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Polaron Problem by Diagrammatic Quantum Monte Carlo
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We present a numerical solution of the polaron problem by a novel Monte Carlo method. Starting
from a conventional diagrammatic expansion for the polaron Green funGtitn7), we construct a
process which generates continuous random varidblaad 7, with a distribution function coinciding
exactly with G(k,7). The polaron spectrum is extracted from the asymptotic behavior of the
Green function. We compare our results for the polaron energy with the variational treatment of
Feynman, and present an accurate dispersion curve which features an end point at finite momentum.
[S0031-9007(98)07144-0]
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The polaron problem has a long history starting fromHere¢,, indexes different terms of the same order The
the work of Landau [1]. In its most general form, it askstermm = 0 is understood as a certain function yaf In
what happens to a particle coupled to an environmentRefs. [4,5] it was shown how to arrange a Metropolis-
and what are the properties of the resulting object, calletiype stochastic process simulating the distribut@fy)
a polaron, which consists of the bare particle dressed bgxactly The process has much in common with the MC
environmental excitations. This problem arises over andgimulation of a distribution given by a multidimensional
over again because of its fundamental importance botmtegral. Nevertheless, the crucial difference is associated
for high-energy and for condensed matter physics, andith the fact that the integration multiplicity in the
also because the notion of what we call “particles” be-expansion Eq. (2) is varying.
comes more diverse as new kinds of environment appear The projection onto the polaron problem is as follows.
(e.g., hole excitations in spin environments). In this palet us interpret the Matsubara (imaginary time) Green
per we describe how the polaron problem can be solvetlunction of the polaron in the momentum-time representa-
numerically without systematic errors using a diagram-ion, G(k, 7), as the distribution function for the random
matic Monte Carlo (MC) method and present results forvariablesk andr. We thus identifyG with 0 and(k, 7)
the notorious Frohlich model (see, e.g., Refs. [2,3]). Firstwith y. Equation (2) is then identified with the diagram-
we explain in detail how this model fits into our general matic expansion o& (k, 7) in terms of free-electron and
MC scheme [4,5] dealing with distribution functions of phonon propagators within the framework of a conven-
continuous variables. We then describe the procedure dfonal Matsubara technique @&t= 0. Then, the variables
extracting the polaron spectrumiyk), from the asymp- xi,x,,...,x, are the internal times and independent mo-
totic decay of the Green function. Although for small menta of the diagrarg,,. A typical diagram is presented
electron-phonon coupling the polaron eneifgy and the in Fig. 1. Solid lines denote the free-electron propaga-
effective massn.. at the bottom of the polaron band are tors, GO(p, 7, — 71) = e~ (PP/2=w(n-m)  \where W is
rather well given by perturbation theory, the lowest orderthe chemical potential (Plank’s constant and the electron
perturbation theory fails to describe the spectrum near thmass are set equal to unity). Dashed lines and points stand
thresholdE(k) — Ey = w,, Wherew,, is the frequency for phonon propagatorsp(q,r — 7;), and electron-
of the optical phonon. In fact, the threshold features arphonon coupling verticed/(q), respectively. We fix the
end point [6,7] left end of the diagram at the origin of imaginary time,
(k — k)2 ascribing thus the time to the right end.
—_— k<ke), @ In this paper we confine ourselves to the Fréhlich model

[2] where phonons are considered to be dispersionless,
analogous to the end point of the excitation spectrum

in “He described by Pitaevskii [8]. Our numerical data
unambiguously confirm this conclusion.
We start by considering the underlying mathematics.

E(k) = E() + w, — m

Suppose that for a certain random variable (set of vari- et
ables),y, the distribution functionQ( y) is given in terms
of a series of integrals with an ever increasing number of
integration variables, ! [ | VLT
. I ¢ ¢ ¢ ——b —0
0(y) = Z zf dxi - dx, F(€m, v, x1,.. ., X%m) . (2) FIG. 1. A typical diagram contributing to the polaron Green
m=0 &, unction.
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P8 F(émin Y, X1, X, X)
pﬂ F(§M7y7-xla"'7xm)

and p 4 andpg are the probabilities of selecting updates
A and B, which, in principle, may differ. To solve the

) il polaron problem and account for any possible diagram
V(@) = iV2am) ; (4) it is sufficient to have only one pair of complementary
updates of type Il: the updat&l adding a new phonon
propagator to the diagram and its counterf@ntemoving

and the electron-phonon coupling has the form,

Hepn = kZ V@) (b — b-gai_qax, ()
»q

R(X) = (7)

In Eq. (3) ax and by are the annihilation operators for
the electron with momenturk and for the phonon with 5,4 phonon propagator from the diagram.

