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We present a numerical solution of the polaron problem by a novel Monte Carlo method. Sta
from a conventional diagrammatic expansion for the polaron Green functionGsk, td, we construct a
process which generates continuous random variablesk and t, with a distribution function coinciding
exactly with Gsk, td. The polaron spectrum is extracted from the asymptotic behavior of t
Green function. We compare our results for the polaron energy with the variational treatmen
Feynman, and present an accurate dispersion curve which features an end point at finite mome
[S0031-9007(98)07144-0]

PACS numbers: 71.38.+ i, 02.70.Lq, 05.20.–y
-

l
ed

.
n
-

-

-

-

n
nd

,

el
ss,
The polaron problem has a long history starting fro
the work of Landau [1]. In its most general form, it ask
what happens to a particle coupled to an environme
and what are the properties of the resulting object, call
a polaron, which consists of the bare particle dressed
environmental excitations. This problem arises over a
over again because of its fundamental importance bo
for high-energy and for condensed matter physics, a
also because the notion of what we call “particles” b
comes more diverse as new kinds of environment app
(e.g., hole excitations in spin environments). In this p
per we describe how the polaron problem can be solv
numerically without systematic errors using a diagram
matic Monte Carlo (MC) method and present results f
the notorious Fröhlich model (see, e.g., Refs. [2,3]). Fir
we explain in detail how this model fits into our genera
MC scheme [4,5] dealing with distribution functions o
continuous variables. We then describe the procedure
extracting the polaron spectrum,Eskd, from the asymp-
totic decay of the Green function. Although for sma
electron-phonon coupling the polaron energyE0 and the
effective massmp at the bottom of the polaron band ar
rather well given by perturbation theory, the lowest ord
perturbation theory fails to describe the spectrum near
thresholdEskd 2 E0 ø vp, wherevp is the frequency
of the optical phonon. In fact, the threshold features
end point [6,7]

Eskd ­ E0 1 vp 2
sk 2 kcd2

2mc
sk , kcd , (1)

analogous to the end point of the excitation spectru
in 4He described by Pitaevskii [8]. Our numerical dat
unambiguously confirm this conclusion.

We start by considering the underlying mathematic
Suppose that for a certain random variable (set of va
ables),y, the distribution functionQs yd is given in terms
of a series of integrals with an ever increasing number
integration variables,

Qsyd ­
X̀

m­0

X
jm

Z
dx1 · · · dxm Fsjm, y, x1, . . . , xmd . (2)
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Herejm indexes different terms of the same orderm. The
term m ­ 0 is understood as a certain function ofy. In
Refs. [4,5] it was shown how to arrange a Metropolis
type stochastic process simulating the distributionQsyd
exactly. The process has much in common with the MC
simulation of a distribution given by a multidimensiona
integral. Nevertheless, the crucial difference is associat
with the fact that the integration multiplicity in the
expansion Eq. (2) is varying.

The projection onto the polaron problem is as follows
Let us interpret the Matsubara (imaginary time) Gree
function of the polaron in the momentum-time representa
tion, Gsk, td, as the distribution function for the random
variablesk andt. We thus identifyG with Q andsk, td
with y. Equation (2) is then identified with the diagram-
matic expansion ofGsk, td in terms of free-electron and
phonon propagators within the framework of a conven
tional Matsubara technique atT ­ 0. Then, the variables
x1, x2, . . . , xm are the internal times and independent mo
menta of the diagramjm. A typical diagram is presented
in Fig. 1. Solid lines denote the free-electron propaga
tors, Gs0ds p, t2 2 t1d ­ e2s p2y22md st22t1d, where m is
the chemical potential (Plank’s constant and the electro
mass are set equal to unity). Dashed lines and points sta
for phonon propagators,Dsq, t2 2 t1d, and electron-
phonon coupling vertices,V sqd, respectively. We fix the
left end of the diagram at the origin of imaginary time
ascribing thus the timet to the right end.

