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The dynamics of a superconducting quantum point contact biased at subgap voltages is shown
to be strongly affected by a microwave electromagnetic field. Interference among a sequence of
temporally localized, microwave-induced Landau-Zener transitions between current carrying Andreev
levels results in energy absorption and in an increase of the subgap current by several orders of
magnitude. The contact is an interferometer in the sense that the current is an oscillatory function of
the inverse bias voltage. Possible applications to Andreev-level spectroscopy and microwave detection
are discussed. [S0031-9007(98)07169-5]

PACS numbers: 74.50.+r, 73.23.—b

The classic double-slit interference experiment, wherehe time evolution of the Andreev level spacing. They pro-
two spatially separated trajectories combine to form arvide a mechanism for the energy transfer to the system to
interference pattern, clearly demonstrates the wavelikbe nonzero when averaged over time and for a finite dc
nature of electron propagation. For a O-dimensionaturrent through the junction. The rate of energy transfer
system, with no spatial structure, a completely analogous in an essential way determined by the interference be-
interference phenomenon may occur between two distindtveen different scattering events [1], which will also lead
trajectories in theemporalevolution of a quantum system. to oscillatory features in the current-voltage characteristics
Such trajectories may appear in the presence of temporallyf the QPC.
localized nonadiabatic perturbations (rather than spatially Although an example of the more general problem of
localized slits in a screen) which scatter the systermenergy level spectroscopy, the spectroscopy of Andreev
from one adiabatically evolving state to another. In thislevels has an important specific aspect. Because of their
Letter we show that this type of interference phenomenombility to carry electric current, detection of optical tran-
significantly controls the microscopic dynamics of asitions between Andreev levels is possible by means of
voltage-biased superconducting quantum point contadtansport measurements. The appearance of a subgap cur-
(QPC) subject to microwave irradiation. rent under resonant radiation can furthermore be used as a

It is well known that the Josephson current in a QPC issensitive microwave detector.
carried by Andreev bound states localized within the con- For an unbiased QPC, the Andreev spectrum of
tact area. The corresponding energy levels—the Andreegach transport mode has the folit (¢) = *E(¢) =
levels—lie in the energy gap of the superconductor and=A[1 — D sir®(¢/2)]"/2, where D is the transparency
their positions depend on the changen the phase of the of the mode and the energy is measured from the Fermi
condensate across the junction. Hence, the Andreev levednergy [2,3]. With a small bias voltage applied, the
will move adiabatically with time within the gap if the con- levels move along the adiabatic trajectori€s (1) =
tact is biased by a voltagé much smaller than the gap *E(¢o + 2eVt/F) in energy-time space, as shown in
energy,A. With any (normal) electron scattering presentFig. 1. When the criteriunk¢ = 2¢V < 2E(t)/A for
in the contact the Andreev levels will, however, never crossadiabaticity is obeyed, the rate of interlevel transitions is
the Fermi level; instead they will oscillate periodically with exponentially small keeping the level populations constant
¢ so that on the average no energy is transferred to thi time [4,5]. The presence of a weak electromagnetic
QPC and a purely ac current will flow through the contacffield [on the scale ofz(¢)] does not affect the adiabatic
(ac Josephson effect). level trajectories except for short times close to the

Microwave radiation of large frequency ~ A rep-  resonances at= t, 3, WhenE(t43) = hiw/2. Here the
resents a nonadiabatic perturbation of the QPC systendynamics of the system is strongly nonadiabatic with a
However, if the amplitude of the electromagnetic field isresonant coupling which effectively mixes the adiabatic
sufficiently small, the field will not affect the adiabatic levels. This is an analog of the well known Landau-Zener
dynamics of the system much unless the condition for resaransition, which describes interlevel scattering as a
nant optical interlevel transitions is fulfilled. Such reso-resonance point is passed. In our case these transitions
nances will occur only at certain moments determined byive rise to a splitting of the quasiparticle trajectory at the
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where o; and 7; denote Pauli matrices in electron-hole
space and inu+ space, respectively. The functian
which is smooth on the scale of the Fermi wavelength,
has a discontinuity at the contact which is determined
Vi 2 by the transfer matrix of the QPC in the normal state
and is described by the following boundary condition [8]:
A u(+0) = (1/+/D)(1 — VR 7y)u(=0),R =1 — D.