momentumg, respectively;a is a dimensionless cou-  consider the algorithm ford. First we select the po-
pling constant. In the Frohlich model the phonon propasition 7, for the left-hand end of the extra phonon propa-
gator is independent of momentuni2(q,7> — 71) =  gator. This is done by choosing at random (with equal
exg-w,(r2 — 71)]. It is convenient, however, to at- probabilities) one of the free-electron propagators and by
tribute the _vertex factors to the da:_shed lines, so thatraking for 7, any time (with equal probability density)
a dashed line with m<2)menturq contributes the factor ithin this propagator. Second we select the position
D(q.7 — ) = [V(@I"D(r, — 7)) tothe dlagra)l,m. The for the right-hand end of the phonon propagator, in ac-
function F is thus expressed as a product@’’s and  corgance with the distribution function exfl—w,(r, —
D’s, in accordance with the standard diagrammatic ruIes.T])]. After that, we select the momentum for this prop-
Simulating the distributionQ(y) is the process of agator, using the distributionc (1 + ¢/qo)~2, where

sequential stochastic generation of diagrams, such as /> = w,. Now the proposing stage is completed, and
- . - . - p' y
Fig. 1, with certain fixed times and momenta. The MCwe are ready to perform an accept (reject) step, following

process consists of a number of elementary updates falling o ;pove prescription, Eq. (5). The corresponding func-
into two qualitatively different classes: (I) those which do W) (& = {71, m, q}) reads

not change the type of the diagram (change the values
of arguments inF, but not the function itself), and (ll) W) o 1 1 e~ @p(m=T) 8)
those which do change the structure of the diagram. 170 (1 + q/q0)? ’

The updates of class | are rather straightforward, being\lhere 70 is the length of the free-electron propagator

identical to those of simulating continuous distribution nd where th g i lected. Apart from the factor
corresponding to the given functian. In this paper we a ere the point, 1S selected. Apart Iro € facto
epg/p_q, the ratio (7) is now completely defined.

;JhS:r?gnAi/ ::; gfﬁﬂaetzig;gﬁ E}r/]plsi,gnalmely, shifting in tim The algorithm forB is to select at random (with
In the heart of the method are updates of type IlI. Theequal p_r_qbabil_ities)_ some phonon propagator_and with the
generic rules for constructing them are as follows [5]. Letprobabnmes given In Eqs_. 6)-@)to remove It. .
We now define the ratipg/p.4. The simplest choice

itr:]teo ulg(dgateﬂl t;ansfor)r:w idlagranf(fmiy,;cr;a...C,écr,,;é_ would be to have equal probabilities for selecting the
sponding;w,nit); ccl)’ljr%férrr)na’lﬂ?mggr;‘b‘r’rng me inver,se trans- crgation and annih_ilation procedures at each MC step. It
formation. Forn new variables we introduce the vector might seem that this leads jog/pa = 1, but this is not .
NOtation:x = Xy 1, X2 Xmen}. The update proce- true. When we select an electron propagator to decide
. m s vm s vmtTnge. . .
dure A involves two steps. First, pproposesa change, about pointr;, we haven, equal chances,_whem_ls
selecting a new type of diagrand,,, and a particular the_ numbe_r_ of free—elgctron propagators in the diagram
value ofx. The vectorx is selected with a certain nor- being modified [denominator of Eq. (7)]. When we select
a phonon propagator to be removed, we hayg equal

malized distribution functio (x). There are no require- chances, wherdy., is the number of phonon propagators
. . . - y ph
ments strictly fixing the form oW (x), but to render the in the diagram [numerator of Eq. (7)N, and Ny, are

algorithm most efficient, it is desirable th#t(x) be cho- traightf dlv related t h oth

sen as close as possiblef¢é,,+,,y, X). Upon proposing straightiorwardly refated to each other,
the modification, the update is accepted with the proba- Npn = (N, + 1)/2. 9)
bility P,..(x), or rejected. The updatB, removing vari-

ablest, is accepted with probabilitf,., (). For the pair We thus get
of complimentary updates to be balanced, the following pe _N.+1  Npn
Metropolis-like prescription should be fulfilled [5]: pa 2N, N1 (10)

Poce(®) = {R(x)/W(X)’ if R(X) < W(x), 5) As for the updates of type I, these may include
1, otherwise () the selection of timer anywhere on the interval
(T2w,,, %) according to the simple exponential distribution
6) of GOk, 7 — 7,) [obviously, the role of the chemical
potential is to make this distribution normalizable; in
where fact, we useu as a tuning parameter to probe different
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time scales since the typical length of the diagram in  G(k,7 > w;I) — Zrexp—[E(k) — u]r}. (11)
time is controlled by the inverse of(k) — u], and
(i) the change of the diagram momentum froknto By fine-tuning the chemical potential close E{k) we
k + p according to the distribution function exp(k +  may extend the time scale f@¥(k, 7) which is given by
p)>7/2m], wherek is the average electron momentum of 1/[E(k) — u]. Typically, we had reliable statistics on the
the diagram, i.ek = 77! [( d7' k(7). We find it more time scale of the order of00/w, and were thus able to
efficient, however, to select the incoming momentum atdeduce the polaron energy to accuracy better th@iw , .
will and keep it fixed, since in this case we collect all theApart from the polaron energy, the asymptotic behavior
statistics for the value of we are interested in, instead of of the Green function (11) gives us one more important
spreading it over the entire histogram. physical characteristic of the polaron, the factpr which