In this paper we confine ourselves to the Fröhlich mod
[2] where phonons are considered to be dispersionle

FIG. 1. A typical diagram contributing to the polaron Green
function.
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and the electron-phonon coupling has the form,

He-ph ­
X
k,q

V sqd sby
q 2 b2qday

k2qak , (3)

V sqd ­ is2
p

2 apd1y2 1
q

. (4)

In Eq. (3) ak and bq are the annihilation operators fo
the electron with momentumk and for the phonon with
momentumq, respectively;a is a dimensionless cou-
pling constant. In the Fröhlich model the phonon prop
gator is independent of momentum:Dsq, t2 2 t1d ­
expf2vpst2 2 t1dg. It is convenient, however, to at-
tribute the vertex factors to the dashed lines, so th
a dashed line with momentumq contributes the factor
D̃sq, t2 2 t1d ­ jV sqdj2Dst2 2 t1d to the diagram. The
function F is thus expressed as a product ofGs0d’s and
D̃’s, in accordance with the standard diagrammatic rule

Simulating the distributionQs yd is the process of
sequential stochastic generation of diagrams, such a
Fig. 1, with certain fixed times and momenta. The M
process consists of a number of elementary updates fal
into two qualitatively different classes: (I) those which d
not change the type of the diagram (change the valu
of arguments inF, but not the function itself), and (II)
those which do change the structure of the diagra
The updates of class I are rather straightforward, be
identical to those of simulating continuous distributio
corresponding to the given functionF. In this paper we
use only one update of this type, namely, shifting in tim
the right end of the diagram in Fig. 1.

In the heart of the method are updates of type II. T
generic rules for constructing them are as follows [5]. L
the updateA transform a diagramFsjm, y, x1, . . . , xmd
into Fsjm1n, y, x1, . . . , xm, xm11, . . . , xm1nd, and, corre-
spondingly, its counterpartB performs the inverse trans
formation. Forn new variables we introduce the vecto
notation:$x ­ hxm11, xm12, . . . , xm1nj. The update proce-
dureA involves two steps. First, itproposesa change,
selecting a new type of diagram,jm1n, and a particular
value of $x. The vector$x is selected with a certain nor-
malized distribution functionWs $xd. There are no require-
ments strictly fixing the form ofWs $xd, but to render the
algorithm most efficient, it is desirable thatWs $xd be cho-
sen as close as possible toFsjm1n, y, $xd. Upon proposing
the modification, the update is accepted with the prob
bility Paccs $xd, or rejected. The updateB , removing vari-
ables$x, is accepted with probabilityPrems $xd. For the pair
of complimentary updates to be balanced, the followin
Metropolis-like prescription should be fulfilled [5]:

Paccs $xd ­

Ω
Rs $xdyW s $xd, if Rs $xd , Ws $xd ,
1, otherwise,

(5)

Prems $xd ­

Ω
Ws $xdyRs $xd if Rs $xd . Ws $xd ,
1, otherwise,

(6)

where
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Rs $xd ­
pB

pA

Fsjm1n, y, x1, . . . , xm, $xd
Fsjm, y, x1, . . . , xmd

(7)

andpA andpB are the probabilities of selecting update
A andB , which, in principle, may differ. To solve the
polaron problem and account for any possible diagra
it is sufficient to have only one pair of complementar
updates of type II: the updateA adding a new phonon
propagator to the diagram and its counterpartB removing
one phonon propagator from the diagram.

Consider the algorithm forA. First we select the po-
sition t1 for the left-hand end of the extra phonon prop
gator. This is done by choosing at random (with equ
probabilities) one of the free-electron propagators and
taking for t1 any time (with equal probability density)
within this propagator. Second we select the positiont2
for the right-hand end of the phonon propagator, in a
cordance with the distribution function~ expf2vpst2 2

t1dg. After that, we select the momentum for this prop
agator, using the distribution~ s1 1 qyq0d22, where
q2

0y2 ­ vp. Now the proposing stage is completed, an
we are ready to perform an accept (reject) step, followi
the above prescription, Eq. (5). The corresponding fun
tion Ws $xd ( $x ; ht1, t2, qj) reads

Ws $xd ~
1
t0

1
s1 1 qyq0d2 e2vp st22t1d, (8)

where t0 is the length of the free-electron propagato
and where the pointt1 is selected. Apart from the factor
pB ypA, the ratio (7) is now completely defined.