=21 @, @ 0 @+2n @r2m 2m o(t) The gate potentialV,(x,r) = V,(x)coswt in Eq. (1)
oscillates rapidly in time and the amplitude is assumed to

FIG. 1. Time evolution of Andreev levels (full lines) in the be small compared to the Andreev level spacitg, <
energy gap of a gated voltage-biased, single-mode superco% '

ducting QPC (see inset). A weak microwave field induces resok (). Under this condition, the system experiences an
nant transitions (wavy lines) between the levels at painend ~ adiabatic evolution at all times except close to the reso-

B and the level above the Fermi energy becomes partly occuaances (pointd andB in Fig. 1) The duratiord ¢ of these
pied to an extent determined by interference between the tWeesonances is short in the limi¥/ < A compared to the

transition amplitudes. Nonadiabatic interactions release the ens_ . At _
ergy of quasiparticles in the (partly) occupied Andreev IevelrberIOd of Josephson oscillatioffy, = wA/eV. Indeed,

into the continuum at poin€, where the Andreev states and tNe resonant transition occurs if the deviation of the inter-
the continuum merge into each other (represented by dashed dgvel spacing from the resonance vall&) — fiw /2 =
rows; see text) and the initial conditions for the Andreev level E(z, )5 does not exceed the quantum mechanical resolu-
populations are reset (filled and empty circles). tion of the energy levels/&z. From this we can estimate
811081 ~ [li/E(ta5)]"/? < Ii/eV. Hence we may con-
pointsA, B into two paths A;4,B, andA; B, B,, forming sider the nonadiabatic dynamics as temporally localized
aloop in(E, 1) space. scattering events. By introducing a linear combination
The resonant scattering opens a channel for energy aB(t) = b* (t)e’*>u™ + b~ (t)e ''>u~ of the eigen-
sorption by the system; a populated upper level when apﬁtateSut corresponding to the adiabatic Andreev levels
proaching the edge of the energy gap (at pGinn Fig. 1)  E~, we can describe the system’s evplution through a reso-
creates real excitations in the continuum spectrum, whiciiance by letting a scattering matrix connect the co-
carry away the accumulated energy from the contact. As &fficientsb* before and after the splitting points and
result, the net rate of energy transfer to the system is finiteB. A standard analysis of the Landau-Zener interlevel
it consists of energy absorbed both from the electromagiransitions (see, e.g., [9]) gives the scattering matrix ele-
netic field and from the voltage source. The confluence oments at the poinfl (Sa)++ = (Sa)—— = 7, (Sa)+- =
the two adiabatic trajectories & (see Fig. 1) gives rise  —(S4)%, = p, wherelp|> =1 — |7]> =1 — ¢ 7 isthe
to a strong interference pattern in the probability for realprobability of the Landau-Zener interlevel transition. Here
excitations at the band edge, potit The interference ef- ¥ = 7|V+-|*/(dE/d1), whereV. _ is the matrix element
fect is controlled by the difference of the phases acquiredor the interlevel transitions. At the splitting poitthe
by the system during propagation along the path4,B,  Scattering matrix readsy = Si. The matrix element
andA,B;B,. was calculated for the case of a double barrier QPC struc-
For a quantitative discussion we consider a one-mod#ure in Ref. [9]. For a single barrier junction an analogous
superconducting point contact [6] with arbitrary energy-calculation gives us/,— = a(L/&)vVDR V, sin(¢/2),
independent transparendy for normal electrons) <  Where the constantt ~ 1 is determined by the posi-
D < 1. The length of the junctioi is small compared tion of the barrier. We note that this matrix element is
to the coherence lengtly, L < &,. The contact is proportional to thereflectivity of the junction; reflection
biased at a small applied voltagd’ < A, and a high mixes electron states with-kr and —kr allowing op-
frequency electromagnetic field is applied to the gatdical transitions between the Andreev levels. In a per-
situated near the contact; see inset in Fig. 1. We wilfectly transparent QPCI( = 1), the upper and lower
describe the evolution of the Andreev states with the timeAndreev levels correspond to opposite electron momenta
dependent Bogoliubov—de Gennes (BdG) equation [7] foand the effect under consideration does not exist; cf.
the quasiclassical envelopes(x, r) of the two-component  Refs. [4,10]. .
wave function® (x, 1) = u4 (x, 1)e* ™ + u_(x, t)e ik, By introducing the matrixb;; = exdio. ® (i, j)],

