#r r correlator (VZ — V)2 = 4eK?In(Ir — r'|/a) and

_ | . i a local non-Gaussianpart v, which defines thelocal
whereGy - = - [2 — codk.a) — cogkya)]is the lattice  f,qacity variables z% = yexp(zv,) for +1 charges
Laplacian. The bare disorder potentit, = 5G,/(V X [19] which have only short range correlations. The RG
A), is Gaussian with logarithmic long range correlationsequation for the distributior?(z-,z—) of local environ-
ViV_x = 20K*Gy. The usual continuum approximation ments is obtained from the following two contributions:
with (integer) charges of hard core and fugacities (j) “Rescaling: upon coarse graining — @ = ae?, V=
y=e¥ Off this(l;attice f|“0d6| is obtained t;y usBing the produces a Gaussian additive contribution tp from
asymptotic formG,, = (In|lr — r'[/a + - ). a a
He{e pthe perturba:trive e(xplansionlgfv] ijr;); valiér i)n (Ve = Vo) = (V; B V;)z + (dvy — dvp)?  One

’ ’ gets z& — zheKd=dve with dv,dvy = 20K?dl S, .

the dilute limit uniformly over the system, fails. o . .
Let us first sketch the direct RG method suited to("). Fusion Of enylronmen’tsup_on the_ change_(_)f ,CUtc,?ff’
s illustrated in Fig. 1, two regions with fugacities, z%

the present case where disorder favors some regions, ) U p

resulting in a site dependent local fugacity. Our 2/ replaced by asingle regioniat= 5(r’ + r") of ef-
expansion captures the limit where the fugacity is neglifective fugacitie€. = (z% + zL)/(1 + z5z0 + 25z})
gible almost everywhere except in a feare favorable obtained from the relative weighw. /W, of a charge

regions This is achieved by following the local disordﬁr (lei(t:r?in?lzrgggpgéeg:]zrdiigcl)Ig)r rl(/i)) ‘;%SL(’”S) ;‘ieﬂg“”al one

/ 1 / 1"
Ltz zo +zZ
9P(z4+,2-) = OP — 2P(z4,z-) + 2( 6 - ol z- — , (3
Plarz) @2) < (Z+ 1+ 202 + z'+zﬁ> (Z 1+ 2028 + z@zﬁ)>P,P,, 3
where (A)ppr  denotes fz’:,zl AP,z )Pz, 7") | the replicated charga = (n',...,n™) with bare value
and O =KQ2+ z+0,+ +2-0,-) + 0K*(z1+9.4+ — W =~ e YmK"n - SinceK), .. # 0, one cannot restrict to
z-d,-)? is the diffusion operator [20]. single nonzero component charges [13], as it leads to the

A systematic way to study this problem is to introduceerroneous results of [8] at low temperature. However, we
replicas. Starting from (2) we represéiit as the partition  stress that this quadratic form faf,, which results from
sum of a CG withm-vector chargesn? living on the the Gaussian nature of the bare disordempipreserved by
dual lattice sites. Averaging over disorder, and taking théhe RG as shown below. We now perform the RG analysis
continuum limit we obtain the:-vector (hard core) CG of of them-vector CG, extending the scalar case [21], leaving
partition sum expanded in power of thiector fugacityy,,:  the preceding form unchanged with [18,22]

nf’Kb[.n}'
Zn=1+> > ]r ) Yo, - Yo, [ ]
1..-Fp

p=2 nj.n, i#j

il Ky =d' > n’nYaY_y, (4a)
n#0

bl

a

with K, = K&, — ok?, all integrals being restricted 91 Yns0 = (2 — nPKpen®)Yn + d Z YoouYa . (4b)
to |r; — rj| > a, and the sum is over all distinct neu- n/#0n

tral configurations b'=0. Y, is a function of . L . _
9 2oy " Rescaling and annihilation of opposite replica charges

separated by = |r; — r;| = ae? gives the first term of
(4b) and (4a). The second term of (4b), which comes from
fusion of two replica chargeas usual invectorCG, was
absentin [4,12,13] but is crucial for the consistency of the
RG to orderY2. We take the point of view, as discussed

Rz .z)}—__

- below, that the set of,, encodes the full scale dependent
L distribution P(z+, z—) of local disorder. Remarkably, the
FB(L 2" - correspondence betwe#{z.,z—) andY, emerges when
—————— : performing the analytical continuatiam — 0 of (4) which
we now present. To capture the most relevant operators it