The algorithm for B is to select at random (with
equal probabilities) some phonon propagator and with
probabilities given in Eqs. (6)–(8) to remove it.

We now define the ratiopB ypA. The simplest choice
would be to have equal probabilities for selecting th
creation and annihilation procedures at each MC step.
might seem that this leads topB ypA ­ 1, but this is not
true. When we select an electron propagator to dec
about pointt1, we haveNe equal chances, whereNe is
the number of free-electron propagators in the diagra
being modified [denominator of Eq. (7)]. When we sele
a phonon propagator to be removed, we haveNph equal
chances, whereNph is the number of phonon propagator
in the diagram [numerator of Eq. (7)].Ne and Nph are
straightforwardly related to each other,

Nph ­ sNe 1 1dy2 . (9)

We thus get

pB

pA

­
Ne 1 1

2Ne
­

Nph

2Nph 2 1
. (10)

As for the updates of type I, these may includ
(i) the selection of timet anywhere on the interval
st2Nph , `d according to the simple exponential distributio
of Gs0dsk, t 2 t2Nph d [obviously, the role of the chemical
potential is to make this distribution normalizable; i
fact, we usem as a tuning parameter to probe differen
2515
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time scales since the typical length of the diagram
time is controlled by the inverse ofEskd 2 m], and
(ii) the change of the diagram momentum fromk to
k 1 p according to the distribution function expf2sk̄ 1

pd2ty2mg, wherek̄ is the average electron momentum o
the diagram, i.e.,̄k ­ t21

R
t

0 dt0 kst0d. We find it more
efficient, however, to select the incoming momentum
will and keep it fixed, since in this case we collect all th
statistics for the value ofk we are interested in, instead o
spreading it over the entirek histogram.

As mentioned already theW distribution function
according to which one is selecting the new diagram va
ables is arbitrary, but the best possible choice would
Wbests $xd ~ D̃sq, t2 2 t1d exph2

Rt2

t1
dtfs pstd 2 qd2 2

p2stdgy2j, so that the accept (reject) probabilities in
Eqs. (5) and (6) are independent of$x. However, it is not
known in the general case how to map the homogeneo
(on the unit interval) multidimensional distribution of
random numbersr1, . . . , r4 to arbitrary W . Such a
mapping is easy ifW ­

Q4
i­1 Wisxid factorizes [as in

Eq. (8)], and one simply has to choose the function
form which allows an analytic (i.e., very fast) solution o
one-dimensional equations

Rxi,bi

ai
dy Wis yd ­ ri, where

hWij are defined on intervalssai , bid, and their product is
as close as possible toWbest. We believe this is the most
efficient way of summing the diagrammatic series forG.

In Fig. 2 we show the typical data for the polaron Gree
function. Following Ref. [3], we use energy units suc
that vp ­ 1. After an initial drop at short times [the
overall normalization of the Green function is establishe
from Gsk, t ! 0d ! Gs0dsk, 0d ­ 1] we observe a pure
exponential decay ofGsk, td at longer times [provided we
are below the threshold of Cherenkov radiation,Eskd 2

E0 , vp, so that the polaron state is stable]. From th
exponential asymptotic of the Green function we readi
extract the polaron energy,
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FIG. 2. Polaron Green functionGsk ­ 0, td for a ­ 2 and
m ­ 22.2. The solid line is the exponential fit.
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Gsk, t ¿ v21
p d ! Zk exph2fEskd 2 mgtj . (11)