ihou/ot = [Hg + o,V,(x,)]u. @ ®; 7
. . o Oi.j) == | de(E@) - =), ()
In this equationu = (u4,u_) is a four-component 2eV J 4, 2

vector, Hy is the Hamiltonian of the electrons in the

electrodes of the point contact, which describes the “ballistic” dynamics of the system be-

tween the Landau-Zener scattering events, we connect the
Hy = — ilivpo,7,0/dx coefficientsb= at the end of the period Pf the Josephson
oscillation, ¢ = 0, with the coefficient®, at the begin-
+ A{cog ¢ (t)/2]o, + isiné(r)/2]sgnxoy}, (2)  ning of the periodg = —27r,
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bt . b —A(¢). The immediate consequence of this property is
(b ) = (I)O,BSBCI)B,ASA(I)A,—27T< b ) (4) thatthe static Andreev states correspondifterenteigen-
0 valuesA at ¢ < 0 and at¢ > 0, and therefore they are
The time-averaged current through the junction can berthogonal [11], even though they belong to szendevel.
directly expressed through these coefficients. Hence the state evolving from the adiabatic stetér, ) is
The quasiclassical equation for the total time dependerdrthogonal to the adiabatic state (r,). As a result the
current at the junctionx(= 0) reads/(t) = vr(ur.u),  probability for an adiabatic Andreev state to be “scattered”
where (...) denotes a scalar product in 4-dimensionalinto a localized state after passing the nonadiabatic region
space. From Egs. (1) and (2) it follows that is identically zero. In reality, the Andreev state as it ap-
2e ((deb -1 .4 d(uin) . proache_s the continuum band edge decays into the states of
I(1) = = (_> f dx|:l'ﬁ - Vg<ugzu>] the continuum. Such a decay corresponds to a delocaliza
ho\ dt e dt tion in real space and is the mechanism for transferring en-
) ) ergy to the reservoir [12].
In the static limit,V, = 0 and¢ — 0, it equals the usual The orthogonality property shown above guarantees that
equation! = (2¢/h) (dE=/d¢) for the Andreev level the coherent evolution of our system persists during only
current. In the general nonstationary casés a linear one period of the Josephson oscillation and that the equi-
combination ofu™ and we calculate the current averagedlibrium population of the Andreev levels is reset at each
over the periodly. Using the normalization condition point ¢ = 27rn [13]. This imposes the boundary condi-
[b*|> + |b~|> = 1 and omitting small contributions from tionsb*(27n + 0) = 0,b~ (2n + 0) = 1 in the begin-

rapidly oscillating terms, we obtain ning of each period. Combining this boundary condition
) with Egs. (6) and (4), we finally get
¢ iw +2 +12
Iy = s (A - 7)[“9 I = |bg |7]. (6) 8¢ fw _
™ dec = _ﬁ A — 7 e 7(1 — 6_7)S|n2[¢(A,B) + 6],
The direct current through the contact can be viewed as re- . 7)

sulting from photon-assisted pair tunneling or equivalently

as being due to the distortion of the ac pair current due t dau-7 f " hich Kiv d dsio
the induced interlevel transitions. The magnitude of th andau-zener transition, which weakly dependsvon

current is such that the energy absorbed from the voltage Equation (7) is the basis for presenting the biased QPC

source, V4., together with the energy absorbed from the2® 2 qguantum interferometer. There is a clear analogy

hf field corresponds to the energy necessary for creating getween the QPC interferometer and a starjdard_SQUID
real continuum-state excitation. in that they both rely on the presence of trajectories that