R(z',z) is sufficient to consider, with n® = 0, =1 in each replica
0 [19], which, using replica permutation symmetry, depends

FIG. 1. Schematic representation of the fusion of two localonly on the numbers.. of il_ components oh. This _
environments. leads to the general parametrization in terms of a function
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P(z4,z-): The diffusion coefficient isD; = %aljlz and by con-
; structionG;(—) = 1 andG,;(+%) = 0. Remarkably, for
Yn =+ 725 ) constantD this is the much studied KPP equation, which
describes diffusive invasion of an unstable staie={ 0)
= <]_[[6n,,,0 + 24841 + Z- 6,1,,,1]> , by a stable one(§ = 1). It also appears in the solution of
b ® the problem of the directed polymer on a disordered Cay-
i ley tree [6], whereG parametrizes the free energy distri-
where(.. )o = [, ...®(z+,z-). After some combina- bl}/tion. I[t i]s known [1pS,16] that; (x) converges a’?I};lrgla

torics [23,24] the limitm — 0 of (4b) can be rewritten  toyards traveling waves solutiorix — m;) selected by
equivalentlyas Eq. (3) forP = ®/([, . - ®), which e pehavior at infinity oG,—o(x) ~ e ~A*. This implies
is then naturally interpreted as a probability distribution.p .y _, 2 'p(nz — BX)) with X; = m; — E; (X; < 0
The first term in (4b) gives the diffusion contributi@P, ihe xy phase: see Fig. 2).
and the second term in (4b) yields the term of fusion of \ya first find at lowT. o < o,
environments [20] in (3). Finally, with the same defini- Fig. 2 (K, o converge tokx, o). The typicalz goes
tions, (4a) yields the renormalization fé& and o from ;" ,6r0 putP develops a broad tail up to ~ O(1).
screening, which together with (3) form our complete seiyhjle in this phase and at criticality the concentration
of RG equations [22] of rare favorable region®;(1) decreases, it eventually
—1 v I P increases at largé in the disordered phase, < o.
aK— _ %<Z+Z + ijt/Jr 4Z/+Z//Z2Z+> ., (5a) In the XY phase, one must distinguish two different
dl d (1 +z32f +202%) PPV tails in P;(z). As shown in Fig. 2, the bulk of the
do 4_d’< (22" — 7' 7)? > distribution (typical values) is located aroungl, ~ ¢#%:.
PIP//

an XY phase as in

dl 2

7 7 (5b) It corresponds to thé&ont regionwhich has a tail of size
(I + z+z + 2l z%)? i i i
- - V1 ahead of the front. From the velocity selection studies

We have also studied this problem and obtained (3) ani->:16] fOEIT > T, = Jyo /2 we find the front position
(5) using a second methedthout replicas It also allows " ~ 2(B7" + Dﬁ)l-3 ForT < T, the velocity freezes
one to justify physically the expansion presented previWith m; = /D[4l — 5Inl + O(1)]. This corresponds
ously in the fugacityr, of replica charges. Technically, it t0 Pi(z) ~ z~'*#) within the tail of the front, withy =
consists in introducing [24] aexpansion of physical quan- 7/T; < 1. Thus forT < T, the distribution function of
tities in the number of pointsvhich for the free energy Inz travels at thetelative velocityy = 9,X; = J(v/8a —

F[V] = —TInZ[V] as a functional of the disorder takes 1), which determines the phase diagram (see Fig. 3): itis
the form negative [decrease &f;(z ~ 1)]in the lowT XY regime,
positive for ¢ = o.. Furthermore, at lowr', there is
_ ) 3) also afar tail ahead~! of the front which corresponds
FLV] Z FrnlVI+ Z FrmnlVIH s (6) to rare eventsz ~ 1, of small probability P,;(1), but

I #r; I #Ir#13

which dominate average correlations (and tly& and
d;0). The linearized KPP equation, valid in this region,
leads toP;(z) ~ P;(1)z-1+# with w = T/T* < 1 and

where by definitioryfﬁf‘,)___,rk depends only of¥ (r) at points

r;, i = 1,...,k. The first term in (6) corresponds to the _ N

independent dipole approximation [12], and the second® Pi(1) ~ 2 1/4")’,_forT <T" =2qlJ. .