By fine-tuning the chemical potential close toEskd we
may extend the time scale forGsk, td which is given by
1yfEskd 2 mg. Typically, we had reliable statistics on the
time scale of the order of100yvp and were thus able to
deduce the polaron energy to accuracy better than0.01vp .
Apart from the polaron energy, the asymptotic behavi
of the Green function (11) gives us one more importa
physical characteristic of the polaron, the factorZk , which
shows the fraction of the bare-electron state in the tr
eigenstate of the polaron

Zk ­ jkfree particlek j polaronklj2. (12)

In Fig. 3 we present our results for the bottom of th
band E0 as a function of the coupling strengtha in
the most interesting intermediate region0 , a # 6. As
expected, our data are below the solid line which gives t
upper bound forE0 (known to be the lowest ever obtained
for this problem) as derived from Feynman’s variation
treatment [3]. We note the remarkable accuracy
Feynman’s approach to the polaron energy.

However, the most interesting and instructive da
are for the polaron spectrum at relatively largek. The
perturbation theory result for the dispersion law,Eskd ø
k2y2 2 as

p
2ykd sin21sky

p
2d (the solid line in Fig. 4),

clearly demonstrates that the first-order correction
singular near the optical phonon emission threshold a
even develops an unphysical maximum [by assumptio
the threshold point was defined asEskcd ­ E0 1 vp ;
the maximum on the dispersion curve atk , kc is in
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FIG. 3. Polaron energyE0 as a function of the coupling
strength. The solid line is Feynman’s variational result.
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FIG. 4. Polaron dispersion law fora ­ 1. The solid line is
the first-order perturbation theory result.

contradiction with this assumption]. One is bound t
admit then that near the threshold the lowest order pe
turbation theory fails at anya, because of the singu-
lar phonon density of states, which isd functional when
one ignores the curvature of the phonon dispersion la
vpsqd ø vp ­ const [6,7]. The formalism dealing with
such cases was developed by Pitaevskii [8] for the e
point in 4He (a similar approach based on the Tamm
Dankoff approximation was suggested in Refs. [2,9] an
developed further in [6,7]). By applying it to the Fröhlich
model we arrive at the following equation for the disper
sion law:

ṽ 2 ask 2 kcd 1 bṽ
Z dx

x2 2 ṽ
1

Rsk 2 kc, ṽd ­ 0 , (13)

whereṽ ; v 2 sE0 1 vpd, R is a smooth function of
k 2 kc andṽ, a, andb are some coefficients depending
on a and kc. This equation features an end point a
kc, with the parabolic dependence, Eq. (1), atk , kc.
The MC data obtained fora ­ 1 are shown in Fig. 4.
We see how an almost perfect agreement with th
perturbation theory for the band bottom transforms in
nonperturbative behavior nearkc predicted by Eq. (1).

Apparently, the end point is an artifact of the dispe
sionless phonon spectrum. With the nonzero curvatu
of vpsqd taken into account, the end point will trans
form into a sharp crossover from zero to finite dampin
o
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of the polaron state. We estimate the crossover region
Dkykc ,

p
myM, whereM is the mass of the host-lattice

atoms.
In summary, we have presented the numerical solut

of the polaron problem by our diagrammatic quantum M
method, which directly simulates the polaron Green fun
tion in the 4D momentum-time continuum. This approa
applies to any model dealing with 1 (few) degree of fre
dom, either continuous or discrete, coupled to the therm
bath. The series of the form of Eq. (2) also naturally rep
sents the partition function in the interaction picture [4,5
and this approach was used recently to calculate the sm
ing of the Coulomb staircase in quantum dots [10]. Mo
generally, diagrammatic MC solves any problem whi
can be reduced to a convergent series (2). (It may hap
that perturbative expansion forms an asymptotic series
which case the above approach does not work, e.g., an
pansion ina for H ­ p2y2m 1 mv

2
0x2y2 1 ax4.) The

efficiency, however, severely depends on the sign proble
and the convergence becomes very poor ifF functions are
not positive definite. The sign problem may originate fro
the particle statistics or from the alternating sign of mat
elements contributing to different diagrams. It is thus
crucial importance to work in the representation in whi
the sign problem is absent.
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