Let us now discuss the boundary conditiorpat= 27 n form a c_IOS(_ed loop. Ina SQ.UID' Which is used to measure
(n is an integer). In the vicinity of these points, the magnetic flelds, the loop is determined by the dewcg
Andreev levels approach the continuum and the adiabati eometry; in the QPC the voltage (analog of the magnetic

approximation is unsatisfactory, even at small applied volt-'eld) is well defined while the geometry of_the loop In
ages and weak electromagnetic fields. The duradioaf (E,1) space can be mea_sured_. T.h's loop is deterrr_nned
the nonadiabatic interaction between the Andreev level anBy tthell,A(jnciI)rei\é-le;/el trajector:cetsh '(E’tt) spallcfe_: I?jnd Tli
the continuum states can be estimated using the same gpenuofled by the irequency of he external neid. IS

gument as for the microwave-induced Landau-Zener SCa{;ives us an immediate possibility to reconstruct the phase
tering. One finds thass ~ /1/(Ae2V2)!/3. To derive the dependence of the Andreev levels from the frequency

boundary condition, for example, at poifitin Fig. 1, one depend_ence of the peridd of _oscillations of _the current
needs to calculate the transition amplitude connecting th ersus inverse voltage; see Fig. 2. Indeed, it follows from

here6 is the phase of the probability amplitude for the

statesu™*(#;) at timet; < tc — 8t andu*(s,) at time g. (3) that -1
ty > tc + 8t: (ut ()U(rr, 1))u*(1)). HereU(r, 1) is HE) =7+ 4me d ) (8)
the exact propagator corresponding to the Hamiltonian in h do ly=kE

Eq. (1). Itfollows from symmetry arguments that thisam- In order to be able to do interferometry it is neces-
plitude is exactly zero. Both the Hamiltonian (2) and thesary to keep phase coherence during one period of the
boundary condition fora at x = 0 are invariant under Josephson oscillation. There are three dephasing mecha-
the simultaneous charge and parity inversion described byisms that impose limitations in practice: (i) deviations
the unitary operatoA = Po,7., whereP is the parity from an ideal voltage bias, (ii) microscopic interactions,
operator inx space. This implies that at any time any and (iii) radiation induced transitions to continuum states.
nondegenerate eigenstate of the Hamiltonian is an eigefi-he main source of fluctuations of the applied voltage is
state of the symmetry operatdr with eigenvalue+1 or  the ac Josephson effect. In the resistively-shunted-junction
—1 and that this property persists during the time evolutiormodel, a fixed voltage across the junction can be main-
of the state. In particular, the static Andreev state obeytained only if the ratio between the intrinsic resistaige

the equationAu®(¢) = Au*(¢) at any¢. It follows  of the voltage source and the normal junction resistance
from Eq. (2) thatu*(—¢) = o,7yu*(¢) so A(—¢) = Ry issmall. IfR;/Ry < 1 the amplitude of the voltage
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the gap frequency. Because of the resonant character of the
phenomenon, the current response is proportional to the
ratio between the amplitude of the applied field and
the applied voltage,/ ~ |V+|>/AeV. For common
superconductor-insulator-superconductor detectors a non-
N Y 4 ]  / resonant current response is proportional to the ratio
00, 0 130 ‘ 180 between the amplitude and the frequency of the applied
AleV radiation [17], 1 ~ |V+/w|?; i.e., it depends entirely

_ . on the parameters of the external signal and cannot be
FIG. 2. Current vs inverse voltage from Eq. (7) for a b'asedimproved.

superconducting QPC irradiated with microwaves of frequency | lusi h h hat irradiati ¢

o = 1.52A/h and amplitude corresponding to a matrix ele- n conclusion, we have shown that irra Iatlon or a
ment|V.| = 0.024A for interlevel transitions. Note the cut in Voltage biased superconducting QPC at frequeneies

the inverse voltage scale. Results of the scattering approach can remove the suppression of subgap dc transport
Eq. (5) ), are close to those obtained by numerically solvingthrough Andreev levels. Because of the resonant nature of

the BAG equation (1) with the radiation field treated in the resoyne photon-induced interlevel scattering the phenomenon
nance approximation (solid line). The close fit means that the

scattering picture can be used fo reconstruct the Andreev levef@" P& used for sensitive microwave detection. Quantum
from the period of the current oscillations (Andreev level spec-interference among the resonant scattering events can be

troscopy; see text). used for microwave spectroscopy of the Andreev levels.
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®(A, B) can be neglected 8P (A,B) = ®'(A,B)6V <
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