As mentioned already théV distribution function shows the fraction of the bare-electron state in the true
according to which one is selecting the new diagram varieigenstate of the polaron
ables is arbitrary, but the best possible choice would be _ ; 2
Wiew @) = D(q. 72 — m1)exp— /7 dr[(p(r) — q)? — Z; = |(free particlg | polaron)|?. (12)
p2(7)]/2}, so that the accept (reject) probabilities in .
Egs. (5) and (6) are independentiof However, it is not In Fig. 3 we present our results for the bottom of the

known in the general case how to map the homogeneog@nd Eo @s a function of the coupling strengif in
(on the unit interval) multidimensional distribution of the most interesting intermediate region< « = 6. As
random numbersry,...,rs to arbitrary W. Such a expected, our data are below the solid line which gives the

mapping is easy ifW = 1—[471 Wi(x;) factorizes [as in UPPer bound foE, (known to be the lowest ever obtained
Eq. (8)], and one simply E_as to choose the functionafol this problem) as derived from Feynman’s variational

form which allows an analytic (i.e., very fast) solution of réatment [3]. ‘We note the remarkable accuracy of

one-dimensional equationg’~" dy W:(y) = r;, where Feynman’s approach to the polaron energy. .

{W,} are defined on interval:;, b;), and their product is __1OWever, the most interesting and instructive data

as close as possible W.s;. We believe this is the most are for the polaron spectrum at rglatlve!y large The

efficient way of summing the diagrammatic series @ar pzerturbatlon theor_yirlesult for the d|sper§|on.law_k) =

In Fig. 2 we show the typical data for the polaron Greenk /2 = a(V2/K)sin!(k/V2) (the .SOl'd line in Fig. .4)’ .

function. Following Ref. [3], we use energy units SuChclearlly demonﬁtrates tr;aththe first-order %orreﬁtllc:jn |sOI
Con ; singular near the optical phonon emission threshold an

that @, = 1. -Aﬂe-r an initial drop at s'hort. times ['the vegn develops an Lrj)n h SI?iC&ﬂ maximum [by assumption

overall normalization of the Green function is establishe ps ar physica y p '

from G(k, 7 — 0) — G©(k,0) = 1] we observe a pure he threshold point was defined a@k.) = Ey + w);

exponential decay af (k, 7) at longer times [provided we the maximum on the dispersion curve /at< k. is in

are below the threshold of Cherenkov radiatidrik) —

Ey < w,, so that the polaron state is stable]. From the 0.0

exponential asymptotic of the Green function we readily
extract the polaron energy, 101
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FIG. 2. Polaron Green functioi(k = 0,7) for « =2 and  FIG. 3. Polaron energyt, as a function of the coupling
pm = —2.2. The solid line is the exponential fit. strength. The solid line is Feynman'’s variational result.
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E(k) of the polaron state. We estimate the crossover region as
0.0 Ak/k. ~ /m/M, whereM is the mass of the host-lattice
T Ly atoms.
In summary, we have presented the numerical solution
0.2 o of the polaron problem by our diagrammatic quantum MC
e a=1 method, which directly simulates the polaron Green func-
i tion in the 4D momentum-time continuum. This approach
0.4 // applies to any model dealing with 1 (few) degree of free-

dom, either continuous or discrete, coupled to the thermal
bath. The series of the form of Eq. (2) also naturally repre-
sents the partition function in the interaction picture [4,5],
and this approach was used recently to calculate the smear-
ing of the Coulomb staircase in quantum dots [10]. More
generally, diagrammatic MC solves any problem which
can be reduced to a convergent series (2). (It may happen
that perturbative expansion forms an asymptotic series; in
which case the above approach does not work, e.g., an ex-
pansion ine for H = p?/2m + mwix?/2 + ax*.) The
efficiency, however, severely depends on the sign problem,
and the convergence becomes very podt flinctions are
-1.2 ‘ ‘ ‘ K not positive definite. The sign problem may originate from
0.0 0.5 1.0 1.5 the particle statistics or from the alternating sign of matrix
FIG. 4. Polaron dispersion law far = 1. The solid line is €léments contributing to different diagrams. Itis thus of
the first-order perturbation theory result. crucial importance to work in the representation in which
the sign problem is absent.
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