term takes into account contributions from triplets of sites. In the highT regime of theXY phase.P(z) is not

Equation (6) is identical term by term to the expansion in> broad, and one reco‘gers from (7) the usual RG _result

the vector fugacity¥, in the replica method used above. [8]_‘9”’ =C-K+ GKf)y for the average fugacity

It corresponds to a new expansion in the small densit;)”_;xﬂzgl) < +® (~zyp for T >Tg), using G(x) ~

of favorable regionsP,(z ~ 1), equivalent to a small ¢ 2)p, at largex.

density of vector charges on the replicated CG. We have

performed (one loop) renormalization of (6): upon coarse

graining, eachf® corrects f*~, which is taken into PZ)  X=E-m

account consistently for all by the fusion term in (3). < Bl
Since we are performing an expansion in the density /

—>

of rare favorable regionsP;(z ~ 1), it is consistent
to discard thez/.z” terms in the denominators in (3) //
[25,26]. This leads to a closed equation for a single

fugacity distribution P(z) = [, P(z,z-) which, using
the parametrization;(x) = 1 — (exp(—ze AE~E))p )
whereE; = f(’) Jidl, B = 1/T, can be rewritten as

1+U

~1/z

J
~ Y
z eP s Front region%JT

: FIG. 2. Scale dependent distributiaPy(z) and its two tail
30,G = DG + (1 — G)G. (7)  regions forT < T,. Inset: phase diagram.
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independence of the velocity and the front tail (which also replica operator product expansion Bfe™® also yields

determine the relevant operators) on the precise 66| (4a) and (4b).

of the nonlinear term in (7) (see [15]). [19] Higher charges, e.g.x2, are less relevant since the
Finally, the E = 0 critical wave function of 2D Dirac diffusion operator for[.. P(z+,z1+,z--) is as in (3) with

fermions in a random magnetic fieldl [1-3] satisfies K — 4K ando — 20 and fusion leads t®(z++ ~ 1) ~

lo(r)|2 = e Ve /Z with B = —1 V2V, ltis thus related P(zy ~ 1)

to the partition function of aingle chargeZ = ¥, ¢~V in [20] The fraction of fusioned environments yields the universal
.

a random potential, with logarithmic correlations, which factora,V/v = 2.

. 21] B. Nienhuis, inPhase Transitions and Critical Phenom-
can also be studied by our RG approach. The same decorﬁw— ena,edited by C. Domb (Academic Press, London, 1987),

position of disorder "r = zve Y+, and renormalization vol. 11
via fusion of environmentsz(= z' + ") yields directly 1221 4/ = 22, ¢ = & for our cutoff @/d? universal). The
(7) for the distributionP;(z). Elimination of scales up to cubic term ing,Y in [21] drops out form — 0.

I* =1In(L/a) yields thatZ = z(I*) has the same distri- [23] Equation (3) corresponds to a given branching process,
bution as the free energy of the DP on the Cayley tree  associated with a particular cutoff, which even at=
confirming the conjecture of [1,4]. It also yields the mul- 0 contains disorder in the positions of the branching
tifractal spectrum ofy|? found to agree with [1,2] nodes. The most appropriate cutoff would yieifh] =

To conclude, we developed a RG approach to random y* corresponding to a nonlinear ter[G] = (G —
XY models, disordered CG, and random Dirac problems[.24] Ilj)'r‘c(;r;er(]’;i)e'P;Z()j-P Le Doussal (to be published)
By following the whole fugacity distribution, it appears . : ; :
perturbative in the concentration of rare favorable regions[,25] This amounts to neglect terms of ordg(1)’ in the RG

. o . equation for P(1) and in (5) sinceP(z+ ~ 1,z ~ 1)
which corresponds to the vector fugacity in the replica consistently remains of order(1)2.

method. This expansion is highly nonperturbative in theg) This is confirmed by a numerical simulation of (6).
original fugacity y. A precise connection to the free [27] subdominant contributions are neglected, e.g., the varia-
energy distribution of DP on Cayley trees and random  tions of D,.
energy models (GREM) arises from the RG [28] and turng28] Direct replica solution [5] of GREM models requires
out to be crucial to describe the disorder driven transition. replica symmetry breaking (RSB) faf < T,. It yields
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tion of broad distributionsP(z) ~ z~*# (u < 1, no
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